

MASH EVALUATION OF TXDOT ROADSIDE SAFETY FEATURES —PHASE II

Test Report 0-6946-R2

Cooperative Research Program

TEXAS A&M TRANSPORTATION INSTITUTE COLLEGE STATION, TEXAS

TEXAS DEPARTMENT OF TRANSPORTATION

in cooperation with the Federal Highway Administration and the Texas Department of Transportation http://tti.tamu.edu/documents/0-6946-R2.pdf

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
FHWA/TX-18/0-6946-R2		
4. Title and Subtitle		5. Report Date
MASH EVALUATION OF TXDC	Published: March 2019	
FEATURES—PHASE II		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
Roger P. Bligh, Wanda L. Menges, I	Bill L. Griffith,	Report 0-6946-R2
Glenn E. Schroeder, and Darrell L. l	Kuhn	
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)
Texas A&M Transportation Institute	e	
College Station, Texas 77843-3135		11. Contract or Grant No.
		Project 0-6946
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
Texas Department of Transportation		Technical Report:
Research and Technology Implementation Office		September 2017–August 2018
125 E. 11th Street		14. Sponsoring Agency Code
Austin, Texas 78701-2483		

15. Supplementary Notes

Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration.

Project Title: Establishing Comprehensive Manual on Assessing Safety Hardware (MASH) Compliance for Roadside Safety Systems in Texas

URL: http://tti.tamu.edu/documents/0-6946-R2.pdf

16. Abstract

In 2009, the American Association of State Highway and Transportation Officials (AASHTO) published the *Manual for Assessing Safety Hardware (MASH)*, which supersedes the previous crash test and evaluation guidelines. A *MASH* implementation agreement was jointly developed and adopted by the Federal Highway Administration and AASHTO. It establishes implementation dates for different categories of roadside safety features.

Texas Department of Transportation, Bridge, Design, Maintenance, and Traffic Operations Divisions reviewed their standards for roadside safety devices and identified those devices that require testing and evaluation to assess *MASH* compliance. Under this project, roadside safety systems used in Texas will be crash tested in accordance with *MASH* criteria in three phases over a three-year period.

A total of 10 devices were tested and evaluated during Phase I. In Phase II, which is the subject of this report, an additional 14 devices were tested and evaluated.

This report documents the crash testing and evaluation of these devices in accordance with *MASH* criteria. The critical configurations were identified and critical tests performed to assess *MASH* compliance.

17. Key Words Bridge Rail, Median Barrier, Guardrail, Single Slope Barrier, Light Pole, Sign Support, Mailbox, Skid- Mounted, Rocky Terrain, Round Posts, Wood Posts,		18. Distribution Statement No restrictions. This document is available to the public through NTIS: National Technical Information Service		
Steel Posts, Crash Test, MASH, Roadside Safety		Alexandria, Virginia http://www.ntis.gov		
19. Security Classif.(of this report) Unclassified 20. Security Classif.(of the Unclassified)		is page)	21. No. of Pages 674	22. Price

MASH EVALUATION OF TXDOT ROADSIDE SAFETY FEATURES —PHASE II

by

Roger P. Bligh, P.E., Ph.D. Senior Research Engineer Texas A&M Transportation Institute

Wanda L. Menges Research Specialist Texas A&M Transportation Institute

Bill L. Griffith Research Specialist Texas A&M Transportation Institute

Glenn E. Schroeder Research Specialist Texas A&M Transportation Institute

and

Darrell L. Kuhn, P.E. Research Specialist Texas A&M Transportation Institute

> Report 0-6946-R2 Project 0-6946

Project Title: Establishing Comprehensive *Manual on Assessing Safety Hardware* (*MASH*) Compliance for Roadside Safety Systems in Texas

Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration

Published: March 2019

TEXAS A&M TRANSPORTATION INSTITUTE College Station, Texas 77843-3135

DISCLAIMER

This research was performed in cooperation with the Texas Department of Transportation (TxDOT) and the Federal Highway Administration (FHWA). The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the FHWA or TxDOT.

This report does not constitute a standard, specification, or regulation. This report is not intended for construction, bidding, or permit purposes. The engineer in charge of the project was Roger P. Bligh, P.E. #78550.

The United States Government and the State of Texas do not endorse products or manufacturers. Trade of manufacturers' names appear herein solely because they are considered essential to the object of this report.

TTI PROVING GROUND DISCLAIMER

Crash testing performed at: TTI Proving Ground 3100 SH 47, Building 7091 Bryan, TX 77807 The full-scale crash tests reported herein were performed at the Texas A&M Transportation Institute (TTI) Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, and according to the *MASH* guidelines and standards. The results reported herein apply only to the articles being tested.

THE TTI PROVING GROUND LAB SHALL NOT BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, PUNITIVE, OR OTHER DAMAGES SUFFERED BY TEXAS DEPARTMENT OF TRANSPORTATION OR ANY OTHER PERSON OR ENTITY, WHETHER SUCH LIABILITY IS BASED, OR CLAIMED TO BE BASED, UPON ANY NEGLIGENT ACT, OMISSION, ERROR, CORRECTION OF ERROR, DELAY, OR BREACH OF AN OBLIGATION BY THE TTI PROVING GROUND LAB.

	SI* (MODERN	METRIC) CON	VERSION FACTORS	
	APPROXI	MATE CONVERSION		
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
		AREA		
in ²	square inches	645.2	square millimeters	mm²
ft ²	square feet	0.093	square meters	m²
yd²	square yards	0.836	square meters	m²
ac	acres	0.405	hectares	ha
mi ²	square miles	2.59	square kilometers	km²
		VOLUME		
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft ³	cubic feet	0.028	cubic meters	m ³
yd ³	cubic yards	0.765	cubic meters	m ³
	NOTE: volum		L shall be shown in m ³	
		MASS		
OZ	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
Т	short tons (2000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")
		MPERATURE (exac		_
°F	Fahrenheit	5(F-32)/9	Celsius	°C
		or (F-32)/1.8		
		CE and PRESSURE		
lbf	poundforce	4.45	newtons	N
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa
				π α
	APPROXIM	ATE CONVERSION	NS FROM SI UNITS	
Symbol		ATE CONVERSION Multiply By		Symbol
	APPROXIM	ATE CONVERSION	NS FROM SI UNITS	
	APPROXIM	ATE CONVERSION Multiply By	NS FROM SI UNITS	
Symbol	When You Know	ATE CONVERSION Multiply By LENGTH	NS FROM SI UNITS To Find	Symbol
Symbol mm	When You Know millimeters	Multiply By LENGTH 0.039	NS FROM SI UNITS To Find inches	Symbol in
Symbol mm m	When You Know millimeters meters	Multiply By LENGTH 0.039 3.28 1.09 0.621	To Find inches feet	Symbol in ft
Symbol mm m m	When You Know millimeters meters meters	Multiply By LENGTH 0.039 3.28 1.09	INS FROM SI UNITS To Find inches feet yards	Symbol in ft yd mi
Symbol mm m m	When You Know millimeters meters meters	Multiply By LENGTH 0.039 3.28 1.09 0.621	INS FROM SI UNITS To Find inches feet yards	Symbol in ft yd mi in²
Symbol mm m m km mm² m²	When You Know millimeters meters meters kilometers	Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA	INS FROM SI UNITS To Find inches feet yards miles	Symbol in ft yd mi in² ft²
Symbol mm m km mm²	When You Know millimeters meters meters kilometers square millimeters	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195	inches feet yards miles square inches	Symbol in ft yd mi in²
Symbol mm m km mm² m² m² ha	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47	inches feet yards miles square inches square feet	Symbol in ft yd mi in² ft² yd² ac
Symbol mm m m km mm² m² m² m²	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	inches feet yards miles square inches square feet square yards	Symbol in ft yd mi in² ft² yd²
Symbol mm m km mm² m² m² ha	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47	inches feet yards miles square inches square feet square yards acres	Symbol in ft yd mi in² ft² yd² ac
Symbol mm m km mm² m² m² ha	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	inches feet yards miles square inches square feet square yards acres	Symbol in ft yd mi in² ft² yd² ac
Symbol mm m m km mm² m² m² ha km² mL L	millimeters meters meters kilometers square millimeters square meters square meters square meters hectares Square kilometers	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264	inches feet yards miles square inches square feet square yards acres square miles	Symbol in ft yd mi in² ft² yd² ac mi²
Symbol mm m km mm² m² m² ha km²	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314	inches feet yards miles square inches square feet square yards acres square miles fluid ounces	Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³
Symbol mm m m km mm² m² m² ha km² mL L	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons	Symbol in ft yd mi in² ft² yd² ac mi² oz gal
Symbol mm m m km mm² m² m² ha km² mL L m³	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet	Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³
Symbol mm m m km m² m² m² ha km² mL L m³ m³	millimeters meters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters grams	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet	Symbol in ft yd mi in² ft² yd² ac mi² oz gal ft³
Symbol mm m m km mm² m² m² ha km² mL L m³ m³ g kg	millimeters meters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³
Symbol mm m m km m² m² m² ha km² mL L m³ m³	millimeters meters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton")	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb)	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz
Symbol mm m m km mm² m² m² ha km² mL L m³ m³ g kg	millimeters meters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton")	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb)	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb
Symbol mm m m km mm² m² m² ha km² mL L m³ m³ g kg	millimeters meters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton") TEN	Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) ct degrees) Fahrenheit	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb
Symbol mm m m km mm² m² m² ha km² mL L m³ m³ d y kg Mg (or "t")	millimeters meters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton") TEN	Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) ct degrees) Fahrenheit	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb T
Symbol mm m m km m² m² m² ha km² mL L m³ m³ dy Mg (or "t")	when You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton") TEI Celsius	Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact 1.8C+32 CE and PRESSURE	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) ct degrees) Fahrenheit For STRESS	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb T
Symbol mm m m km m² m² m² ha km² mL L m³ m³ symbol cor "t") cor "t")	when You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton") TEI Celsius FORG	Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact 1.8C+32 CE and PRESSURE 0.225	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) ct degrees) Fahrenheit For STRESS poundforce	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb T
Symbol mm m m km m² m² m² ha km² mL L m³ m³ g kg Mg (or "t") °C N kPa	when You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton") TEI Celsius	Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact of the second of the	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) ct degrees) Fahrenheit For STRESS	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb T

ACKNOWLEDGMENTS

This project was conducted in cooperation with TxDOT and FHWA. The project team would like to thank Mr. Wade Odell, P.E. (TxDOT Project Manager), Mr. Ken Mora, P.E., and Mr. Chris Lindsey, P.E., with the TxDOT Design Division, Ms. Taya Retterer, P.E., and Mr. Jon Ries with the TxDOT Bridge Division, Mr. Doug Skowronek, P.E., and Mr. Mark Johnson, P.E., with the Traffic Operations Division, and Mrs. Alanna Bettis, P.E., with the Maintenance Division for their valuable assistance and input on this project. Their contributions were instrumental to the success of the project.

REPORT AUTHORIZATION

— Docusigned by: Billy Griffith

Bill L. Griffith, Research Specialist Deputy Quality Manager

DocuSigned by:

Matt Robinson

Matthew N. Robinson, Research Specialist Test Facility Manager & Technical Manager

--- DocuSigned by:

Darrell L. Kuhn, P.E., Research Specialist Quality Manager

—DocuSigned by: RoyuBlyh

Roger P. Bligh, Ph.D., P.E. Senior Research Engineer

TABLE OF CONTENTS

		Page
List of Figure	es	xviii
0	S	
	ntroduction	
	xDOT C402 Bridge Rail	
	ackground	
	ystem Details	
2.2.1	•	
2.2.2	<u> </u>	
2.3 N	MASH Test 4-10 (Crash Test No. 469468-1-1)	4
2.3.1	Test Designation and Actual Impact Conditions	4
2.3.2	Weather Conditions	
2.3.3	Test Vehicle	6
2.3.4	Test Description	7
2.3.5	Damage to Test Installation	8
2.3.6	Damage to Test Vehicle	8
2.3.7	Occupant Risk Factors	8
2.3.8	Assessment of Results	
2.4 N	MASH Test 4-11 (Crash Test No. 469468-1-2)	14
2.4.1	Test Designation and Actual Impact Conditions	
2.4.2	Weather Conditions	14
2.4.3	Test Vehicle	14
2.4.4	Test Description	15
2.4.5	Damage to Test Installation	
2.4.6	Damage to Test Vehicle	
2.4.7	Occupant Risk Factors	
2.4.8	Assessment of Results	
	MASH Test 4-12 (Crash Test No. 469468-1-3)	
2.5.1	Test Designation and Actual Impact Conditions	
2.5.2	Weather Conditions	
2.5.3	Test Vehicle	
2.5.4	Test Description	
2.5.5	Damage to Test Installation	
2.5.6	Damage to Test Vehicle	
2.5.7	Occupant Risk Factors	
2.5.8	Assessment of Results	
	Conclusions	
_	xDOT C412 Bridge Rail	
	ackground	
	est Article and Installation Details	
3.3 N	Material Specifications	29

		Page
3.4 N	MASH Test 5-12 (Crash Test No. 469468-2-1)	31
3.4.1	Test Designation and Actual Impact Conditions	
3.4.2	Weather Conditions	
3.4.3	Test Vehicle	32
3.4.4	Test Description	33
3.4.5	Damage to Test Installation	33
3.4.6	Damage to Test Vehicle	35
3.4.7	Occupant Risk Factors	36
3.4.8	Assessment of Results	38
3.5 C	Conclusions	38
Chapter 4: T	xDOT C411 Bridge Rail	41
4.1 B	ackground	41
4.2 S	ystem Details	41
4.2.1	Test Article and Installation Details	41
4.2.2	Material Specifications	41
$4.3 \qquad M$	MASH Test 2-10 (Test No. 469468-3-1)	43
4.3.1	Test Designation and Actual Impact Conditions	43
4.3.2	Weather Conditions	44
4.3.3	Test Vehicle	44
4.3.4	Test Description	45
4.3.5	Damage to Test Installation	
4.3.6	Damage to Test Vehicle	46
4.3.7	Occupant Risk Factors	47
4.3.8	Assessment of Results	48
$4.4 \qquad N$	MASH Test 2-11 (Test No. 469468-3-2)	51
4.4.1	Test Designation and Actual Impact Conditions	
4.4.2	Weather Conditions	
4.4.3	Test Vehicle	
4.4.4	Test Description	
4.4.5	Damage to Test Installation	
4.4.6	Damage to Test Vehicle	
4.4.7	Occupant Risk Factors	
4.4.8	Assessment of Results	
	Conclusions	
	xDOT T1W Bridge Rail	
	Background	
5.2 S	ystem Details	
5.2.1	Test Article and Installation Details	
5.2.2	Material Specifications	
	MASH Test 3-10 (Test No. 469468-4-1)	
5.3.1	Test Designation and Actual Impact Conditions	
5.3.2	Weather Conditions	61

		Page
5.3.3	Test Vehicle	62
5.3.4	Test Description	63
5.3.5	Damage to Test Installation	63
5.3.6	Damage to Test Vehicle	64
5.3.7	Occupant Risk Factors	65
5.3.8	Assessment of Results	65
5.4	MASH Test 3-11 (Test No. 469468-4-2)	69
5.4.1	Test Designation and Actual Impact Conditions	69
5.4.2	Weather Conditions	
5.4.3	Test Vehicle	69
5.4.4	Test Description	70
5.4.5	Damage to Test Installation	70
5.4.6	Damage to Test Vehicle	72
5.4.7	Occupant Risk Factors	73
5.4.8	Assessment of Results	75
5.5	Conclusions	75
Chapter 6: I	Round Wood Post W-Beam Guardrail	79
6.1	Background	79
6.2	System Details	79
6.2.1	Test Article and Installation Details	79
6.2.2	Material Specifications	80
6.2.3	Soil Conditions	80
6.3	MASH Test 3-11 (Crash Test No. 469468-5-1)	80
6.3.1	Test Designation and Actual Impact Conditions	
6.3.2	Weather Conditions	83
6.3.3	Test Vehicle	83
6.3.4	Test Description	84
6.3.5	Damage to Test Installation	
6.3.6	Damage to Test Vehicle	
6.3.7	Occupant Risk Factors	88
6.3.8	Assessment of Test Results	90
6.4	Conclusions	90
Chapter 7: 7	TxDOT 42-Inch Single Slope Concrete Median Barrier with Light Pol	e 93
_	Background	
	Test Article and Installation Details	
	Material Specifications	
	MASH Test 3-12 (469468-6-1)	
7.4.1	Test Designation and Actual Impact Conditions	
7.4.2	Weather Conditions	
7.4.3	Test Vehicle	
7.4.4	Test Description	
7.4.5	Damage to Test Installation	
	<u> </u>	_

		Page
7.4.6	Damage to Test Vehicle	99
7.4.7		
7.4.8	•	
7.5	Conclusions	102
Chapter 8: S	Skid-Mounted Single-Post Perforated Steel Tube Temporary Sign	
		105
8.1	Background	105
8.2	System Details	105
8.3	MASH Test 3-72 at 0° (Crash Test No. 469468-7-1)	108
8.3.1	Test Designation and Actual Impact Conditions	108
8.3.2	Weather Conditions	109
8.3.3	Test Vehicle	109
8.3.4	Test Description	110
8.3.5	Damage to Test Installation	110
8.3.6	Damage to Test Vehicle	110
8.3.7	Occupant Risk Factors	110
8.3.8	Assessment of Test Results	110
8.4	MASH Test 3-72 at 90° (Crash Test No. 469468-7-2)	115
8.4.1	Test Designation and Actual Impact Conditions	115
8.4.2	Weather Conditions	115
8.4.3	Test Vehicle	115
8.4.4	Test Description	116
8.4.5	Damage to Test Installation	116
8.4.6	Damage to Test Vehicle	117
8.4.7	Occupant Risk Factors	119
8.4.8	Assessment of Test Results	119
8.5	Conclusions	119
Chapter 9: N	Mailboxes	123
9.1	Background	123
9.2	Single Mailbox with Recycled Rubber Support POST in Type 4 Foundation.	124
9.2.1	System Details	124
9.2.2	<i>MASH</i> Test 3-61 (Crash Test No. 469468-8-1)	124
9.3	Double Mailbox with Thin-Wall Galvanized Support Post in Type 4	
Foundation	on	133
9.3.1	System Details	133
9.3.2	MASH Test 3-61 (Crash Test No. 469468-8-2)	133
9.4	Multiple Mailboxes with Multi-Mount Support in Type 4 Foundation	142
9.4.1	Background	
9.4.2	System Details	142
9.4.3	MASH Test 3-61 (Crash Test No. 469468-8-3)	143

		Page
9.5 Sin	gle Molded Plastic Mailmaster® Mailbox with Wood Support in Type 5	
	bie monde i mone mannaster man wood support in Type o	152
	system Details	
	MASH Test 3-61 (Crash Test No. 469468-8-4)	
	nclusions	
	Single Mailbox with Recycle Rubber Support in Type 4 Foundation	
	Oouble Mailbox with Thin-Wall Galvanized Support in Type 4	
	on	161
	Multiple Mailboxes with Multi-Mount Support in Type 4 Foundation	
	Single Molded Plastic Mailmaster® Mailbox with Wood Support in Type	-
	ation	161
	Assessment	
	id-Mounted Dual Wood Post Temporary Sign Support System	
_	kground	
	tem Details	
•	SH Test 3-72 (Crash Test nO. 469468-9-1)	
10.3.1	Test Designation and Actual Impact Conditions	
10.3.2	Weather Conditions	
10.3.3	Test Vehicle	
10.3.4	Test Description	
10.3.5	Damage to Test Installation	
10.3.6	Damage to Test Vehicle	
10.3.7	Occupant Risk Factors	
10.3.8	Assessment of Test Results	
10.4 Cor	nclusions	
	BGF with W6×8.5 Steel Posts in Rocky Terrain	
	kground	
	tem Details	
11.2.1	Test Article and Installation Details	
11.2.2	Material Properties	175
11.2.3	<u> </u>	
11.3 <i>MA</i>	SH Test 3-10 (Crash Test No. 469468-10-2)	179
11.3.1	Test Designation and Actual Impact Conditions	
11.3.2	Weather Conditions	
11.3.3	Test Vehicle	180
11.3.4	Test Description	
11.3.5	Damage to Test Installation	
11.3.6	Damage to Test Vehicle	
11.3.7	Occupant Risk Factors	
11.3.8	Assessment of Test Results	

			Page
11.4	MAS	<i>EH</i> Test 3-11 (Crash Test No. 469468-10-1)	187
11.	.4.1	Test Designation and Actual Impact Conditions	
11.	.4.2	Weather Conditions	
11.	.4.3	Test Vehicle	187
11.	.4.4	Test Description	
11.	.4.5	Damage to Test Installation	
11.		Damage to Test Vehicle	
11.		Occupant Risk Factors	
11.	.4.8	Assessment of Test Results	
11.5	Cond	clusions	
Chapter 1	12: MB	GF with Round Wood Posts in Rocky Terrain	197
12.1		ground	
12.2		em Details	
12.	-	Test Article and Installation Details	
12.		Material Properties	
	.2.3	Soil Conditions	
12.3		<i>H</i> Test 3-11 (Crash Test No. 469468-12-1)	
	.3.1	Test Designation and Actual Impact Conditions	
12.	.3.2	Weather Conditions	
	.3.3	Test Vehicle	
	.3.4	Test Description	
		Damage to Test Installation	
		Damage to Test Vehicle	
	.3.7	Occupant Risk Factors	
	.3.8	Assessment of Test Results	
12.4		clusions	
		nmary and Conclusions	
13.1		OT C402 Bridge Rail	
13.2		OT C412 Bridge Rail	
13.3		OT C411 Bridge Rail	
13.4		OT T1W Bridge Rail	
13.5		nd Wood Post W-Beam Guardrail	
13.6		OT 42-Inch Single Slope Concrete Median Barrier with Light Pole	
13.7		-Mounted Single-Post Perforated Steel Tube Temporary Sign Support	
13.8		boxes	
	.8.1	Single Mailbox – Recycled Rubber Support Post – Type 4 Foundation	
		Double Mailbox – Thin-Wall Galvanized Pipe Support – Type 4	21 .
		on	214
		Multiple Mailboxes – Multi-Mount Support – Type 4 Foundation	
	.8.4	Single Molded Plastic Mailmaster® Mailbox – Wood Support Post–	21T
		oundation	215
13.9		-Mounted Dual Wood Post Temporary Sign Support System	
13.7	SKIU	mounted Dual Wood Fost Temporary Sign Support System	213

		Page
13.10	MBGF with W6×8.5 Steel Posts in Rocky Terrain	215
13.11	MBGF with Round Wood PostS in Rocky Terrain	
Chapter 1	4: Implementation	217
14.1	TxDOT C402 Bridge Rail	217
14.2	TxDOT C412 Bridge Rail	218
14.3	TxDOT C411 Bridge Rail	218
14.4	TxDOT T1W Bridge Rail	218
14.5	Round Wood Post W-Beam Guardrail	219
14.6	TxDOT 42-Inch Single Slope Concrete Median Barrier with Light Pole	219
14.7	Skid-Mounted Single-Post Perforated Steel Tube Temporary Sign Support	220
14.8	Mailboxes	220
14.9	Skid-Mounted Dual Wood Post Temporary Sign Support System	221
14.10	MBGF with Steel Posts in Rocky Terrain	
14.11	MBGF with Round Wood PostS in Rocky Terrain	
References	S	
Appendix	A. TxDOT C402 Bridge Rail	A-1
	B. TxDOT C412 Bridge Rail	
	C. TxDOT C411 Bridge Rail	
	D. TxDOT T1W Bridge Rail	
	E. Round Wood Post W-Beam Guardrail	
	F. TxDOT 42-inch Single-Slope Concrete Median Barrier with Light Pole	
	G. Skid-Mounted Single Perforated Steel Tube Sign Support System	
	H. Mailboxes	
Appendix	I. Skid-Mounted Dual Wood Post Temporary Sign Support System	I-1
	J. MBGF with W6×8.5 Steel Posts in Rocky Terrain	
	K. Round Wood Post W-Beam Guardrail	

LIST OF FIGURES

Figure 2.2. Overall Details of TxDOT C402 Bridge Rail. 5 Figure 2.3. TxDOT C402 Bridge Rail prior to Testing. 6 Figure 2.4. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-1. 7 Figure 2.5. Test Vehicle before Test No. 469468-1-1. 7 7 Figure 2.6. TxDOT C402 Bridge Rail after Test No. 469468-1-1. 9 10 Figure 2.7. Test Vehicle after Test No. 469468-1-1. 10 10 Figure 2.8. Interior of Test Vehicle for Test No. 469468-1-1. 10 10 Figure 2.9. Summary of Results for MASH Test 4-10 on TxDOT C402 Bridge Rail. 12 12 Figure 2.10. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-2. 14 Figure 2.11. Test Vehicle before Test No. 469468-1-2. 15 15 Figure 2.12. TxDOT C402 Bridge Rail after Test No. 469468-1-2. 16 Figure 2.13. Test Vehicle after Test No. 469468-1-2. 17 Figure 2.14. Windshield and Interior of Test Vehicle after Test No. 469468-1-3. 21 Figure 2.15. Summary of Results for MASH Test 4-11 on TxDOT C402 Bridge Rail			Page
Figure 2.2. Overall Details of TxDOT C402 Bridge Rail 5 Figure 2.4. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 6 Figure 2.4. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-1 7 Figure 2.5. Test Vehicle before Test No. 469468-1-1 7 7 Figure 2.6. TxDOT C402 Bridge Rail after Test No. 469468-1-1 10 Figure 2.7. Test Vehicle after Test No. 469468-1-1 10 Figure 2.8. Interior of Test Vehicle for Test No. 469468-1-1 10 Figure 2.9. Summary of Results for MASH Test 4-10 on TxDOT C402 Bridge Rail 12 Figure 2.10. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-2 14 Figure 2.11. Test Vehicle before Test No. 469468-1-2 15 Figure 2.12. TxDOT C402 Bridge Rail after Test No. 469468-1-2 17 Figure 2.13. Test Vehicle after Test No. 469468-1-2 17 Figure 2.14. Windshield and Interior of Test Vehicle after Test No. 469468-1-3 19 Figure 2.15. Summary of Results for MASH Test 4-11 on TxDOT C402 Bridge Rail 19 Figure 2.16. TxDOT	Figure 2.1.	Target CIPs for MASH TL-4 on TxDOT C402 Bridge Rail	3
Figure 2.4. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-1. 7 Figure 2.5. Test Vehicle before Test No. 469468-1-1. 7 Figure 2.6. TxDOT C402 Bridge Rail after Test No. 469468-1-1. 9 Figure 2.7. Test Vehicle for Test No. 469468-1-1. 10 Figure 2.8. Interior of Test Vehicle for Test No. 469468-1-1. 10 Figure 2.9. Summary of Results for MASH Test 4-10 on TxDOT C402 Bridge Rail. 12 Figure 2.10. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-2. 14 Figure 2.11. Test Vehicle before Test No. 469468-1-2. 15 Figure 2.12. TxDOT C402 Bridge Rail after Test No. 469468-1-2. 16 Figure 2.13. Test Vehicle after Test No. 469468-1-2. 17 Figure 2.14. Windshield and Interior of Test Vehicle Geometrics for Test No. 469468-1-3. 17 Figure 2.15. Summary of Results for MASH Test 4-11 on TxDOT C402 Bridge Rail. 19 Figure 2.16. TxDOT C402 Bridge Rail after Test No. 469468-1-3. 21 Figure 2.17. Test Vehicle Before Test No. 469468-1-3. 22 Figure 2.19. Test Vehicle after Test No. 469468-1-3.	Figure 2.2.		
469468-1-1. 7 Figure 2.5. Test Vehicle before Test No. 469468-1-1. 7 Figure 2.6. TXDOT C402 Bridge Rail after Test No. 469468-1-1. 10 Figure 2.7. Test Vehicle after Test No. 469468-1-1. 10 Figure 2.8. Interior of Test Vehicle for Test No. 469468-1-1. 10 Figure 2.9. Summary of Results for MASH Test 4-10 on TxDOT C402 Bridge Rail 12 Figure 2.10. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-2. 14 Figure 2.11. Test Vehicle before Test No. 469468-1-2. 15 Figure 2.12. TxDOT C402 Bridge Rail after Test No. 469468-1-2. 16 Figure 2.13. Test Vehicle after Test No. 469468-1-2. 16 Figure 2.14. Windshield and Interior of Test Vehicle after Test No. 469468-1-2. 17 Figure 2.15. Summary of Results for MASH Test 4-11 on TxDOT C402 Bridge Rail. 19 Figure 2.16. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-3. 21 Figure 2.17. Test Vehicle before Test No. 469468-1-3. 22 Figure 2.19. Test Vehicle after Test No. 469468-1-3. 24 Figure 2.20. Interior of Test Vehicle aft	Figure 2.3.	TxDOT C402 Bridge Rail prior to Testing.	6
Figure 2.5. Test Vehicle before Test No. 469468-1-1	Figure 2.4.		
Figure 2.6. TxDOT C402 Bridge Rail after Test No. 469468-1-1. 9 Figure 2.7. Test Vehicle after Test No. 469468-1-1. 10 Figure 2.8. Interior of Test Vehicle for Test No. 469468-1-1. 10 Figure 2.9. Summary of Results for MASH Test 4-10 on TxDOT C402 Bridge Rail. 12 Figure 2.10. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-2. 15 Figure 2.11. Test Vehicle before Test No. 469468-1-2. 16 Figure 2.12. TxDOT C402 Bridge Rail after Test No. 469468-1-2. 17 Figure 2.13. Test Vehicle after Test No. 469468-1-2. 17 Figure 2.14. Windshield and Interior of Test Vehicle after Test No. 469468-1-3. 19 Figure 2.15. Summary of Results for MASH Test 4-11 on TxDOT C402 Bridge Rail. 19 Figure 2.16. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-3. 21 Figure 2.17. Test Vehicle before Test No. 469468-1-3. 22 Figure 2.18. TxDOT C402 Bridge Rail after Test No. 469468-1-3. 23 Figure 2.19. Test Vehicle for Test No. 469468-1-3. 24 Figure 2.20. Interior of Test Vehicle for Test No. 469468-1-3. <td></td> <td></td> <td></td>			
Figure 2.7. Test Vehicle after Test No. 469468-1-1. 10 Figure 2.8. Interior of Test Vehicle for Test No. 469468-1-1. 10 Figure 2.9. Summary of Results for MASH Test 4-10 on TxDOT C402 Bridge Rail. 12 Figure 2.10. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-2. 14 Figure 2.11. Test Vehicle before Test No. 469468-1-2. 15 Figure 2.12. TxDOT C402 Bridge Rail after Test No. 469468-1-2. 16 Figure 2.13. Test Vehicle after Test No. 469468-1-2. 17 Figure 2.14. Windshield and Interior of Test Vehicle after Test No. 469468-1-2. 17 Figure 2.15. Summary of Results for MASH Test 4-11 on TxDOT C402 Bridge Rail. 19 Figure 2.16. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-3. 21 Figure 2.17. Test Vehicle before Test No. 469468-1-3. 22 Figure 2.18. TxDOT C402 Bridge Rail after Test No. 469468-1-3. 23 Figure 2.19. Test Vehicle after Test No. 469468-1-3. 24 Figure 2.19. Test Vehicle after Test No. 469468-1-3. 24 Figure 2.19. Test Vehicle after Test No. 469468-1-3. 24	Figure 2.5.		
Figure 2.8. Interior of Test Vehicle for Test No. 469468-1-1	Figure 2.6.	TxDOT C402 Bridge Rail after Test No. 469468-1-1.	9
Figure 2.9. Summary of Results for MASH Test 4-10 on TxDOT C402 Bridge Rail. 12 Figure 2.10. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-2. 14 Figure 2.11. Test Vehicle before Test No. 469468-1-2. 15 Figure 2.12. TxDOT C402 Bridge Rail after Test No. 469468-1-2. 16 Figure 2.13. Test Vehicle after Test No. 469468-1-2. 17 Figure 2.15. Summary of Results for MASH Test 4-11 on TxDOT C402 Bridge Rail. 19 Figure 2.15. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-3. 21 Figure 2.16. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-3. 22 Figure 2.17. Test Vehicle before Test No. 469468-1-3. 22 Figure 2.19. Test Vehicle after Test No. 469468-1-3. 23 Figure 2.20. Interior of Test Vehicle for Test No. 469468-1-3. 24 Figure 3.1. Overall Details of TxDOT C412 Bridge Rail. 30 Figure 3.2. TxDOT C412 Bridge Rail prior to Testing. 31 Figure 3.3. Test Vehicle after Test No. 469468-2-1. 32 Figure 3.4. Test Vehicl	Figure 2.7.		
Figure 2.10. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-2. 14 Figure 2.11. Test Vehicle before Test No. 469468-1-2. 15 Figure 2.12. TxDOT C402 Bridge Rail after Test No. 469468-1-2. 16 Figure 2.13. Test Vehicle after Test No. 469468-1-2. 17 Figure 2.14. Windshield and Interior of Test Vehicle after Test No. 469468-1-2. 17 Figure 2.15. Summary of Results for MASH Test 4-11 on TxDOT C402 Bridge Rail. 19 Figure 2.16. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-3. 21 Figure 2.17. Test Vehicle before Test No. 469468-1-3. 22 Figure 2.18. TxDOT C402 Bridge Rail after Test No. 469468-1-3. 23 Figure 2.19. Test Vehicle after Test No. 469468-1-3. 24 Figure 2.20. Interior of Test Vehicle for Test No. 469468-1-3. 24 Figure 3.1. Overall Details of TxDOT C412 Bridge Rail. 30 Figure 3.2. TxDOT C412 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-2-1. 32 Figure 3.3. Test Vehicle before Test No. 469468-2-1. 32 Figure 3.5. TxDOT C412 Bridge Rail/Test Vehicle after Test No	Figure 2.8.		
469468-1-2	Figure 2.9.	Summary of Results for MASH Test 4-10 on TxDOT C402 Bridge Rail	12
Figure 2.11. Test Vehicle before Test No. 469468-1-2	Figure 2.10.		14
Figure 2.12. TxDOT C402 Bridge Rail after Test No. 469468-1-2. 16 Figure 2.13. Test Vehicle after Test No. 469468-1-2. 17 Figure 2.14. Windshield and Interior of Test Vehicle after Test No. 469468-1-2. 17 Figure 2.15. Summary of Results for MASH Test 4-11 on TxDOT C402 Bridge Rail. 19 Figure 2.16. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-3. 21 Figure 2.17. Test Vehicle before Test No. 469468-1-3. 22 Figure 2.18. TxDOT C402 Bridge Rail after Test No. 469468-1-3. 23 Figure 2.19. Test Vehicle after Test No. 469468-1-3. 24 Figure 2.20. Interior of Test Vehicle for Test No. 469468-1-3. 24 Figure 2.21. Summary of Results for MASH Test 4-12 on TxDOT C402 Bridge Rail. 26 Figure 3.1. Overall Details of TxDOT C412 Bridge Rail. 30 Figure 3.2. TxDOT C412 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-2-1. 32 Figure 3.3. Test Vehicle before Test No. 469468-2-1. 32 Figure 3.4. Test Vehicle after Test No. 469468-2-1. 33 Figure 3.5. Test Vehicle after Test No. 469468-2-1. 3	Figure 2.11.		
Figure 2.13. Test Vehicle after Test No. 469468-1-2. 17 Figure 2.14. Windshield and Interior of Test Vehicle after Test No. 469468-1-2. 17 Figure 2.15. Summary of Results for MASH Test 4-11 on TxDOT C402 Bridge Rail. 19 Figure 2.16. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-3. 21 Figure 2.17. Test Vehicle before Test No. 469468-1-3. 22 Figure 2.18. TxDOT C402 Bridge Rail after Test No. 469468-1-3. 23 Figure 2.19. Test Vehicle after Test No. 469468-1-3. 24 Figure 2.20. Interior of Test Vehicle for Test No. 469468-1-3. 24 Figure 3.1. Overall Details of TxDOT C412 Bridge Rail. 26 Figure 3.2. TxDOT C412 Bridge Rail prior to Testing. 31 Figure 3.3. TxDOT C412 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-2-1. 32 Figure 3.4. Test Vehicle before Test No. 469468-2-1. 32 Figure 3.5. Tradot C412 Bridge Rail after Test No. 469468-2-1. 33 Figure 3.6. Test Vehicle after Test No. 469468-2-1. 35 Figure 3.7. Field Side of TxDOT C412 Bridge Rail after Test No. 469468-2-1. 35	_		
Figure 2.14. Windshield and Interior of Test Vehicle after Test No. 469468-1-2. 17 Figure 2.15. Summary of Results for MASH Test 4-11 on TxDOT C402 Bridge Rail. 19 Figure 2.16. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-3. Figure 2.17. Test Vehicle before Test No. 469468-1-3. 21 Figure 2.18. TxDOT C402 Bridge Rail after Test No. 469468-1-3. 23 Figure 2.19. Test Vehicle after Test No. 469468-1-3. 24 Figure 2.20. Interior of Test Vehicle for Test No. 469468-1-3. 24 Figure 3.1. Overall Details of TxDOT C412 Bridge Rail. 30 Figure 3.2. TxDOT C412 Bridge Rail prior to Testing. 31 Figure 3.3. TxDOT C412 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-2-1. 32 Figure 3.4. Test Vehicle before Test No. 469468-2-1. 32 Figure 3.5. TxDOT C412 Bridge Rail/Test Vehicle after Test No. 469468-2-1. 33 Figure 3.6. TxDOT C412 Bridge Rail after Test No. 469468-2-1. 34 Figure 3.7. Field Side of TxDOT C412 Bridge Rail after Test No. 469468-2-1. 35 Figure 3.9. Interior of Test Vehicle	_	Test Vehicle after Test No. 469468-1-2.	17
Figure 2.15. Summary of Results for MASH Test 4-11 on TxDOT C402 Bridge Rail. 19 Figure 2.16. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-3 21 Figure 2.17. Test Vehicle before Test No. 469468-1-3 22 Figure 2.18. TxDOT C402 Bridge Rail after Test No. 469468-1-3 23 Figure 2.19. Test Vehicle after Test No. 469468-1-3 24 Figure 2.20. Interior of Test Vehicle for Test No. 469468-1-3 24 Figure 3.1. Overall Details of TxDOT C412 Bridge Rail 26 Figure 3.2. TxDOT C412 Bridge Rail prior to Testing 30 Figure 3.3. TxDOT C412 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-2-1 Figure 3.4. Test Vehicle before Test No. 469468-2-1 32 Figure 3.5. TxDOT C412 Bridge Rail/Test Vehicle after Test No. 469468-2-1 33 Figure 3.6. TxDOT C412 Bridge Rail after Test No. 469468-2-1 34 Figure 3.7. Field Side of TxDOT C412 Bridge Rail after Test No. 469468-2-1 35 Figure 3.9. Interior of Test Vehicle for Test No. 469468-2-1 35 Figure 4.1 Overall Details of TxDOT C411 Bridge Rail <	_		
Figure 2.16. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-3. 21 Figure 2.17. Test Vehicle before Test No. 469468-1-3. 22 Figure 2.18. TxDOT C402 Bridge Rail after Test No. 469468-1-3. 23 Figure 2.19. Test Vehicle after Test No. 469468-1-3. 24 Figure 2.20. Interior of Test Vehicle for Test No. 469468-1-3. 24 Figure 3.1. Overall Details of TxDOT C412 Bridge Rail. 26 Figure 3.2. TxDOT C412 Bridge Rail prior to Testing. 30 Figure 3.3. TxDOT C412 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-2-1. 32 Figure 3.4. Test Vehicle before Test No. 469468-2-1. 32 Figure 3.5. TxDOT C412 Bridge Rail/Test Vehicle after Test No. 469468-2-1. 33 Figure 3.6. TxDOT C412 Bridge Rail after Test No. 469468-2-1. 34 Figure 3.7. Field Side of TxDOT C412 Bridge Rail after Test No. 469468-2-1. 35 Figure 3.9. Interior of Test Vehicle for Test No. 469468-2-1. 35 Figure 3.1. Summary of Results for MASH Test 5-12 on TxDOT C412 Bridge Rail. 37 Figure 4.1. Overall Details of TxDOT C411 Bridge Rail 42 Figure 4.2. TxDOT C411 Bri	•		
Figure 2.17. Test Vehicle before Test No. 469468-1-3	Figure 2.16.	TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No.	
Figure 2.18. TxDOT C402 Bridge Rail after Test No. 469468-1-3 23 Figure 2.19. Test Vehicle after Test No. 469468-1-3 24 Figure 2.20. Interior of Test Vehicle for Test No. 469468-1-3 24 Figure 2.21. Summary of Results for MASH Test 4-12 on TxDOT C402 Bridge Rail. 26 Figure 3.1. Overall Details of TxDOT C412 Bridge Rail. 30 Figure 3.2. TxDOT C412 Bridge Rail prior to Testing. 31 Figure 3.3. TxDOT C412 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-2-1 32 Figure 3.4. Test Vehicle before Test No. 469468-2-1 32 Figure 3.5. TxDOT C412 Bridge Rail/Test Vehicle after Test No. 469468-2-1 33 Figure 3.7. Field Side of TxDOT C412 Bridge Rail after Test No. 469468-2-1 35 Figure 3.8. Test Vehicle after Test No. 469468-2-1 35 Figure 3.9. Interior of Test Vehicle for Test No. 469468-2-1 36 Figure 4.1. Overall Details of TxDOT C411 Bridge Rail 42 Figure 4.2. TxDOT C411 Bridge Rail prior to Testing. 43 Figure 4.3. Target CIPs for Test No. 469468-3-1 and 3-2. 44 Figure 4.4. TxDOT C411 Bridge Rail/Test Vehicle Geometrics	Figure 2.17		
Figure 2.19. Test Vehicle after Test No. 469468-1-3. 24 Figure 2.20. Interior of Test Vehicle for Test No. 469468-1-3. 24 Figure 2.21. Summary of Results for MASH Test 4-12 on TxDOT C402 Bridge Rail. 26 Figure 3.1. Overall Details of TxDOT C412 Bridge Rail. 30 Figure 3.2. TxDOT C412 Bridge Rail prior to Testing. 31 Figure 3.3. TxDOT C412 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-2-1. 32 Figure 3.4. Test Vehicle before Test No. 469468-2-1. 32 Figure 3.5. TxDOT C412 Bridge Rail/Test Vehicle after Test No. 469468-2-1. 33 Figure 3.6. TxDOT C412 Bridge Rail after Test No. 469468-2-1. 34 Figure 3.7. Field Side of TxDOT C412 Bridge Rail after Test No. 469468-2-1. 35 Figure 3.9. Interior of Test Vehicle for Test No. 469468-2-1. 35 Figure 3.10. Summary of Results for MASH Test 5-12 on TxDOT C412 Bridge Rail. 37 Figure 4.1. Overall Details of TxDOT C411 Bridge Rail. 42 Figure 4.2. TxDOT C411 Bridge Rail prior to Testing. 43 Figure 4.3. Target CIPs for Test No. 469468-3-1 and 3-2. 44 TxDOT C411 Bridge Rail/Test Vehicle Ge	•		
Figure 2.20. Interior of Test Vehicle for Test No. 469468-1-3. 24 Figure 2.21. Summary of Results for MASH Test 4-12 on TxDOT C402 Bridge Rail. 26 Figure 3.1. Overall Details of TxDOT C412 Bridge Rail. 30 Figure 3.2. TxDOT C412 Bridge Rail prior to Testing. 31 Figure 3.3. TxDOT C412 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-2-1 Figure 3.4. Test Vehicle before Test No. 469468-2-1 32 Figure 3.5. TxDOT C412 Bridge Rail/Test Vehicle after Test No. 469468-2-1 33 Figure 3.6. TxDOT C412 Bridge Rail after Test No. 469468-2-1 34 Figure 3.7. Field Side of TxDOT C412 Bridge Rail after Test No. 469468-2-1 35 Figure 3.8. Test Vehicle after Test No. 469468-2-1 35 Figure 3.9. Interior of Test Vehicle for Test No. 469468-2-1 36 Figure 3.10. Summary of Results for MASH Test 5-12 on TxDOT C412 Bridge Rail 37 Figure 4.1. Overall Details of TxDOT C411 Bridge Rail 42 Figure 4.2. TxDOT C411 Bridge Rail prior to Testing. 43 Figure 4.3. Target CIPs for Test No. 469468-3-1 and 3-2. 44 Figure 4.4. TxDOT C411 Bridge Rail/Test Vehicle Geo	_		
Figure 2.21. Summary of Results for MASH Test 4-12 on TxDOT C402 Bridge Rail. 26 Figure 3.1. Overall Details of TxDOT C412 Bridge Rail. 30 Figure 3.2. TxDOT C412 Bridge Rail prior to Testing. 31 Figure 3.3. TxDOT C412 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-2-1. 32 Figure 3.4. Test Vehicle before Test No. 469468-2-1. 32 Figure 3.5. TxDOT C412 Bridge Rail/Test Vehicle after Test No. 469468-2-1. 33 Figure 3.6. TxDOT C412 Bridge Rail after Test No. 469468-2-1. 34 Figure 3.7. Field Side of TxDOT C412 Bridge Rail after Test No. 469468-2-1. 35 Figure 3.9. Interior of Test Vehicle for Test No. 469468-2-1. 36 Figure 3.10. Summary of Results for MASH Test 5-12 on TxDOT C412 Bridge Rail. 37 Figure 4.1. Overall Details of TxDOT C411 Bridge Rail. 42 Figure 4.2. TxDOT C411 Bridge Rail prior to Testing. 43 Figure 4.3. Target CIPs for Test No. 469468-3-1 and 3-2. 44 Figure 4.4. TxDOT C411 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-3-1. Figure 4.5. Test Vehicle before Test No. 469468-3-1. 45	_		
Figure 3.1. Overall Details of TxDOT C412 Bridge Rail. 30 Figure 3.2. TxDOT C412 Bridge Rail prior to Testing. 31 Figure 3.3. TxDOT C412 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-2-1 Figure 3.4. Test Vehicle before Test No. 469468-2-1 32 Figure 3.5. TxDOT C412 Bridge Rail/Test Vehicle after Test No. 469468-2-1 33 Figure 3.6. TxDOT C412 Bridge Rail after Test No. 469468-2-1 34 Figure 3.7. Field Side of TxDOT C412 Bridge Rail after Test No. 469468-2-1 35 Figure 3.8. Test Vehicle after Test No. 469468-2-1 35 Figure 3.9. Interior of Test Vehicle for Test No. 469468-2-1 36 Figure 4.1. Overall Details of TxDOT C411 Bridge Rail 37 Figure 4.2. TxDOT C411 Bridge Rail prior to Testing. 43 Figure 4.3. Target CIPs for Test No. 469468-3-1 and 3-2. 44 Figure 4.4. TxDOT C411 Bridge Rail/Test Vehicle Geometrics for Test No. 46 469468-3-1. 44 Figure 4.5. Test Vehicle before Test No. 469468-3-1 45	_		
Figure 3.2. TxDOT C412 Bridge Rail prior to Testing. 31 Figure 3.3. TxDOT C412 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-2-1 469468-2-1 32 Figure 3.4. Test Vehicle before Test No. 469468-2-1 32 Figure 3.5. TxDOT C412 Bridge Rail/Test Vehicle after Test No. 469468-2-1 33 Figure 3.6. TxDOT C412 Bridge Rail after Test No. 469468-2-1 34 Figure 3.7. Field Side of TxDOT C412 Bridge Rail after Test No. 469468-2-1 35 Figure 3.8. Test Vehicle after Test No. 469468-2-1 35 Figure 3.9. Interior of Test Vehicle for Test No. 469468-2-1 36 Figure 4.1. Overall Details of TxDOT C411 Bridge Rail 37 Figure 4.2. TxDOT C411 Bridge Rail prior to Testing. 43 Figure 4.3. Target CIPs for Test No. 469468-3-1 and 3-2 44 Figure 4.4. TxDOT C411 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-3-1 Figure 4.5. Test Vehicle before Test No. 469468-3-1 45	_		
Figure 3.3. TxDOT C412 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-2-1	_	<u> </u>	
Figure 3.4. Test Vehicle before Test No. 469468-2-1	Figure 3.3.	TxDOT C412 Bridge Rail/Test Vehicle Geometrics for Test No.	
Figure 3.5. TxDOT C412 Bridge Rail/Test Vehicle after Test No. 469468-2-1. 33 Figure 3.6. TxDOT C412 Bridge Rail after Test No. 469468-2-1. 34 Figure 3.7. Field Side of TxDOT C412 Bridge Rail after Test No. 469468-2-1. 35 Figure 3.8. Test Vehicle after Test No. 469468-2-1. 35 Figure 3.9. Interior of Test Vehicle for Test No. 469468-2-1. 36 Figure 3.10. Summary of Results for MASH Test 5-12 on TxDOT C412 Bridge Rail. 37 Figure 4.1. Overall Details of TxDOT C411 Bridge Rail. 42 Figure 4.2. TxDOT C411 Bridge Rail prior to Testing. 43 Figure 4.3. Target CIPs for Test No. 469468-3-1 and 3-2. 44 Figure 4.4. TxDOT C411 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-3-1. Figure 4.5. Test Vehicle before Test No. 469468-3-1. 45	Figure 2.4		
Figure 3.6. TxDOT C412 Bridge Rail after Test No. 469468-2-1. 34 Figure 3.7. Field Side of TxDOT C412 Bridge Rail after Test No. 469468-2-1. 35 Figure 3.8. Test Vehicle after Test No. 469468-2-1. 35 Figure 3.9. Interior of Test Vehicle for Test No. 469468-2-1. 36 Figure 3.10. Summary of Results for MASH Test 5-12 on TxDOT C412 Bridge Rail. 37 Figure 4.1. Overall Details of TxDOT C411 Bridge Rail. 42 Figure 4.2. TxDOT C411 Bridge Rail prior to Testing. 43 Figure 4.3. Target CIPs for Test No. 469468-3-1 and 3-2. 44 Figure 4.4. TxDOT C411 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-3-1. Figure 4.5. Test Vehicle before Test No. 469468-3-1. 45	•		
Figure 3.7. Field Side of TxDOT C412 Bridge Rail after Test No. 469468-2-1. 35 Figure 3.8. Test Vehicle after Test No. 469468-2-1. 35 Figure 3.9. Interior of Test Vehicle for Test No. 469468-2-1. 36 Figure 3.10. Summary of Results for MASH Test 5-12 on TxDOT C412 Bridge Rail. 37 Figure 4.1. Overall Details of TxDOT C411 Bridge Rail. 42 Figure 4.2. TxDOT C411 Bridge Rail prior to Testing. 43 Figure 4.3. Target CIPs for Test No. 469468-3-1 and 3-2. 44 Figure 4.4. TxDOT C411 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-3-1. 44 Figure 4.5. Test Vehicle before Test No. 469468-3-1. 45	0		
Figure 3.8. Test Vehicle after Test No. 469468-2-1. 35 Figure 3.9. Interior of Test Vehicle for Test No. 469468-2-1. 36 Figure 3.10. Summary of Results for MASH Test 5-12 on TxDOT C412 Bridge Rail. 37 Figure 4.1. Overall Details of TxDOT C411 Bridge Rail. 42 Figure 4.2. TxDOT C411 Bridge Rail prior to Testing. 43 Figure 4.3. Target CIPs for Test No. 469468-3-1 and 3-2. 44 Figure 4.4. TxDOT C411 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-3-1. 44 Figure 4.5. Test Vehicle before Test No. 469468-3-1. 45	•	<u> </u>	
Figure 3.9. Interior of Test Vehicle for Test No. 469468-2-1	0		
Figure 3.10. Summary of Results for MASH Test 5-12 on TxDOT C412 Bridge Rail. 37 Figure 4.1. Overall Details of TxDOT C411 Bridge Rail. 42 Figure 4.2. TxDOT C411 Bridge Rail prior to Testing. 43 Figure 4.3. Target CIPs for Test No. 469468-3-1 and 3-2. 44 Figure 4.4. TxDOT C411 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-3-1. 44 Figure 4.5. Test Vehicle before Test No. 469468-3-1. 45	0		
Figure 4.1. Overall Details of TxDOT C411 Bridge Rail. 42 Figure 4.2. TxDOT C411 Bridge Rail prior to Testing. 43 Figure 4.3. Target CIPs for Test No. 469468-3-1 and 3-2. 44 Figure 4.4. TxDOT C411 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-3-1. 44 Figure 4.5. Test Vehicle before Test No. 469468-3-1. 45	•		
Figure 4.2. TxDOT C411 Bridge Rail prior to Testing			
Figure 4.3. Target CIPs for Test No. 469468-3-1 and 3-2. 44 Figure 4.4. TxDOT C411 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-3-1. 44 Figure 4.5. Test Vehicle before Test No. 469468-3-1. 45	0		
Figure 4.4. TxDOT C411 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-3-1	•		
469468-3-1	•		
Figure 4.5. Test Vehicle before Test No. 469468-3-1	1 15u1C 7.7.		11
	Figure 4.5		
	_		

		Page
Figure 4.7.	Test Vehicle after Test No. 469468-3-1.	47
Figure 4.8.	Interior of Test Vehicle after Test No. 469468-3-1.	
Figure 4.9.	Summary of Results for MASH Test 2-10 on TxDOT C411 Bridge Rail	
Figure 4.10.	TxDOT C411 Bride Rail/Test Vehicle Geometrics for Test No.	
8	469468-3-2	51
Figure 4.11.	Test Vehicle before Test No. 469468-3-2.	
Figure 4.12.	TxDOT C411 Bridge Rail after Test No. 469468-3-2.	
Figure 4.13.	Test Vehicle after Test No. 469468-3-2.	54
Figure 4.14.	Interior of Test Vehicle after Test No. 469468-3-2.	
Figure 4.15.	Summary of Results for MASH Test 2-11 on TxDOT C411 Bridge Rail	
Figure 5.1.	Overall Details of TxDOT T1W Bridge Rail.	60
Figure 5.2.	TxDOT T1W Bridge Rail prior to Testing.	
Figure 5.3.	Target CIPs for Test Nos. 469468-4-1 and 4-2	
Figure 5.4.	TxDOT T1W Bridge Rail/Test Vehicle Geometrics for Test No.	
8	469468-4-1	62
Figure 5.5.	Test Vehicle before Test No. 469468-4-1.	
Figure 5.6.	TxDOT T1W Bridge Rail after Test No. 469468-4-1.	
Figure 5.7.	Test Vehicle after Test No. 469468-4-1.	65
Figure 5.8.	Interior of Test Vehicle after Test No. 469468-4-1.	
Figure 5.9.	Summary of Results for MASH Test 3-10 on TxDOT T1W Bridge Rail	
Figure 5.10.	TxDOT T1W Bridge Rail/Test Vehicle Geometrics for Test No.	
C	469468-4-2	69
Figure 5.11.	Test Vehicle before Test No. 469468-4-2	70
Figure 5.12.	TxDOT T1W Bridge Rail after Test No. 469468-4-2.	71
Figure 5.13.	Field Side of Post 5 after Test No. 469468-4-2.	72
Figure 5.14.	Test Vehicle after Test No. 469468-4-2.	72
Figure 5.15.	Interior of Test Vehicle for Test No. 469468-4-2.	73
Figure 5.16.	Summary of Results for MASH Test 2-11 on TxDOT C411 Bridge Rail	74
Figure 6.1.	Overall Details of Round Wood Post W-Beam Guardrail	
Figure 6.2.	Round Wood Post W-Beam Guardrail prior to Testing	82
Figure 6.3.	Target CIP for MASH Test 3-11 on the Round Wood Post W-Beam	
	Guardrail	83
Figure 6.4.	Round Wood Post W-Beam Guardrail/Test Vehicle Geometrics for Test	
	No. 469468-5-1	83
Figure 6.5.	Test Vehicle before Test No. 469468-5-1	84
Figure 6.6.	Round Wood Post W-Beam Guardrail/Test Vehicle after Test No.	
_	469468-5-1	85
Figure 6.7.	Upstream Terminal after Test No. 469468-5-1	85
Figure 6.8.	Posts 11 through 17 after Test No. 469468-5-1	86
Figure 6.9.	Round Wood Post W-Beam Guardrail after Test No. 469468-5-1	87

		Page
Figure 6.10.	Test Vehicle after Test No. 469468-5-1.	87
Figure 6.11.	Interior of Test Vehicle for Test No. 469468-5-1	88
Figure 6.12.	Summary of Results for MASH Test 3-11 on Round Wood Post W-Beam	
	Guardrail.	89
Figure 7.1.	Overall Details of TxDOT 42-inch Single Slope Concrete Median Barrier	
	with Light Pole	94
Figure 7.2.	TxDOT 42-Inch Single Slope Concrete Median Barrier with Light Pole	
	prior to Testing	95
Figure 7.3.	TxDOT 42-Inch Single Slope Concrete Median Barrier with Light	
	Pole/Test Vehicle Geometrics for Test No. 469468-6-1.	
Figure 7.4.	Test Vehicle before Test No. 469468-6-1	97
Figure 7.5.	TxDOT 42-Inch Single Slope Concrete Median Barrier with Light	
	Pole/Test Vehicle after Test No. 469468-6-1.	98
Figure 7.6.	TxDOT 42-Inch Single Slope Concrete Median Barrier after Test No.	0.0
	469468-6-1	
Figure 7.7.	Light Pole after Test No. 469468-6-1.	
Figure 7.8.	Test Vehicle after Test No. 469468-6-1.	
Figure 7.9.	Interior of Test Vehicle after Test No. 469468-6-1.	100
Figure 7.10.	Summary of Results for MASH Test 5-12 on TxDOT 42-Inch Single Slope	101
T' 0.1	Concrete Median Barrier with Light Pole	101
Figure 8.1.	Overall Details of Skid-Mounted Single Perforated Steel Tube Temporary	106
E. 0.2	Sign Support System.	106
Figure 8.2.	Skid-Mounted Single Perforated Steel Tube Temporary Sign Support	100
E: 0.2	System prior to Testing.	108
Figure 8.3.	Skid-Mounted Single Perforated Steel Tube Temporary Sign Support	100
E: 9. 4	System/Test Vehicle Geometrics for Test No. 468469-7-1	
Figure 8.4.	Test Vehicle before Test No. 468469-7-1	109
Figure 8.5.	Skid-Mounted Single Perforated Steel Tube Temporary Sign Support System after Test No. 469468-7-1	111
Figure 8.6.	Test Vehicle after Test No. 469468-7-1.	
Figure 8.7.	Interior of Test Vehicle for Test No. 469468-7-1.	
Figure 8.8.	Summary of Results for MASH Test 3-72 at 0° on Skid-Mounted Single	112
riguic 6.6.	Perforated Steel Tube Temporary Sign Support System	113
Figure 8.9.	Skid-Mounted Single Perforated Steel Tube Temporary Sign Support	113
rigure 6.7.	System/Test Vehicle Geometrics for Test No. 468469-7-2	115
Figure 8.10.	Test Vehicle before Test No. 468469-7-2	
Figure 8.11.	Skid-Mounted Single Perforated Steel Tube Temporary Sign Support	110
riguic o.ii.	System after Test No. 469468-7-2.	117
Figure 8.12.	Test Vehicle after Test No. 469468-7-2.	
Figure 8.13.	Interior of Test Vehicle after Test No. 469468-7-2.	
Figure 8.14.	Summary of Results for MASH Test 3-72 at 90° on Skid-Mounted Single	110
.6	Perforated Steel Tube Temporary Sign Support System.	120

		Page
Figure 9.1.	Mailbox Geometrics with 2270P Pickup Truck (11).	123
Figure 9.2.	Details of Single Mailbox with Recycled Rubber Support Post in Type 4	
	Foundation.	125
Figure 9.3.	Single Mailbox with Recycled Rubber Support Post in Type 4 Foundation	100
E' 0.4	prior to Testing.	126
Figure 9.4.	Single Mailbox with Recycled Rubber Support Post in Type 4	107
E' 0.5	Foundation/Test Vehicle Geometrics for Test No. 468469-8-1.	
Figure 9.5.	Test Vehicle before Test No. 468469-8-1.	127
Figure 9.6.	Single Mailbox with Recycled Rubber Support Post in Type 4 Foundation after Test No. 469468-8-1.	128
Figure 9.7.	Test Vehicle after Test No. 469468-8-1.	
Figure 9.7.	Interior of Test Vehicle for Test No. 469468-8-1.	
Figure 9.9.	Summary of Results for MASH Test 3-61 on Single Mailbox with	129
rigule 9.9.	Recycled Rubber Support Post in Type 4 Foundation	121
Figure 0.10	Details of Double Mailbox with Thin-Wall Galvanized Support Post in	131
Figure 9.10.	11	124
Figure 9.11.	Type 4 Foundation.	134
rigule 9.11.	Double Mailbox with Thin-Wall Galvanized Support Post in Type 4 Foundation prior to Testing.	125
Figure 9.12.	Double Mailbox with Thin-Wall Galvanized Support Post in Type 4	133
11guile 9.12.	Foundation/Test Vehicle Geometrics for Test No. 468469-8-2.	126
Figure 0.12	Test Vehicle before Test No. 468469-8-1	
Figure 9.13. Figure 9.14.	Double Mailbox with Thin-Wall Galvanized Support in Type 4	130
rigule 9.14.	Foundation after Test No. 469468-8-2	127
Figure 9.15.	Test Vehicle after Test No. 469468-8-2.	
Figure 9.15.	Interior of Test Vehicle for Test No. 469468-8-1.	
•	Summary of Results for MASH Test 3-61 on Double Mailbox with Thin-	136
Figure 9.17.	Wall Galvanized Support in Type 4 Foundation.	140
Figure 9.18.	Details of Multiple Mailboxes with Multi-Mount Support in Type 4	140
rigule 9.16.	Foundation.	144
Figure 9.19.	Multiple Mailboxes with Multi-Mount Support in Type 4 Foundation prior	144
rigule 9.19.		1.45
Figure 9.20.	to Testing	143
11guile 9.20.	Vehicle Geometrics for Test No. 468469-8-3	146
Figure 9.21.	Test Vehicle before Test No. 468469-8-3	
Figure 9.21.	Multiple Mailboxes with Multi-Hanger Support in Type 4 Foundation	140
11guite 9.22.	after Test No. 469468-8-3	1.47
Figure 9.23.	Test Vehicle after Test No. 469468-8-1.	
Figure 9.23.	Interior of Test Vehicle for Test No. 469468-8-1.	
Figure 9.24. Figure 9.25.	Summary of Results for MASH Test 3-61 on Multiple Mailboxes with	140
riguit 9.43.		150
Figure 0.26	Multi-Mount Support in Type 4 Foundation	130
Figure 9.26.		152
	Support Post in Type 5 Foundation.	133

		Page
Figure 9.27.	Single Molded Plastic Mailmaster® Mailbox with Wood Support Post in	
<u> </u>	Type 5 Foundation prior to Testing.	154
Figure 9.28.	Single Molded Plastic Mailmaster® Mailbox with Wood Support Post in	
<u> </u>	Type 5 Foundation/Test Vehicle Geometrics for Test No. 468469-8-4	155
Figure 9.29.	Test Vehicle before Test No. 468469-8-4.	
Figure 9.30.	Single Molded Plastic Mailmaster® Mailbox with Wood Support in Type	
C	5 Foundation after Test No. 469468-8-4.	156
Figure 9.31.	Test Vehicle after Test No. 469468-8-4.	157
Figure 9.32.	Interior of Test Vehicle for Test No. 469468-8-4.	157
Figure 9.33.	Summary of Results for MASH Test 3-61 on Single Molded Plastic	
<u> </u>	Mastermail® Mailbox with Wood Support in Type 5 Foundation	159
Figure 10.1.	Overall Details of Skid-Mounted Dual Wood Post Temporary Sign	
<u> </u>	Support System.	164
Figure 10.2.	Skid-Mounted Dual Wood Post Temporary Sign Support System prior to	
<u> </u>	Testing	167
Figure 10.3.	Skid-Mounted Dual Wood Post Temporary Sign Support System/Test	
<u> </u>	Vehicle Geometrics for Test No. 469468-9-1	168
Figure 10.4.	Test Vehicle before Test No. 469468-9-1	168
Figure 10.5.	Skid-Mounted Dual Wood Post Temporary Sign Support System after	
<u> </u>	Test No. 469468-9-1.	170
Figure 10.6.	Test Vehicle after Test No. 469468-9-1.	171
Figure 10.7.	Summary of Results for MASH Test 3-72 at 90° on Skid-Mounted Dual	
	Wood Post Temporary Sign Support System.	172
Figure 11.1.	Details of MBGF in Rocky Terrain.	176
Figure 11.2.	MBGF in Rocky Terrain prior to Testing.	178
Figure 11.3.	Target CIP for MASH TL-3 Tests on MBGF in Rocky Terrain	179
Figure 11.4.	MBGF in Rocky Terrain/Test Vehicle Geometrics for Test No.	
	469468-10-2	180
Figure 11.5.	Test Vehicle before Test No. 469468-10-2	
Figure 11.6.	Posts 13 through 20 after Test No. 469468-10-2	182
Figure 11.7.	Test Vehicle after Test No. 469468-10-2.	
Figure 11.8.	Interior of Test Vehicle after Test No. 469468-10-2.	183
Figure 11.9.	Summary of Results for MASH Test 3-10 on MBGF in Rocky Terrain	185
Figure 11.10.	MBGF in Rocky Terrain/Test Vehicle Geometrics for Test No.	
	469468-10-1	
Figure 11.11.	Test Vehicle before Test No. 469468-10-1	188
Figure 11.12.	Posts 13 through 20 after Test No. 469468-10-1	190
Figure 11.13.	Upstream Terminal after Test No. 469468-10-1	191
	Test Vehicle after Test No. 469468-10-1.	
Figure 11.15.	Interior of Test Vehicle for Test No. 469468-10-1	191
	Summary of Results for MASH Test 3-11 on MBGF with Steel Posts in	
	Rocky Terrain.	193

		Page
Figure 12.1.	Details of Round Post Guardrail in Rocky Terrain	198
Figure 12.2.	MBGF With Round Wood Posts in Rocky Terrain prior to Testing	200
Figure 12.3.	Target CIP for MASH TL-3 Tests on MBGF with Round Wood Posts in	
C	Rocky Terrain.	201
Figure 12.4.	Round Post Guardrail/Test Vehicle Geometrics for Test No. 469468-12-1.	
Figure 12.5.	Test Vehicle before Test No. 469468-12-1	202
Figure 12.6.	MBGF with Round Wood Posts in Rocky Terrain after Test No.	
\mathcal{E}	469468-12-1	204
Figure 12.7.	Ruptured Guardrail after Test No. 469468-12-1	
Figure 12.8.	Test Vehicle after Test No. 469468-12-1.	
Figure 12.9.	Interior of Test Vehicle for Test No. 469468-12-1	
Figure 12.10.		
<i>5</i>	Posts in Rocky Terrain.	208

LIST OF TABLES

		Page
Table 2.1.	Events during Test No. 469468-1-1.	8
Table 2.2.	Occupant Risk Factors for Test No. 469468-1-1	
Table 2.3.	Performance Evaluation Summary for <i>MASH</i> Test 4-10 on the TxDOT	
	C402 Bridge Rail.	13
Table 2.4.	Events during Test No. 469468-1-2.	15
Table 2.5.	Occupant Risk Factors for Test No. 469468-1-2.	18
Table 2.6.	Performance Evaluation Summary for <i>MASH</i> Test 4-11 on the TxDOT	
	C402 Bridge Rail.	20
Table 2.7.	Events during Test No. 469468-1-3	
Table 2.8.	Occupant Risk Factors for Test No. 469468-1-3.	25
Table 2.9.	Performance Evaluation Summary for <i>MASH</i> Test 4-12 on the TxDOT	
	C402 Bridge Rail.	27
Table 2.10.	Assessment Summary for MASH TL-4 Tests on TxDOT C402 Bridge	
	Rail	28
Table 3.1.	Events during Test No. 469468-2-1	33
Table 3.2.	Occupant Risk Factors for Test No. 469468-2-1.	
Table 3.3.	Performance Evaluation Summary for <i>MASH</i> Test 5-12 on TxDOT C412	
	Bridge Rail.	39
Table 4.1.	Events during Test No. 469468-3-1	45
Table 4.2.	Occupant Risk Factors for Test No. 469468-3-1.	48
Table 4.3.	Performance Evaluation Summary for MASH Test 2-10 on the TxDOT	
	C411 Bridge Rail.	50
Table 4.4.	Events during Test No. 469468-3-2.	
Table 4.5.	Occupant Risk Factors for Test No. 469468-3-2.	55
Table 4.6.	Performance Evaluation Summary for <i>MASH</i> Test 2-11 on TxDOT C411	
	Bridge Rail	57
Table 4.7.	Assessment Summary for MASH TL-2 Tests on TxDOT C411 Bridge	
	Rail	
Table 5.1.	Events during Test No. 469468-4-1	
Table 5.2.	Occupant Risk Factors for Test No. 469468-4-1.	66
Table 5.3.	Performance Evaluation Summary for MASH Test 3-10 on the TxDOT	
	T1W Bridge Rail	
Table 5.4.	Events during Test No. 469468-4-2.	70
Table 5.5.	Occupant Risk Factors for Test No. 469468-4-2.	73
Table 5.6.	Performance Evaluation Summary for <i>MASH</i> Test 3-11 on TxDOT T1W Bridge Rail.	76
Table 5.7.	Assessment Summary for MASH TL-3 Tests on TxDOT T1W Bridge Rail	
Table 6.1.	Events during Test No. 469468-5-1	
Table 6.2.	Occupant Risk Factors for Test No. 469468-5-1.	
Table 6.3.	Performance Evaluation Summary for <i>MASH</i> Test 3-11 on Round Wood	
	Post W-Beam Guardrail.	91

LIST OF TABLES (CONTINUED)

		Page
Table 7.1.	Events during Test No. 469468-6-1	97
Table 7.2.	Occupant Risk Factors for Test No. 469468-6-1.	
Table 7.3.	Performance Evaluation Summary for <i>MASH</i> Test 5-12 on TxDOT 42-	
	inch Single Slope Concrete Median Barrier with Light Pole	103
Table 8.1.	Events during Test No. 469468-7-1	
Table 8.2.	Performance Evaluation Summary for MASH Test 3-72 at 0° on Skid-	
	Mounted Single Perforated Steel Tube Temporary Sign Support System	114
Table 8.3.	Events during Test No. 469468-7-2.	
Table 8.4.	Performance Evaluation Summary for MASH Test 3-72 at 90° on Skid-	
	Mounted Single Perforated Steel Tube Temporary Sign Support System	121
Table 8.5.	Performance Evaluation Summary for <i>MASH</i> Test 3-72 on Skid-Mounted	
	Single Perforated Steel Tube Temporary Sign Support System	122
Table 9.1.	Events during Test No. 469468-8-1.	
Table 9.2.	Occupant Risk Factors for Test No. 469468-8-1.	
Table 9.3.	Performance Evaluation Summary for <i>MASH</i> Test 3-61 on Single Mailbox	
	with Recycled Rubber Support Post in Type 4 Foundation	132
Table 9.4.	Events during Test No. 469468-8-2.	
Table 9.5.	Occupant Risk Factors for Test No. 469468-8-2.	139
Table 9.6.	Performance Evaluation Summary for <i>MASH</i> Test 3-61 on Double	
	Mailbox with Thin-Wall Galvanized Support in Type 4 Foundation	141
Table 9.7.	Events during Test No. 469468-8-3.	
Table 9.8.	Occupant Risk Factors for Test No. 469468-8-3.	
Table 9.9.	Performance Evaluation Summary for <i>MASH</i> Test 3-61 on Multiple	
	Mailboxes with Multi-Mount Support in Type 4 Foundation	151
Table 9.10.	Events during Test No. 469468-8-4.	
Table 9.11.	Occupant Risk Factors for Test No. 469468-8-4.	
Table 9.12.	Performance Evaluation Summary for <i>MASH</i> Test 3-61 on Single Molded	
	Plastic Mailmaster® Mailbox with Wood Support Post in Type 4	
	Foundation.	160
Table 9.13.	Assessment Summary for Mailbox Tests.	162
Table 10.1.	Events during Test No. 469468-9-1	
Table 10.2.	Performance Evaluation Summary for MASH Test 3-72 at 90° on Skid-	
	Mounted Dual Wood Post Temporary Sign Support System	174
Table 11.1.	Events during Test No. 469468-10-2.	181
Table 11.2.	Occupant Risk Factors for Test No. 469468-10-2.	184
Table 11.3.	Performance Evaluation Summary for <i>MASH</i> Test 3-11 on MBGF with	
	Steel Posts in Rocky Terrain.	186
Table 11.4.	Events during Test No. 469468-10-1	188
Table 11.5.	Occupant Risk Factors for Test No. 469468-10-1.	
Table 11.6.	Performance Evaluation Summary for MASH Test 3-11 on MBGF with	
	Steel Posts in Rocky Terrain.	194

		Page
Table 11.7.	Assessment Summary for MASH TL-3 Tests on TxDOT MBGF with	
	W6×8.5 Steel Posts in Rocky Terrain.	195
Table 12.1.	Events during Test No. 469468-12-1	203
Table 12.2.	Occupant Risk Factors for Test No. 469468-12-1.	207
Table 12.3.	Performance Evaluation Summary for <i>MASH</i> Test 3-11 on MBGF with	
	Round Wood Posts in Rocky Terrain.	209

CHAPTER 1: INTRODUCTION

Since the 1940s, the United States has been crash testing highway safety appurtenances. National guidelines for testing roadside appurtenances originated in 1962. Guidelines for testing and evaluating the impact performance of roadside safety features are periodically updated to stay current with improvements in technology and changes in the vehicle fleet and impact conditions. In 2009, the American Association of State Highway and Transportation Officials (AASHTO) published the *Manual for Assessing Safety Hardware (MASH)*, which supersedes the previous crash test and evaluation guidelines (1). Changes incorporated into *MASH* include new design test vehicles, revised test matrices, and revised impact conditions.

A *MASH* implementation agreement was jointly developed and adopted by the Federal Highway Administration (FHWA) and AASHTO. It establishes various implementation dates for different categories of roadside safety features. On projects let after the specified dates, only *MASH* compliant hardware is eligible for new installations on the National Highway System.

In response to the implementation requirements, Texas Department of Transportation (TxDOT) Bridge, Design, Maintenance, and Traffic Operations Divisions reviewed their standards for roadside safety devices and identified those devices that require testing and evaluation to assess *MASH* compliance. Under this project, a total of 33 roadside safety systems will be crash tested in accordance with *MASH* criteria in three phases over a three-year period.

The Texas A&M Transportation Institute (TTI) crash tested and evaluated 10 devices in Phase I, which included the following:

- 36-inch vertical parapet bridge rail.
- 1-inch asphalt concrete pavement lateral support for concrete median barrier.
- Pinning pattern for precast concrete barrier on concrete.
- Single and dual embedded wood post sign support systems.
- Pedestal pole with flashing beacons with and without solar assembly.
- Multi-mailbox system on TxDOT Type 1 foundation and thin walled galvanized tube support.
- Double mailbox system on TxDOT Type 2 foundation and thin walled galvanized tubing.
- Double mailbox system on TxDOT Type 3 foundation and winged channel support.

An additional 14 devices were crash tested and evaluated in Phase II. These included the following:

- C402 bridge rail.
- C412 bridge rail.
- C411 bridge rail.
- T1W bridge rail.
- Guardrail with round wood posts.
- Concrete barrier at light post.
- Single post perforated square metal tubing skid.
- Mailbox Type 4 foundation (single)-recycled rubber post.
- Mailbox Type 4 foundation (double)-thin walled white post.
- Mailbox Type 4 foundation (multi)-Shurtite Multi Hanger.

- Mailbox Type 5 foundation (single)-wood post.
- Dual post wood skid.
- Guardrail Steel posts in rocky terrain.
- Round wood posts in rocky terrain.

TxDOT standards may include multiple configurations or variations of a device to accommodate different design considerations or needs. TTI researchers developed the test plan for each device based on consideration of critical or worst-case configuration. If a critical configuration is successfully crash tested, a less critical configuration of the device would also be considered *MASH* compliant. This approach reduces the required number of tests to achieve *MASH* compliance. The following chapters of this report provide details of the *MASH* testing of the different roadside safety systems evaluated under Phase II.

CHAPTER 2: TXDOT C402 BRIDGE RAIL

2.1 BACKGROUND*

The T402 bridge rail consists of a tubular steel rail attached to fabricated steel posts mounted to a 24-inch tall concrete parapet. The only difference between the T402 and C402 rail is that the C402 incorporates a nominal 2-inch diameter steel pipe attached to the traffic face of the steel posts between the concrete parapet and tubular rail element to meet pedestrian code requirements.

TxDOT and TTI researchers consider the C402 bridge rail a more critical configuration than the T402 bridge rail. The 24-inch height of the concrete parapet is above the bumper height of a passenger car and captures most of the pickup truck bumper. Therefore, although some sheet metal contact will occur, substantial snagging of vehicle components on the steel posts is not a significant concern. Testing the C402 bridge rail evaluates the attachment of the pedestrian pipe rail to the posts and the splices between the pipe sections to determine if there is any separation and interaction with the impacting vehicle. If this more critical configuration meets *MASH* requirements, the less critical T402 bridge rail would also be considered *MASH* compliant.

The C402 bridge rail was fabricated and installed by an outside subcontractor under TTI Proving Ground's supervision. TTI had the rail constructed with the elliptical tubular steel rail option. The elliptical tubular steel rail is considered more critical than the rectangular tube option because of its narrower contact surface area. TTI Proving Ground tested and evaluated the rail's performance in accordance with *MASH* TL-4 requirements.

The full *MASH* test matrix was performed on this bridge rail system to fully evaluate any vehicle interaction or occupant contact with the steel rail components. The test matrix consisted of test designations 4-10 (small passenger car), 4-11 (pickup truck), and 4-12 (single unit truck). The target CIPs selected for the tests were determined according to information provided in *MASH* Sections 2.2.1 and 2.3.2 and Tables 2-7 and 2-8. Figure 2.1 shows the results.

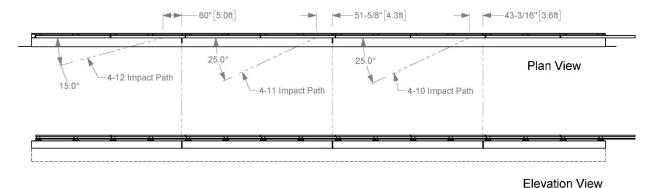


Figure 2.1. Target CIPs for MASH TL-4 on TxDOT C402 Bridge Rail.

^{*} The opinions/interpretations identified/expressed in Section 2.1 are outside the scope of TTI Proving Ground's A2LA Accreditation.

2.2 SYSTEM DETAILS

2.2.1 Test Article Design and Construction

The C402 test installation consisted of a 153-ft long reinforced concrete cantilevered deck and parapet with integral steel posts and rails secured to the top of the parapet. The post spacing was 10 ft. The height from the road surface to the top of the parapet was 24 inches, and the overall height to the top of the steel rail was 42 inches. There were three 2-inch wide joints formed in the concrete parapet corresponding with the selected critical impact points. One joint was in the parapet only for geometric evaluation of the passenger car during Test 4-10 (the 1100C test location). The other two joints extended through both the parapet and deck to provide evaluation of both rail geometry and structural adequacy during Tests 4-11 and 4-12. The test installation also incorporated 2-inch wide joints in both the elliptical steel traffic rail and pedestrian pipe rail near the concrete joints based on TxDOT standards. Steel sleeves were inserted into the steel rail members to provide structural continuity across the joints.

Figure 2.2 presents overall information on the TxDOT C402 bridge rail test installation, and Figure 2.3 provides photographs of the installation. Appendix A.1 provides further details of the TxDOT C402 bridge rail installation.

2.2.2 Material Specifications

Appendix A.2 provides material certification documents for the materials used to install/construct the TxDOT C402 bridge rail.

2.3 MASH TEST 4-10 (CRASH TEST NO. 469468-1-1)

2.3.1 Test Designation and Actual Impact Conditions

MASH Test 4-10 involves an 1100C vehicle weighing 2420 lb ± 55 lb impacting the CIP of the longitudinal barrier at an impact speed of 62 mi/h ± 2.5 mi/h and an angle of $25^{\circ} \pm 1.5^{\circ}$. The target CIP for MASH Test 4-10 on the TxDOT C402 bridge rail was 3.6 ft ± 1 ft upstream of the last open joint in the parapet (see Figure 5.1).

The 2010 Kia Rio* used in the test weighed 2425 lb, and the actual impact speed and angle were 62.6 mi/h and 25.0°, respectively. The actual impact point was 3.8 ft upstream of the last open joint in the parapet near post 13. Minimum target impact severity (IS) was 51 kip-ft, and actual IS was 57 kip-ft.

2.3.2 Weather Conditions

The test was performed on the morning of May 17, 2018. Weather conditions at the time of testing were as follows: wind speed: 1 mi/h; wind direction: 122° (vehicle was traveling in a northwesterly direction); temperature: 85°F; relative humidity: 64 percent.

TR No. 0-6946-R2 4 2019-03-27

_

^{*} The 2010 model vehicle used is older than the 6-year age noted in *MASH*, and was selected based upon availability. An older model vehicle is permitted by AASHTO as long as it is otherwise *MASH* compliant. Other than the vehicle's year model, this 2010 model vehicle met the *MASH* requirements.

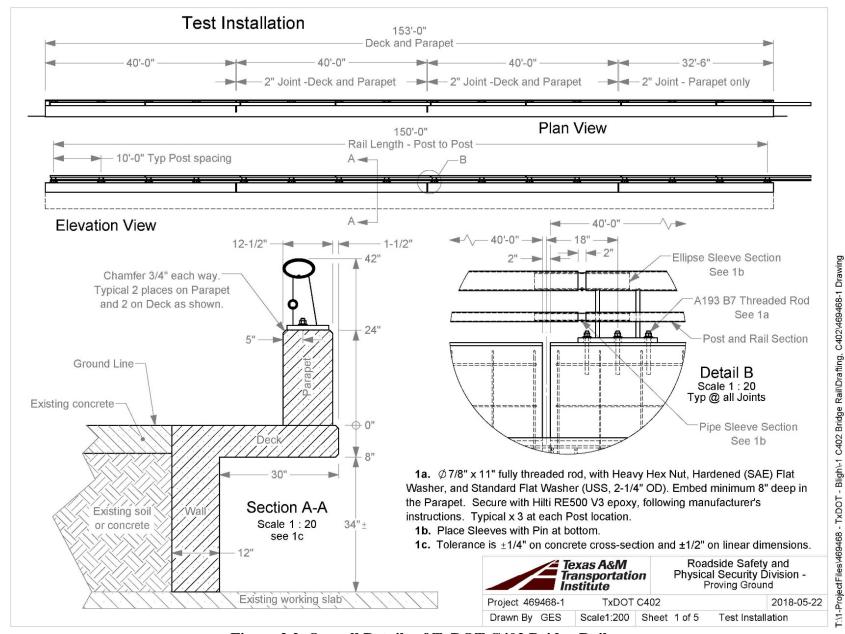


Figure 2.2. Overall Details of TxDOT C402 Bridge Rail.

Figure 2.3. TxDOT C402 Bridge Rail prior to Testing.

2.3.3 Test Vehicle

Figures 2.4 and 2.5 show the 2010 Kia Rio used for the crash test. The vehicle's test inertia weight was 2425 lb, and its gross static weight was 2590 lb. The height to the lower edge of the vehicle bumper was 7.75 inches, and height to the upper edge of the bumper was 21.5 inches. Table A.1 in Appendix A.3.1 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 2.4. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-1.

Figure 2.5. Test Vehicle before Test No. 469468-1-1.

2.3.4 Test Description

The test vehicle impacted the TxDOT C402 bridge rail 3.8 ft upstream of the last open joint in the parapet at a speed of 62.6 mi/h and an angle of 25.0°. Table 2.1 lists events that occurred during Test No. 469468-1-1. Figures A.1 and A.2 in Appendix A.3.2 present sequential photographs during the test.

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft downstream from impact for cars and pickups). The 1100C vehicle exited within the exit box criteria defined in *MASH*. After loss of contact with the barrier, the vehicle yawed counterclockwise and came to rest 145 ft downstream of the point of impact and 17 ft toward traffic lanes.

Table 2.1. Events during Test No. 469468-1-1.

TIME (s)	EVENTS
0.000	Left front corner of vehicle bumper contacts bridge rail
0.024	Vehicle begins to redirect
0.028	Roof begins to deform above left front door
0.044	Left front corner of bumper contacts post 13
0.060	Hood begins to deform
	Left corner of deformed hood contacts and breaks lower left corner of
0.067	windshield
0.069	Dummy's shoulder contacts left door window glass
0.075	Left door window glass shatters
0.160	Vehicle becomes parallel with bridge rail
0.168	Rear bumper contacts rail
0.294	Vehicle loses contact with bridge rail while traveling at 50.2 mi/h and
	trajectory/heading angles of 6.5°/9.5°, respectively

2.3.5 Damage to Test Installation

Figure 2.6 shows the damage to the TxDOT C402 bridge rail. Cracks in the parapet and deck are marked in red in Figure 2.5. On the traffic face of the parapet, there was a crack 32 inches downstream of post 12. On the field side, the parapet was cracked 32 inches upstream of the parapet joint, and the deck was cracked at the downstream end of the parapet joint and radiated downstream and downward. Working width was 12.5 inches, and the height of maximum working width was 24.0 inches. Dynamic deflection of the rail could not be obtained because the view was obscured by the test vehicle. There was no measurable permanent deformation was observed.

2.3.6 Damage to Test Vehicle

Figure 2.7 shows the damage the vehicle sustained. The front bumper, hood, radiator and support, left front fender, left front tire and rim, left front strut, left front door and window glass, left rear door, left rear quarter panel, and left rear bumper were damaged. The windshield was shattered in the left lower corner from the hood being pushed toward the windshield. Maximum exterior crush to the vehicle was 8.0 inches in the side plane at the left front corner at bumper height. Maximum occupant compartment deformation was 2.5 inches in the driver side floor pan and firewall areas. Figure 2.8 shows the interior of the vehicle. Tables A.2 and A.3 in Appendix A.3.1 provide exterior crush and occupant compartment measurements.

2.3.7 Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk and results are shown in Table 2.2. Figure 2.9 summarizes these data and other pertinent information from the test. Figure A.3 in Appendix A.3.3 shows the vehicle angular displacements, and Figures A.4 through A.9 in Appendix A.3.4 show acceleration versus time traces.

Figure 2.6. TxDOT C402 Bridge Rail after Test No. 469468-1-1.

Figure 2.7. Test Vehicle after Test No. 469468-1-1.

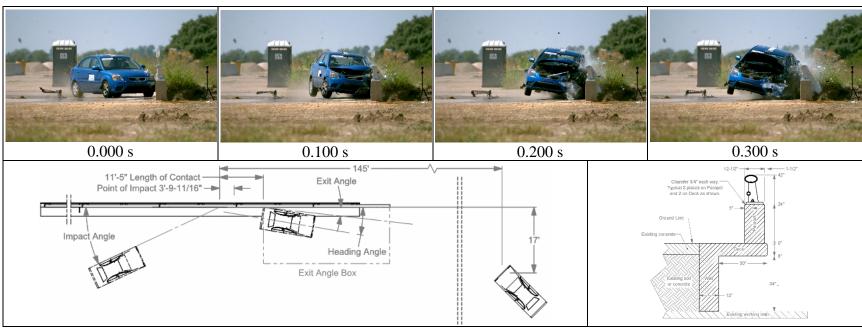

Figure 2.8. Interior of Test Vehicle for Test No. 469468-1-1.

Table 2.2. Occupant Risk Factors for Test No. 469468-1-1.

Occupant Risk Factor	Value	Time
Occupant Impact Velocity (OIV)		
Longitudinal	21.3 ft/s	at 0.0694 s on left side of interior
Lateral	32.2 ft/s	at 0.0094 s on left side of interior
Ridedown Accelerations		
Longitudinal	5.5 g	0.0701-0.0801 s
Lateral	9.7 g	0.1850–0.1950 s
Theoretical Head Index Velocity (THIV)	42.2 km/h 11.7 m/s	at 0.0678 s on left side of interior
Post Head Deceleration (PHD)	9.9 g	0.1850–0.1950 s
Acceleration Severity Index (ASI)	2.76	0.0398-0.0898 s
Maximum 50-ms Moving Average		
Longitudinal	−12.1 g	0.0233-0.0733 s
Lateral	19.9 g	0.0116–0.0616 s
Vertical	−2.7 g	0.0315-0.0815 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	12°	0.3465 s
Pitch	5°	0.0681 s
Yaw	43°	0.6789 s

2.3.8 Assessment of Results

Table 2.3 assesses the test based on the applicable safety evaluation criteria for *MASH* Test 4-10.

		11	
General Information		Impact Conditions	Post-Impact Trajectory
Test Agency	Texas A&M Transportation Institute (TTI)	Speed 62.6 mi/h	Stopping Distance 145 ft downstream
Test Standard Test No		Angle 25.0°	17 ft toward traffic
TTI Test No	469668-1-1	Location/Orientation 3.8 ft upstream of	Vehicle Stability
Test Date	2018-05-17	ioint	Maximum Yaw Angle 43°
Test Article		Impact Severity57 kip-ft	Maximum Pitch Angle 5°
	Longitudinal Barrier – Bridge Rail	Exit Conditions	Maximum Roll Angle 12°
Name		Speed 50.2 mi/h	Vehicle Snagging No
Installation Length		Trajectory/Heading Angle 6.5°/9.5°	Vehicle Pocketing No
· ·	Concrete parapet 12½ inches wide,	Occupant Risk Values	Test Article Deflections
	24 inches tall, with steel rail mounted on	Longitudinal OIV 21.3 ft/s	Dynamic None measurable
	top for total height of 42 inches	Lateral OIV 32.2 ft/s	Permanent None measurable
Soil Type and Condition	, ,	Longitudinal Ridedown 5.5 g	Working Width 12.5 inches
Test Vehicle	, , , , ,	Lateral Ridedown 9.7 g	Height of Working Width 24.0 inches
Type/Designation	1100C	THIV 42.2 km/h	Vehicle Damage
Make and Model		PHD9.9 g	VDS
Curb		ASI	CDC 10FLEW3
Test Inertial		Max. 0.050-s Average	Max. Exterior Deformation 8.0 inches
Dummy		Longitudinal −12.1 g	OCDILF0215100
Gross Static		Lateral19.9 g	Max. Occupant Compartment
		Vertical	Deformation
		_	

Figure 2.9. Summary of Results for MASH Test 4-10 on TxDOT C402 Bridge Rail.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 469468-1-1	Test Date: 2018-05-17
	MASH Test 4-10 Evaluation Criteria	Test Results	Assessment
Stru A.	Ictural Adequacy Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The TxDOT C402 contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was not obtainable due to vehicle obstruction of view.	Pass
Occ D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	No detached elements, fragments, or other debris from the test article were present to penetrate or show potential for penetrating the occupant compartment or to present hazard to others in the area. Maximum occupant compartment deformation was 2.5 inches in the driver side floor pan and firewall areas.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 1100C vehicle remained upright during and after the collision event. Maximum roll was 12° and maximum pitch was 5°.	Pass
Н.	Longitudinal and lateral occupant impact velocities should fall below the preferred value of 30 ft/s, or at least below the maximum allowable value of 40 ft/s.	Longitudinal OIV was 21.3 ft/s, and lateral OIV was 32.2 ft/s.	Pass
I.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 g, or at least below the maximum allowable value of 20.49 g.	Maximum longitudinal 10-ms occupant ridedown acceleration was 5.5 g, and maximum lateral 10-ms occupant ridedown acceleration was 9.7 g.	Pass
<u>Vel</u>	For redirective devices, it is preferable that the vehicle be smoothly redirected and leave the barrier within the exit box criteria (not less than 32.8 ft for the 1100C and 2270P vehicles) and should be documented.	The 1100C vehicle exited within the exit box criteria.	Documentation only

2.4 *MASH* TEST 4-11 (CRASH TEST NO. 469468-1-2)

2.4.1 Test Designation and Actual Impact Conditions

MASH Test 4-11 involves a 2270P vehicle weighing 5000 lb ± 110 lb impacting the CIP of the longitudinal barrier at an impact speed of 62 mi/h ± 2.5 mi/h and an angle of $25^{\circ} \pm 1.5^{\circ}$. The target CIP for MASH Test 4-11 on the TxDOT C402 bridge rail was 4.3 ft ± 1 ft upstream of the second open joint in the deck and parapet (see Figure 5.1).

The 2012 Dodge RAM 1500 pickup truck used in the test weighed 4999 lb, and the actual impact speed and angle were 62.7 mi/h and 25.3°, respectively. The actual impact point was 4.7 ft upstream of the second open joint in the deck and parapet near post 9. Minimum target IS was 106 kip-ft, and actual IS was 120 kip-ft.

2.4.2 Weather Conditions

MASH Test 4-11 on the bridge rail was performed on the morning of May 15, 2018. Weather conditions at the time of testing were as follows: wind speed: 3 mi/h; wind direction: 284° (vehicle was traveling in a northwesterly direction); temperature: 80°F; relative humidity: 75 percent.

2.4.3 Test Vehicle

Figures 2.10 and 2.11 show the 2012 Dodge RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 4999 lb, and its gross static weight was 5164 lb. The height to the lower edge of the vehicle bumper was 11.75 inches, and the height to the upper edge of the bumper was 27.0 inches. The height to the vehicle's center of gravity was 28.0 inches. Tables A.4 and A.5 in Appendix A.4.1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 2.10. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-2.

Figure 2.11. Test Vehicle before Test No. 469468-1-2.

2.4.4 Test Description

The test vehicle impacted the TxDOT C402 bridge rail 4.7 ft upstream of the second open joint in the deck and parapet at a speed of 62.7 mi/h and an angle of 25.3°. Table 2.4 lists events that occurred during Test No. 469468-1-2. Figures A.10 and A.11 in Appendix A.4.2 present sequential photographs during the test.

Table 2.4. Events during Test No. 469468-1-2.

TIME (s)	EVENTS	
0.000	Left front corner of vehicle bumper contacts bridge rail	
0.035	Vehicle begins to redirect	
0.047	Right rear corner of hood contacts and shatters lower right corner of windshield	
0.059	Vehicle reaches post 9	
0.061	Left front door opens at top	
	Left rear corner of hood contacts and shatters lower left corner of	
0.670	windshield	
0.085	Dummy's head contacts left door window glass	
0.102	Left front door window glass frame begins to separate from door	
0.122	Maximum extent of dummy's head outside of vehicle	
0.185	Vehicle becomes parallel with the bridge rail	
0.188	Rear of vehicle contacts bridge rail	
0.342	Vehicle loses contact with bridge rail traveling at 47.5 mi/h and trajectory/heading angle of 8.8°/7.2°, respectively	

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft downstream from impact for cars and pickups). The 2270P vehicle exited within the exit box criteria defined in *MASH*. After loss of contact with the barrier, the vehicle yawed counterclockwise and came to rest 156 ft downstream of the point of impact and 7 ft toward traffic lanes.

2.4.5 Damage to Test Installation

Figure 2.12 shows the damage to the TxDOT C402 bridge rail. There was minimal deflection of the lower steel pedestrian rail and some concrete surface spalling on the field side of post 9. Working width was 16.5 inches, and the height of maximum working width was 46.0 inches. Maximum dynamic deflection was 1.1 inches, and no permanent deformation was observed in the metal rail elements.

Figure 2.12. TxDOT C402 Bridge Rail after Test No. 469468-1-2.

2.4.6 Damage to Test Vehicle

Figure 2.13 shows the damage sustained by the vehicle. The front bumper, hood, grill, radiator and support, left front fender, left front tire and rim, left front door and window glass, left rear door, left rear exterior bed, left rear tire and rim, and left rear bumper were damaged. The windshield was shattered when the hood latch broke and the hood contacted the windshield. Maximum exterior crush to the vehicle was 10.0 inches in the side plane at the left front corner at bumper height. Maximum reduction of space in the occupant compartment was 1.0 inch in the driver side floor pan and kick panel areas. Figure 2.14 shows the interior of the vehicle. Tables A.6 and A.7 in Appendix A.4.1 provide exterior crush and occupant compartment measurements.

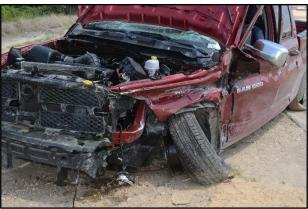


Figure 2.13. Test Vehicle after Test No. 469468-1-2.

Figure 2.14. Windshield and Interior of Test Vehicle after Test No. 469468-1-2.

2.4.7 Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk and results are shown in Table 2.5. Figure 2.15 summarizes these data and other pertinent information from the test. Figure A.12 in Appendix A.4.3 shows the

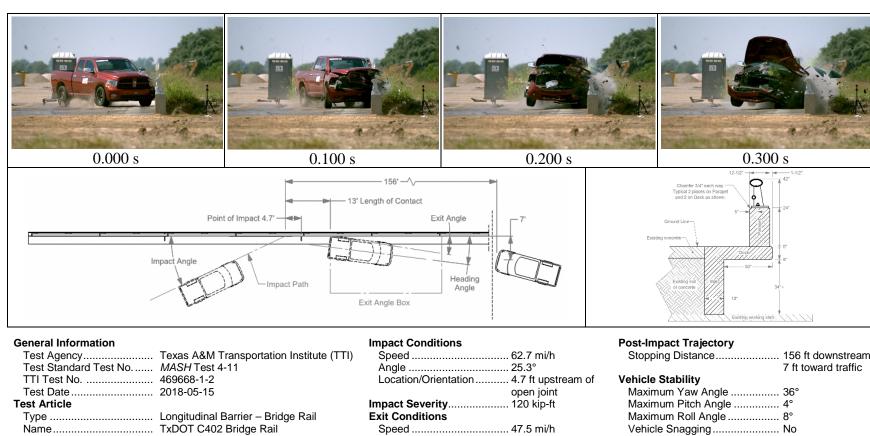

vehicle angular displacements, and Figures A.13 through A.18 in Appendix A.4.4 show acceleration versus time traces.

Table 2.5. Occupant Risk Factors for Test No. 469468-1-2.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	19.7 ft/s	at 0.0924 s on left side of interior
Lateral	27.9 ft/s	at 0.0924 s on left side of interior
Occupant Ridedown Accelerations		
Longitudinal	6.9 g	0.0957–0.1057 s
Lateral	9.5 g	0.2031–0.2131 s
THIV	37.9 km/h 10.5 m/s	at 0.0898 s on left side of interior
PHD	9.9 g	0.2032-0.2132 s
ASI	2.06	0.0594–0.1094 s
Maximum 50-ms Moving Average		
Longitudinal	−9.3 g	0.0284–0.0784 s
Lateral	16.0 g	0.0346-0.0846 s
Vertical	-4.3 g	0.0078-0.0578 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	8 °	0.8503 s
Pitch	4 °	0.0915 s
Yaw	36°	0.6172 s

2.4.8 Assessment of Results

Table 2.6 assesses the test based on the applicable safety evaluation criteria for *MASH* Test 4-11.

Material or Key Elements	24 inches tall, with steel rail mounted on top for total height of 42 inches
Soil Type and Condition	Concrete Deck, Damp
Test Vehicle	
Type/Designation	2270P
Make and Model	2012 Dodge RAM 1500 Pickup
Curb	4788 lb
Test Inertial	4999 lb
Dummy	165 lb
Gross Static	5164 lb

Installation Length...... 153 ft

Speed	62.7 mi/h
Angle	
Location/Orientation	4.7 ft upstre
	open joint
Impact Severity	120 kip-ft
Exit Conditions	
Speed	47.5 mi/h
Trajectory/Heading Angle	8.8°/7.2°
Occupant Risk Values	
Longitudinal OIV	19.7 ft/s
Lateral OIV	27.9 ft/s
Longitudinal Ridedown	6.9 g
Lateral Ridedown	9.5 g
THIV	
PHD	9.9 g
ASI	2.06
Max. 0.050-s Average	
Longitudinal	−9.3 g
Lateral	
Vertical	−4.3 g
	•

Post-Impact Trajectory	
Stopping Distance	156 ft downstream
	7 ft toward traffic
Vehicle Stability	
Maximum Yaw Angle	36°
Maximum Pitch Angle	
Maximum Roll Angle	8°
Vehicle Snagging	No
Vehicle Pocketing	No
Test Article Deflections	
Dynamic	1.1 inches
Permanent	None measurable
Working Width	16.5 inches
Height of Working Width	
Vehicle Damage	
VDS	11LFQ3
CDC	11FLEW3
Max. Exterior Deformation	10.0 inches
OCDI	
Max. Occupant Compartment	LF0100000
Deformation	

Figure 2.15. Summary of Results for MASH Test 4-11 on TxDOT C402 Bridge Rail.

Table 2.6. Performance Evaluation Summary for MASH Test 4-11 on the TxDOT C402 Bridge Rail.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 469468-1-2	Test Date: 2018-05-15
	MASH Test 4-11 Evaluation Criteria	Test Results	Assessment
Stru A.	actural Adequacy Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The TxDOT C402 contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 1.1 inches.	Pass
Occ	cupant Risk		
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	No detached elements, fragments, or other debris from the test article were present to penetrate or show potential for penetrating the occupant compartment or to present hazard to others in the area.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	Maximum reduction of space in the occupant compartment was 1.0 inch in the driver side floor pan and kick panel areas.	
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 2270P vehicle remained upright during and after the collision event. Maximum roll was 8° and maximum pitch was 4°.	Pass
Н.	Longitudinal and lateral occupant impact velocities should fall below the preferred value of 30 ft/s, or at least below the maximum allowable value of 40 ft/s.	Longitudinal OIV was 19.7 ft/s, and lateral OIV was 27.9 ft/s.	Pass
I.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 g, or at least below the maximum allowable value of 20.49 g.	Maximum longitudinal 10-ms occupant ridedown acceleration was 6.9 g, and maximum lateral 10-ms occupant ridedown acceleration was 9.5 g.	Pass
Veł	For redirective devices, it is preferable that the vehicle be smoothly redirected and leave the barrier within the exit box criteria (not less than 32.8 ft for the 1100C and 2270P vehicles), and should be documented.	The 2270P vehicle exited within the exit box criteria.	Documentation only

2.5 *MASH* TEST 4-12 (CRASH TEST NO. 469468-1-3)

2.5.1 Test Designation and Actual Impact Conditions

MASH Test 4-12 involves a 10000S vehicle weighing 22,046 lb \pm 660 lb impacting the CIP of the longitudinal barrier at an impact speed of 56 mi/h \pm 2.5 mi/h and an angle of 15° \pm 1.5°. The target CIP for MASH Test 4-12 on the TxDOT C402 bridge rail was 5.0 ft \pm 1 ft upstream of the first open joint in the deck and parapet (see Figure 5.1).

The 2012 International 4300 single-unit truck used in the test weighed 22,060 lb, and the actual impact speed and angle were 56.9 mi/h and 15.0°, respectively. The actual impact point was 4.9 ft upstream of the first open joint in the deck and parapet near post 5. Minimum target IS was 142 kip-ft, and actual IS was 160 kip-ft.

2.5.2 Weather Conditions

MASH Test 4-12 on the bridge rail was performed on the morning of May 11, 2018. Weather conditions at the time of testing were as follows: wind speed: 15 mi/h; wind direction: 182° (vehicle was traveling in a northwesterly direction); temperature: 81°F; relative humidity: 68 percent.

2.5.3 Test Vehicle

Figures 2.16 and 2.17 show the 2012 International 4300 single-unit truck used for the crash test. The vehicle's test inertia weight was 22,060 lb, and its gross static weight was 22,060 lb. The height to the lower edge of the vehicle bumper was 21.0 inches, and height to the upper edge of the bumper was 35.0 inches. The height to the center of gravity of the ballast was 61.5 inches. Table A.8 in Appendix A.5.1 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 2.16. TxDOT C402 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-1-3.

Figure 2.17. Test Vehicle before Test No. 469468-1-3.

2.5.4 Test Description

The test vehicle impacted the TxDOT C402 bridge rail 4.9 ft upstream of the first open joint in the deck and parapet at a speed of 56.9 mi/h and an angle of 15.0°. Table 2.7 lists events that occurred during Test No. 469468-1-3. Figures A.19 and A.20 in Appendix A.5.2 present sequential photographs during the test.

TIME (s)	EVENTS
0.000	Left front corner of vehicle bumper contacts bridge rail
0.004	Left front tire contacts parapet face
0.040	Front tires begin to steer left
0.057	Left front bumper reaches joint in parapet and deck
0.101	Vehicle begins to redirect
0.268	Rear of vehicle contacts bridge rail
0.313	Vehicle becomes parallel with bridge rail
1.270	Vehicle loses contact with bridge rail (exit speed and angle not
1.270	obtainable due to being out-of-view or obscured)

Table 2.7. Events during Test No. 469468-1-3.

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 65.6 ft downstream from loss of contact for 10000S vehicles). The 10000S vehicle exited within the exit box criteria defined in *MASH*. After loss of contact with the barrier, the vehicle yawed counterclockwise and came to rest 319 ft downstream of the point of impact and 2 ft toward the field side.

2.5.5 Damage to Test Installation

Figure 2.18 shows the damage to the TxDOT C402 bridge rail. The bridge rail sustained concrete damage from post 4 to post 6, particularly on the traffic side at the top of the parapet upstream of the joint. A 14-ft long crack in the deck ran parallel with the rail starting from the joint and radiating upstream. Working width was 63.9 inches, and the height of maximum working width was 144.5 inches. Maximum dynamic deflection during the test was not

obtainable (vehicle obscured view), and maximum permanent deformation was so slight as to be unmeasurable.

Figure 2.18. TxDOT C402 Bridge Rail after Test No. 469468-1-3.

2.5.6 Damage to Test Vehicle

Figure 2.19 shows the damage sustained by the vehicle. The front bumper, hood, left door, front axle, left front U-bolts and springs, left front tire and rim, left fuel tank, left side of box, left battery box, and left rear outer tire and rim were damaged. Maximum exterior crush to the vehicle was 22.0 inches in the side plane at the left front corner at bumper height. No occupant compartment deformation occurred. Figure 2.20 shows the interior of the vehicle.

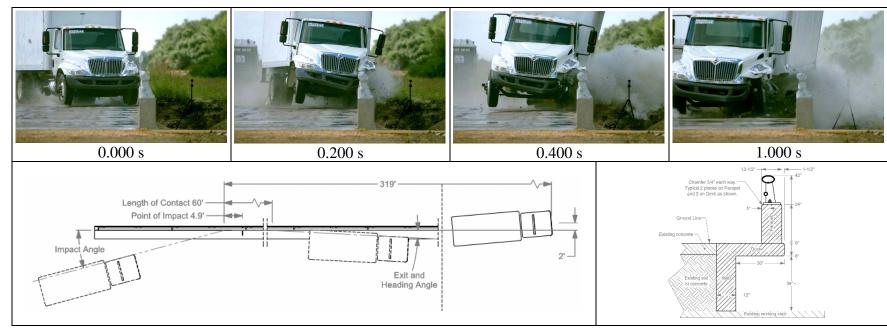
Figure 2.19. Test Vehicle after Test No. 469468-1-3.

Before Test

After Test

Figure 2.20. Interior of Test Vehicle for Test No. 469468-1-3.

2.5.7 Occupant Risk Factors


Occupant risk factors are not required for the test with the 10000S vehicle. Data from the accelerometers, located at the vehicle center of gravity, were digitized for information purposes only and results are shown in Table 2.8. Figure 2.21 summarizes these data and other pertinent information from the test. Figure A.21 in Appendix A.5.3 shows the vehicle angular displacements, and Figures A.22 through A.27 in Appendix A.5.4 show acceleration versus time traces.

2.5.8 Assessment of Results

Table 2.9 provides an assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 4-12.

Table 2.8. Occupant Risk Factors for Test No. 469468-1-3.

Occurant Disk Factor Value Time				
Occupant Risk Factor	Value	Time		
OIV				
Longitudinal	7.5 ft/s	at 0.2180 s on left side of interior		
Lateral	13.1 ft/s	at 0.2100 s on left side of interior		
Occupant Ridedown Accelerations				
Longitudinal	4.6 g	0.3194–0.3294 s		
Lateral	5.6 g	0.2562–0.2662 s		
THIV	17.5 km/h 4.9 m/s	at 0.2116 s on left side of interior		
PHD	6.1 g	0.2562–0.2662 s		
ASI	0.41	0.1786–0.2286 s		
Maximum 50-ms Moving Average				
Longitudinal	−1.7 g	0.0200–0.0700 s		
Lateral	3.6 g	0.1531–0.2031 s		
Vertical	−3.1 g	0.2700–0.3200 s		
Maximum Roll, Pitch, and Yaw Angles				
Roll	1 7 °	0.5335 s		
Pitch	18°	1.1136 s		
Yaw	37°	0.9571 s		

General Information Test Agency Test Standard Test No	Texas A&M Transportation Institute (TTI) MASH Test 4-12	Impact Conditions Speed	Post-Impact Trajectory Stopping Distance
TTI Test No		Location/Orientation 4.9 ft upstream of	Vehicle Stability
Test Date Test Article	2018-05-11	open joint Impact Severity160 kip-ft	Maximum Yaw Angle 37° Maximum Pitch Angle 18°
	Longitudinal Barrier – Bridge Rail	Exit Conditions	Maximum Roll Angle 17°
Name	TxDOT C402 Bridge Rail	Speed Not obtainable	Vehicle Snagging No
Installation Length		Angle Not obtainable Occupant Risk Values	Vehicle Pocketing No Test Article Deflections
Material of Key Elements	Concrete parapet 12½ inches wide, 24 inches tall, with steel rail mounted on top for total height of 42 inches	Longitudinal OIV	Dynamic
Soil Type and Condition	Concrete Deck, Damp	Longitudinal Ridedown 4.6 g Lateral Ridedown5.6 g	Working Width
Test Vehicle		THIV 17.5 km/h	Vehicle Damage
Type/Designation	10000S	PHD6.1 g	VDS NA
	2012 International 4300 SUT	ASI 0.41	CDC 11FDEW4
Curb	•	Max. 0.050-s Average	Max. Exterior Deformation 22.0 inches
Test Inertial		Longitudinal1.7 g	OCDI NA
Dummy		Lateral	Max. Occupant Compartment
Gross Static	22,060 ID	Vertical3.1 g	Deformation None

Figure 2.21. Summary of Results for MASH Test 4-12 on TxDOT C402 Bridge Rail.

Table 2.9. Performance Evaluation Summary for MASH Test 4-12 on the TxDOT C402 Bridge Rail.

Test Agency: Texas A&M Transportation Institute Test No.: 469468-1-3 Test Date: 2018-05-11 MASH Test 4-12 Evaluation Criteria **Test Results** Assessment Structural Adequacy Test article should contain and redirect the vehicle or The TxDOT C402 contained and redirected the bring the vehicle to a controlled stop; the vehicle should 10000S vehicle. The vehicle did not penetrate, not penetrate, underride, or override the installation underride, or override the installation. Maximum **Pass** although controlled lateral deflection of the test article is dynamic deflection during the test was not acceptable. obtainable due to vehicle obstruction of view. Occupant Risk D. Detached elements, fragments, or other debris from the No detached elements, fragments, or other debris test article should not penetrate or show potential for from the test article were present to penetrate or penetrating the occupant compartment, or present an show potential for penetrating the occupant undue hazard to other traffic, pedestrians, or personnel compartment or to present hazard to others in the **Pass** in a work zone. area. Deformations of, or intrusions into, the occupant No occupant compartment deformation occurred. compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. It is preferable, although not essential, that the vehicle The 10000S vehicle remained upright during and Pass remain upright during and after collision. after the collision event. Maximum roll was 17°. Vehicle Trajectory For redirective devices, it is preferable that the vehicle be The 10000S vehicle exited within the exit box smoothly redirected and leave the barrier within the exit criteria. Documentation box criteria (not less than 65.6 ft for the 10000S vehicle) only and should be documented.

2.6 CONCLUSIONS

The 1100C vehicle was contained and redirected. The hood of the vehicle was pushed into the windshield, which shattered, but did not penetrate or create excessive deformation into the occupant compartment. Maximum occupant compartment deformation was 2.5 inches in the driver side floor pan and firewall areas. The 1100C vehicle remained upright during and after the collision event. