Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retrospective detection of monkeypox virus in the testes of nonhuman primate survivors

Abstract

Close contact through sexual activity has been associated with the spread of monkeypox virus (MPXV) in the ongoing, global 2022 epidemic. However, it remains unclear whether MPXV replicates in the testes or is transmitted via semen to produce an active infection. We carried out a retrospective analysis of MPXV-infected crab-eating macaque archival tissue samples from acute and convalescent phases of infection of clade I or clade II MPXV using immunostaining and RNA in situ hybridization. We detected MPXV in interstitial cells and seminiferous tubules of testes as well as epididymal lumina, which are the sites of sperm production and maturation. We also detected inflammation and necrosis during the acute phase of the disease by histological analysis. Finally, we found that MPXV was cleared from most organs during convalescence, including healed skin lesions, but could be detected for up to 37 d post-exposure in the testes of convalescent macaques. Our findings highlight the potential for sexual transmission of MPXV in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Monkeypox virus infection in the testes of macaques with acute infection.
Fig. 2: A monkeypox virus-specific RNA in situ hybridization method.
Fig. 3: Monkeypox virus in the seminiferous tubules of testes and epididymal lumina.
Fig. 4: Persistence of Monkeypox virus in the testes of crab-eating macaque survivors.

Similar content being viewed by others

Data availability

All animals and tissue staining information in the present study are listed in Supplementary Tables 1 and 2.

References

  1. Magnus, P. V., Andersen, E. K., Petersen, K. B. & Birch-Andersen, A. A pox-like disease in cynomolgus monkeys. Acta Pathol. Microbiol. Scand. 46, 156–176 (1959).

    Article  Google Scholar 

  2. Breman, J. G. et al. Human monkeypox, 1970–79. Bull. World Health Organ. 58, 165–182 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Beer, E. M. & Rao, V. B. A systematic review of the epidemiology of human monkeypox outbreaks and implications for outbreak strategy. PLoS Negl. Trop. Dis. 13, e0007791 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bunge, E. M. et al. The changing epidemiology of human monkeypox–A potential threat? A systematic review. PLoS Negl. Trop. Dis. 16, e0010141 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sklenovska, N. & Van Ranst, M. Emergence of monkeypox as the most important orthopoxvirus infection in humans. Front. Public Health 6, 241 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yinka-Ogunleye, A. et al. Outbreak of human monkeypox in Nigeria in 2017–18: a clinical and epidemiological report. Lancet Infect. Dis. 19, 872–879 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Happi, C. et al. Urgent need for a non-discriminatory and non-stigmatizing nomenclature for monkeypox virus. PLoS Biol. 20, e3001769 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Erez, N. et al. Diagnosis of imported monkeypox, Israel, 2018. Emerg. Infect. Dis. 25, 980–983 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vaughan, A. et al. Human-to-human transmission of monkeypox virus, United Kingdom, October 2018. Emerg. Infect. Dis. 26, 782–785 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hobson, G. et al. Family cluster of three cases of monkeypox imported from Nigeria to the United Kingdom, May 2021. Eur. Surveill. 26, 2100745 (2021).

    Article  CAS  Google Scholar 

  11. Ng, O. T. et al. A case of imported monkeypox in Singapore. Lancet Infect. Dis. 19, 1166 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Costello, V. et al. Imported monkeypox from international traveler, Maryland, USA, 2021. Emerg. Infect. Dis. 28, 1002–1005 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rao, A. K. et al. Monkeypox in a traveler returning from Nigeria - Dallas, Texas, July 2021. Morb. Mortal. Wkly Rep. 71, 509–516 (2022).

    Article  Google Scholar 

  14. Reed, K. D. et al. The detection of monkeypox in humans in the Western Hemisphere. N. Engl. J. Med. 350, 342–350 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Centers for Disease Control and Prevention. Update: multistate outbreak of monkeypox–Illinois, Indiana, Kansas, Missouri, Ohio, and Wisconsin, 2003. Morb. Mortal. Wkly Rep. 52, 642–646 (2003).

