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We use a global metapopulation transmission model to study the effect of dif-
ferent COVID-19 vaccine allocation strategies across countries of the world. In
the two scenarios considered, 3 billion doses are distributed worldwide. In the
uncooperative allocation scenario, the first 2 billion doses are co-opted by a list
of high-income countries, while the third billion is distributed equally around
the world. In the cooperative allocation scenario, all the 3 billion doses are dis-
tributed to all countries proportionally to their population. To avoid uncon-
trolled assumptions and unknowns about the future course of the COVID-19
pandemic, we consider a counterfactual scenario analyzing what would have
happened if the vaccine had been available on March 16th, 2020. The model
considers a single dose vaccine that is effective two weeks after administration.
We find that the cooperative and uncooperative strategy would have averted
61% and 33% of the deaths globally through September 1st, 2020, respec-
tively, when the vaccine is 80% effective, and 57% and 30% deaths when the
vaccine is 65% effective.
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Introduction
As of September 12th, 2020 the COVID-19 pandemic has recorded worldwide 28,525,510 con-
firmed infections and has killed more than 916,000 people (1). As the number of confirmed
COVID-19 cases increased a large number of affected countries have been forced to adopt
non-pharmaceutical interventions at an unprecedented scale that generate economic loss and
widespread disruption to social life. As the pandemic is still spreading the entire world looks
anxiously to the development of vaccines as the solution to the COVID-19 unprecedented cri-
sis. Any effective COVID-19 vaccine, however will be initially scarce, raising the issue of how
doses will be distributed between different countries. While on one side many organizations
are advocating for a fair and equitable distribution of the available vaccine, some countries are
already reserving large amount of doses, even before the vaccine has been cleared for use. In
order to investigate the effect of different approaches to the distribution of COVID-19 vaccines,
we use a large-scale computational model to compare two international allocation strategies:
one in which initially only a limited number of countries benefit from a large vaccine stockpile,
and a second one in which vaccines supplies are equitably shared worldwide proportional to
population.

To study the spatial and temporal spread of COVID-19, we use the Global Epidemic and
Mobility Model (GLEAM), an individual-based, stochastic, and spatial epidemic model (2–
6). The model was previously used to characterize the early stage of the COVID-19 epidemic
in mainland China and the effect of travel restrictions on infections exported to other global
regions (7). GLEAM generates an ensemble of possible epidemics described by the number of
newly generated infections, the time of disease arrival in different regions of the world, and the
number of infected travelers. The model divides the global population into more than 3, 200
subpopulations in roughly 200 different countries and territories. The airline transportation data
encompass daily origin-destination traffic flows from the Official Aviation Guide (OAG) and
the International Air Transport Association (IATA) databases (8, 9), whereas ground mobility
flows are derived from the analysis and modeling of data collected from the statistics offices of
30 countries on five continents (2, 3).

The transmission dynamics take place within each subpopulation and assume an SLIR-like
compartmentalization scheme for the disease progression similar to those used in several large
scale models of SARS-CoV-2 transmission (10–15). Each individual, at any given point in
time, is assigned to a compartment corresponding to their particular disease-related state (e.g.,
susceptible, latent, infectious, removed) (7). This state also controls the individual’s ability to
travel (details in Materials and Methods). Individuals transition between compartments through
stochastic chain binomial processes. Susceptible individuals can acquire the virus through con-
tacts with individuals in the infectious category and can subsequently become latent (i.e., in-
fected but not yet able to transmit the infection). Vaccinated individuals transition in a separate
removed compartment if immunity is acquired. This last stochastic process models an all-or-
none protection to achieve the desired 80% vaccine efficacy. The process of infection is modeled
using age-stratified contact patterns at the state level (16). Latent individuals progress to the in-
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fectious stage at a rate inversely proportional to the latent period, and infectious individuals
progress to the removed stage at a rate inversely proportional to the infectious period. The sum
of the mean latent and infectious periods defines the generation time. Removed individuals
are those who can no longer infect others. To estimate the number of deaths, we use the age-
stratified infection fatality ratios from (17). We are not considering co-morbidities and other
potential risk factors that might affect mortality across different countries. At this stage, the
transmission model does not account for heterogeneities due to age differences in susceptibility
to the SARS-CoV-2 infection. This is an intense area of discussion at the moment (18–20).

We assume a start date of the epidemic in Wuhan, China, that falls between November 15,
2019 and December 1, 2019, with 20 initial infections (7, 15, 21–24). The model generates
an ensemble of possible epidemic realizations and is calibrated using Approximate Bayesian
Computation (ABC) methods (25) based on the observed international importations from main-
land China through January 21, 2020 (7) and using a generation time Tg = 6.5 days. Only a
fraction of imported cases are detected at the destination (26). According to the estimates pro-
posed in (27), we stratify the detection capacity of countries into three groups: high, medium
and low surveillance capacity according to the Global Health Security Index (28), and assume
asymptomatic infections in January were not detected (see Materials and Methods). The model
calibration does not consider correlated importations (family travel) and assumes that travel
probabilities are homogeneous across all individuals in each subpopulation. The model ac-
counts for international travel restrictions according to available data on traffic reduction and
government issued policies. We report the details of the model in the Materials & Methods
section.

The vaccine administration is modeled as follows. First, the daily stockpile of the vaccine
is shipped to each location according to the vaccine allocation strategy. Once vaccine doses are
available in a location, a random binomial draw is performed to distribute the available doses
to the different age groups according to a probability that is proportional to the age-specific
infection fatality rate of each age group (47). Vaccine inoculation is modeled at the single
individual level according to the available doses in each age bracket. An additional random draw
for each vaccine inoculation will establish if the vaccine will be effective. This last stochastic
process models an all-or-none protection to achieve the desired vaccine efficacy. For example,
for a vaccine that is 80% effective, 80% of the vaccinated individuals are completely protected
after two weeks from receiving the vaccine, while 20% receive no protection. Vaccine doses are
administered to individuals irrespective of their clinical history, with the exception of currently
infectious symptomatic individuals.

Vaccine allocation scenarios
In this analysis we consider three scenarios: a) a baseline reference scenario in which no vac-
cine is administered; b) an uncooperative vaccine allocation; and c) a cooperative vaccine
allocation. One of the main problems in modeling the effects of vaccine allocation is to define
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scenarios for the evolution of the COVID-19 pandemic once the vaccine doses will be available,
most likely in the early months of 2021. We therefore considered a different approach in which
we assume that the vaccine would have been available by mid March 2020. In this way we can
consider the evolution of the epidemic to follow the trajectory initially observed in 2020, and
model the interventions adopted by each country according to actual data concerning travel re-
strictions, non-pharmaceuticals interventions and public health policies such as school closure
(as detailed in the Material and Methods section).

In both vaccine allocation strategies we assume that a stockpile of 3 billion doses in total is
distributed over the course of 6 months starting March 16th, 2020. Additionally, we assume that
one week is needed to start the distribution at a global scale. Currently, no interim analysis of
phase 3 trials of several candidates vaccines are available. We have therefore assumed a single
dose of an all-or-none vaccine that is effective two weeks after administration. A sensitivity
analysis for vaccine efficacy is performed and two different scenarios are considered in this
study. One in which vaccine efficacy is 80% and one in which it is 65%. The weekly number of
available doses, globally, is assumed to be 125,000,000. The model also considers that problems
in logistics may delay the planned availability of vaccine doses, assuming that up to 15% of the
doses might not be administered by September 1st, 2020 as planned.
We consider the two following vaccine allocation strategies:

• Uncooperative allocation scenario: the first 2 billion doses of the vaccine are adminis-
tered only to the list of countries reported in Table 2 and doses are pro-rated with respect
to the population size of each country.

• Cooperative allocation scenario assumes that the first 2 billion doses are distributed pro-
portionally to the population of the countries.

In both scenarios the remaining 1 billion doses are distributed to all countries (including the list
of priority countries) proportionally to their population.

The two above scenarios are not an exhaustive analysis of possible fair frameworks for in-
ternational vaccine allocations. As the discussion about an ethical and equitable international
distribution of vaccines progresses, novel distribution frameworks based on geographically tar-
geted approaches aimed at reducing direct and indirect health impacts and deaths are developed.
The presented results are therefore not to be considered as the analysis of an optimal strategy
but just as a first step of an extensive analysis of ethical frameworks for global vaccine alloca-
tion (46).

Results and Discussion
To estimate the effect of the cooperative and uncooperative COVID-19 vaccine allocation strate-
gies we have computed the median number of deaths in each different scenario and calculated
the proportion of averted deaths with respect to the baseline scenario with no vaccine distri-
bution. More specifically, the proportion of globally averted deaths (reported in Figure 1) is
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Figure 1: Share of globally averted deaths as of September 1st, 2020. In this figure we report
the share of averted deaths computed as one minus the ratio of the median number of worldwide
deaths that occurred in the uncooperative (or cooperative) allocation scenario and the median
number of deaths that occurred in the baseline (no vaccine) scenario.

computed as one minus the ratio of the median number of worldwide deaths that occurred in
the uncooperative (or cooperative) allocation scenario and the median number of deaths that
occurred in the baseline (no vaccine) scenario. The median values refer to the outcome of the
6,000 identically initialized numerical realizations of the model analyzed for each scenario. We
find that for a 80% vaccine efficacy the uncooperative vaccine allocation strategy would avert
33% [95CI 28%–39%] deaths, while the cooperative allocation strategy is estimated to avert
61% [95CI 57%–64%] deaths. If a 65% vaccine efficacy is assumed, the percentages of averted
deaths in the two scenarios become 30% [95CI 27%–36%] in the uncooperative scenario and
57% [95CI 54%–61%] in the cooperative scenario.

It is important to stress that while at the global level the estimated number of averted deaths
with the cooperative strategy is twice the one in the uncooperative strategy, the uncoopera-
tive strategy is providing a modest gain in averted deaths for the countries who can access the
vaccine stockpile when compared to the possible loss suffered by non-priority countries. For
instance, for an 80% vaccine efficacy, in Western Europe, the uncooperative strategy indicates
a proportion of averted deaths of 74%, while the cooperative strategy achieves a 55% averted
deaths; in Northern America the uncooperative strategy averted 67% deaths compared to the
53% of the cooperative strategy. This however has to be contrasted with other regions such
as Western Africa where the uncooperative and cooperative strategies achieve 13% and 93%
averted deaths, respectively, while in South-Eastern Asia they achieve 5% and 62% averted
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deaths, respectively. It is worth remarking that the model’s numerical simulations explore the
many possible paths of the epidemic given the same set of non-pharmaceutical interventions and
other policies implemented across the world. Thus, the analysis provided here must be consid-
ered as a statistical description of the many possible statistical trajectories of the epidemic once
the vaccine distribution is started. The analysis thus provides general information concerning
the statistical effectiveness of the different vaccinale allocation startegies. For this reason we
report the proportion of averted deaths instead of the number of averted deaths, a number that
could vary considerably across the different epidemic histories explored numerically.

Our analysis as with all modeling exercises has limitations and requires certain assumptions.
The model parameters are based on the current knowledge of SARS-CoV-2 and although the
model is stable to variations in these parameters, more information on the key characteristics of
the disease might impact the results of this study. At this stage, the number of available vaccine
doses, the mechanism of vaccine efficacy, and the distribution capacity are best guesses based
on expert assessment and priors mostly based on flu vaccine distribution. It is also likely that
with ongoing vaccination programs some countries would have opted for different policies than
those implemented from April to August, 2020. Our modeling approach instead considers the
policies in place during the course of the COVID-19 epidemic independently of the effect of
the vaccination distribution programs.
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Data and materials availability
Proprietary airline data are commercially available from Official Aviation Guide (OAG) and
IATA databases. The GLEAM model is publicly available at http://www.gleamviz.org/.

Materials and Methods
Here, we provide the details about the model calibration, present the sensitivity analysis of some key
parameters, and describe the details of the importation sources estimation. We also include an analysis
of the empirical data, several indicators (air traffic, population, density), and the data obtained from the
model.

Global Epidemic and Mobility Model
We adopt the Global Epidemic and Mobility model (GLEAM), a stochastic spatial epidemic model based
on a metapopulation approach that has been used and published previously (2,3). In the model, the world
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is divided into over 3,200 geographic subpopulations constructed using a Voronoi tessellation of the
Earth’s surface. Subpopulations are centered around major transportation hubs (e.g. airports) and consist
of cells with a resolution of 15 x 15 arc minutes (approximately 25 x 25 kilometers). High resolution data
are used to define the population of each cell (29). Other attributes of individual subpopulations, such as
age-specific contact patterns, health infrastructure, etc., are added according to available data (16).

GLEAM integrates a human mobility layer - represented as a network - that uses both short-range
(i.e. commuting) and long-range (i.e. flights) mobility data from the Offices of Statistics for 30 countries
on 5 continents as well as the Official Aviation Guide (OAG) and IATA databases (updated in 2019) (8,9).
The air travel network consists of the daily passenger flows between airport pairs (origin and destination)
worldwide mapped to the corresponding subpopulations. We define a worldwide homogeneous standard
for GLEAM to overcome differences in the spatial resolution of the commuting data across different
countries. Where information is not available, the short-range mobility layer is generated synthetically
by relying on the “gravity law” or the more recent “radiation law” both calibrated using real data (30).
These approaches assume more frequent traveling to nearby or closer subpopulations and less frequent
traveling to distant locations. In Fig. 2 we show a representation of the geographical resolution of the
model and the mobility network for the world.

Initial conditions are set specifying the number and location of individuals capable of transmitting
the infection. GLEAM is then able to track over time the proportion of the population in each disease
compartment for all subpopulations. At the start of each simulated day, travelers move to their destina-
tions via the flight network. The probability of air travel changes from day to day, varies by age group,
and accounts for the effects of location specific airline traffic reductions and restrictions. Short-range
mobility (i.e. commuting) varies between workdays and weekends, by age group, and by disease status.
Each full day is simulated using 12 distinct time steps, and this process is repeated for every simulated
day. Individuals and their traveling patterns are tracked as shown in the flow diagram for the GLEAM
algorithm (Fig. 3).

The combined population structure and mobility network create a synthetic world that is used to sim-
ulate the unfolding dynamics of the epidemic. The infection dynamics occur within each subpopulation.
We adopt a classic SLIR model in which individuals can be classified into four compartments: sus-
ceptible, latent, infectious, or removed. Susceptible individuals become latent through interactions with
infectious individuals. During both the latent and infectious stages we assume that individuals are able to
travel. Following the infectious period, individuals then progress into the removed compartment where
they are no longer able to infect others, meaning they have either recovered, been hospitalized, isolated
or have died. Individuals transition between compartments using stochastic binomial chain processes
assuming parameter values from available literature that define the natural history of disease. Lastly,
vaccinated individuals transition in a separate removed compartment if immunity is acquired. In Table 1
we report the parameter estimates used in the model.

Interventions Timeline
To realistically depict the evolution of the epidemic, a comprehensive set of policy interventions is ap-
plied to modify disease transmissibility and population mobility. On January 15, partial international
travel reductions (from 10% to 40%) are applied for individuals traveling to/from China. Between Jan-
uary 23 and 28, flight and commuting reductions are applied to Wuhan and other subpopulations in the
Hubei province to enforce government-mandated quarantines.
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Figure 2: Schematic representation of GLEAM. (Left) Subpopulations are geographic regions formed
from the Voronoi tessellation that are centered around major urban areas and transportation hubs. They
are comprised of census cells that are approximately 25km x 25km. (Right) Diagram of the origin-
destination airport network (long-range mobility network), the diagram of the commuting network (short-
range mobility network), and the population layer of GLEAM showing the population size of census
cells.
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Parameters Range Ref.
Latent period (mean) [4 – 7] days (31)
Infectious period (mean) [2 – 4] days (11)
Days until recovery [10 – 14] days (11, 32)
Generation time [6 – 8] days
Reproductive number [1.6 – 3.3] in steps of 0.01
Starting date [2019-11-15, 2019-12-01] (15, 21–24)

Table 1: Summary of parameter ranges. Summary of parameter ranges explored in the sensitivity
analysis of the model. Reproductive number and starting date use uniform priors for the model’s calibra-
tion. Reference parameters are reported in the main text.

In addition, on January 25, commuting reductions are applied also to all other subpopulations in
mainland China. To do so, we collected daily travel data starting January 1, 2020 until February 25,
2020 from the Baidu Qianxi platform (33), which provides three mobility indices (inflow index, outflow
index, and intra-city index). The indices are proxies for the number of travelers moving in, out of, and
inside a city, respectively. We extracted the mobility outflow index of 27 provinces and 4 municipalities
for the current year 2020 and the previous year (corresponding to the same lunar date), and then mapped
all provinces and municipalities to the metapopulation structure of the model to estimate the travel flow
changes during the epidemic where the travel reduction can be estimated as 1− Icur

Ipre
, where Icur and Ipre

are the mobility outflow index of current year 2020 and previous year on the same lunar date, respectively.
On February 1, due to the increasing amount of restrictions implemented by various countries and

airlines (34–39), stronger travel reductions are applied between mainland China and the rest of the
world. We use actual worldwide (international and domestic) origin-destination traffic data from the
OAG database to quantify travel reductions. We also apply case detection based on travel history and ad-
ditional travel bans across pairs of countries according to the Oxford COVID-19 Government Response
Tracker (OxCGRT) (40). We account as well for the intra-country mobility and contacts reduction in
workplaces and social settings (18) using the COVID-19 Community Mobility reports obtained from
Google (41).

Starting in mid-March all around the world, countries started to close schools as a means to slow
the spread of COVID-19. We use the timeline of school closures provided by OxCGRT (40). As our
model considers contact matrices for different settings, namely households, schools, workplaces and the
general community (16), we are able to quantify the resulting reduction in individuals’ contacts in each
one of these contexts. To implement the school closure in the United States we follow (42) where au-
thors study the effects of school closure in the context of seasonal influenza epidemics. According to
the date when schools closed in the different states we consider a reduction of contacts in all individ-
uals attending an educational institution (40, 43). In the United States, this intervention was applied at
the state level. Following the school closure, most states issued a stay-at-home order. In this case, we
consider only contacts within the household and that only essential workplaces remained open. Using
the COVID-19 Community Mobility reports (41) we were able to compute the relative reduction in the
number of contacts in the workplace and the general community settings, as well as the relative reduction
in the intra-country mobility. These data are available at the state level for United States, Italy and Spain
among other countries, starting on February 15, 2020. The reports are updated regularly and the last
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date currently used is July 31, 2020. For countries with no available mobility reports, we assume that
on the date when schools are closed a 50% reduction in mobility is achieved, while an 80% reduction is
considered in the case of a stay-at-home order. When the interventions are lifted, the mobility reductions
are relaxed accordingly.

Global Model Calibration
The model described is stochastic and produces an ensemble of possible epidemic outcomes for each
set of initial conditions. We seed the epidemic in Wuhan (China) assuming a starting date between
November 15, 2019 and December 1, 2019 with 20 initial infections (24). Given the doubling time of
the epidemic this might correspond to an outbreak that has started from mid October to late November,
2019. We simulate the epidemic scenarios by sampling the reproductive number (R0) from a uniform
prior in the range 1.6 to 3.3. We use an Approximate Bayesian Computation (ABC) Rejection Algorithm.
The ABC rejection algorithm samples a set of parameter points θ (for instance R0) according to a prior
distribution and simulates the dataset E′ using the model. A distance measure s(E′, E) determines
the difference between E′ and the evidence E based on a given metric. If the generated E′ is outside
a tolerance from the evidence E (i.e. s(E′, E) > ε) the sampled parameter value is discarded. The
sampled parameters that are accepted provide an estimate of the likelihood with respect to the evidence
E and allow us to calculate the posterior distribution P (θ,E). As evidenceE we consider the cumulative
number of SARS-CoV-2 cases internationally imported from China during the time window January 12
to January 21, 2020. The distance measure is at each date the difference between the SARS-CoV-
2 cumulative imported cases generated by the model and the evidence with a tolerance provided by
the under-detection interval estimated in Ref. (27). We also account for a non-detectable 40% rate
of asymptomatic individuals (sensitivity analysis ranging from 35% to 50%) (44, 45). The rejection
algorithm accepts only configurations that satisfy the distance measure each day. This approach allows us
to calibrate the model by incorporating both the growth rate of importations and their magnitude, scaled
according to the under-detection estimates. The detailed list of importation events used is provided in
Table S1 of the supplementary materials of Ref. (7). Using the ABC calibration and the age-stratified
contact matrices for China, we obtained a mean value for the basic reproductive number R0 equal to
2.6 (7). This value has been used as reference in the simulations performed in this study.
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List of countries with priority access to the vaccine

Albania Greece Portugal
Australia Hungary Romania
Austria Iceland Russian Federation
Belarus Ireland Serbia
Belgium Italy Singapore
Bosnia and Herzegovina Latvia Slovak Republic
Bulgaria Lithuania Slovenia
Canada Luxembourg Spain
China Malta Sweden
Croatia Moldova Switzerland
Czech Republic Monaco Taiwan
Denmark Montenegro Turkey
Estonia Netherlands Ukraine
Finland North Macedonia United Kingdom
France Norway United States of America
Germany Poland

Table 2: Countries accessing the first 2 billion vaccine doses in the uncooperative vaccination scenario.
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