    Google Scholar 

  16. Vivancos, R. et al. Community transmission of monkeypox in the United Kingdom, April to May 2022. Eurosurveillance. 27, 2200422 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Minhaj, F. S. et al. Monkeypox outbreak - Nine States, May 2022. Morb. Mortal. Wkly Rep. 71, 764–769 (2022).

    Article  CAS  Google Scholar 

  18. WHO Director-General’s Statement at the Press Conference Following IHR Emergency Committee Regarding The Multi-country Outbreak of Monkeypox (WHO, 2022).

  19. WHO Health Emergency Dashboard-Monkeypox (WHO, 2022).

  20. Monkeypox Key Facts (WHO, 2022).

  21. Miura, F. et al. Estimated incubation period for monkeypox cases confirmed in the Netherlands, May 2022. Eurosurveillance 27, 2200448 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Perez Duque, M. et al. Ongoing monkeypox virus outbreak, Portugal, 29 April to 23 May 2022. Eurosurveillance 27, 2200424 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Antinori, A. et al. Epidemiological, clinical and virological characteristics of four cases of monkeypox support transmission through sexual contact, Italy, May 2022. Eurosurveillance 27, 2200421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thornhill, J. P. et al. Monkeypox virus infection in humans across 16 Countries – April–June 2022. N. Engl. J. Med. 387, 679–691 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Rao, A. K. et al. Use of JYNNEOS (smallpox and monkeypox vaccine, live, nonreplicating) for preexposure vaccination of persons at risk for occupational exposure to orthopoxviruses: recommendations of the Advisory Committee on Immunization Practices - United States, 2022. Morb. Mortal. Wkly Rep. 71, 734–742 (2022).

    Article  CAS  Google Scholar 

  26. Tecovirimat SIGA (European Medicines Agency, 2022); https://www.ema.europa.eu/en/medicines/human/EPAR/tecovirimat-siga

  27. Khodakevich, L., Jezek, Z. & Kinzanzka, K. Isolation of monkeypox virus from wild squirrel infected in nature. Lancet 1, 98–99 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. Radonic, A. et al. Fatal monkeypox in wild-living sooty mangabey, Cote d’Ivoire, 2012. Emerg. Infect. Dis. 20, 1009–1011 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Doty, J. B. et al. Assessing monkeypox virus prevalence in small mammals at the human-animal interface in the Democratic Republic of the Congo. Viruses 9, 283 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Monkeypox (Centers for Disease Control and Prevention, 2022); https://www.cdc.gov/poxvirus/monkeypox/transmission.html

  31. Johnson, R. F. et al. Comparative analysis of monkeypox virus infection of cynomolgus macaques by the intravenous or intrabronchial inoculation route. J. Virol. 85, 2112–2125 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Zaucha, G. M., Jahrling, P. B., Geisbert, T. W., Swearengen, J. R. & Hensley, L. The pathology of experimental aerosolized monkeypox virus infection in cynomolgus monkeys (Macaca fascicularis). Lab. Invest. 81, 1581–1600 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Huggins, J. et al. Nonhuman primates are protected from smallpox virus or monkeypox virus challenges by the antiviral drug ST-246. Antimicrob. Agents Chemother. 53, 2620–2625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nalca, A. et al. Experimental infection of cynomolgus macaques (Macaca fascicularis) with aerosolized monkeypox virus. PLoS ONE 5, e12880 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Goff, A. J. et al. A novel respiratory model of infection with monkeypox virus in cynomolgus macaques. J. Virol. 85, 4898–4909 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chapman, J. L., Nichols, D. K., Martinez, M. J. & Raymond, J. W. Animal models of orthopoxvirus infection. Vet. Pathol. 47, 852–870 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Jordan, R. et al. ST-246 antiviral efficacy in a nonhuman primate monkeypox model: determination of the minimal effective dose and human dose justification. Antimicrob. Agents Chemother. 53, 1817–1822 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shchelkunov, S. N. et al. Human monkeypox and smallpox viruses: genomic comparison. FEBS Lett. 509, 66–70 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coffin, K. M. et al. Persistent Marburg virus infection in the testes of nonhuman primate survivors. Cell Host Microbe 24, 405–416.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Zeng, X. et al. Identification and pathological characterization of persistent asymptomatic Ebola virus infection in rhesus monkeys. Nat. Microbiol. 2, 17113 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Smith, D. R. et al. Persistent Crimean-Congo hemorrhagic fever virus infection in the testes and within granulomas of non-human primates with latent tuberculosis. PLoS Pathog. 15, e1008050 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, J. et al. Ebola virus persistence and disease recrudescence in the brains of antibody-treated nonhuman primate survivors. Sci. Transl. Med. 14, eabi5229 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, J. et al. Nipah virus persists in the brains of nonhuman primate survivors. JCI Insight 4, e129629 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Govero, J. et al. Zika virus infection damages the testes in mice. Nature 540, 438–442 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Perry, D. L. et al. Ebola virus localization in the macaque reproductive tract during acute Ebola virus disease. Am. J. Pathol. 188, 550–558 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Salam, A. P. & Horby, P. W. The breadth of viruses in human semen. Emerg. Infect. Dis. 23, 1922–1924 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pshenichnaya, N. Y., Sydenko, I. S., Klinovaya, E. P., Romanova, E. B. & Zhuravlev, A. S. Possible sexual transmission of Crimean-Congo hemorrhagic fever. Int. J. Infect. Dis. 45, 109–111 (2016).

    Article  PubMed  Google Scholar 

  48. Griffin, D. E. Why does viral RNA sometimes persist after recovery from acute infections? PLoS Biol. 20, e3001687 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Heskin, J. et al. Transmission of monkeypox virus through sexual contact – a novel route of infection. J. Infect. (2022).

  50. Peiró-Mestres, A. et al. Frequent detection of monkeypox virus DNA in saliva, semen, and other clinical samples from 12 patients, Barcelona, Spain, May to June 2022. Eurosurveillance 27, 2200503 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lapa, D. et al. Monkeypox virus isolation from a semen sample collected in the early phase of infection in a patient with prolonged seminal viral shedding. Lancet Infect. Dis. 22, 1267–1269 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Deen, G. F. et al. Ebola RNA persistence in semen of Ebola virus disease survivors - Final Report. N. Engl. J. Med. 377, 1428–1437 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Isidro, J. et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypoxvirus. Nat. Med. 28, 1569–1572 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Writer (United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA) for critically editing the manuscript and J. Huggins (USAMRIID) for his contribution to the original animal studies. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the US Department of the Army, the US Department of Defense, or of the institutions and companies affiliated with the authors. In no event shall any of these entities have any responsibility or liability for any use, misuse, inability to use, or reliance upon the information contained herein. The US departments do not endorse any products or commercial services mentioned in this publication.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. conceived and designed the experiments. J.L., A.M.B., J.M.G., A.V.B. and X.Z. performed all the staining and tissue analysis. E.M.M., A.J.G. and A.N. performed NHP studies or provided samples. J.L.C., J.L.W.R., T.M.B. and P.R.F. performed histopathological analysis. X.Z. interpreted the data and wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Xiankun Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Hideki Hasegawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Characterization of inflammatory cells in the testicular tissue with MPXV persistence.

a,b, Low magnification immunofluorescence imaging demonstrates infiltration of CD68+ monocytes/macrophages (magenta in a), CD3+ T cells (green in a), myeloperoxidase (MPO)+ neutrophil granulocytes (green in b), and CD8+ T cells (magenta in b) in the areas surrounding the granulomas in the testes of MPXV survivors. Debris of MPO+ neutrophil granulocytes (green in b) are concentrated in the necrotic center of granulomas (regions circled by white dashed lines) in which MPXV persists. Representative immunofluorescence staining image shown from n = 2 survivors. Nuclei were counterstained blue with 4′,6-diamidino-2-phenylindole (DAPI). Scale bar, 100 µm.

Supplementary information

Reporting Summary

Supplementary Table

Excel spreadsheet containing 2 tabs labelled as Supplementary Table 1 and Supplementary Table 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Mucker, E.M., Chapman, J.L. et al. Retrospective detection of monkeypox virus in the testes of nonhuman primate survivors. Nat Microbiol 7, 1980–1986 (2022). https://doi.org/10.1038/s41564-022-01259-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-022-01259-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing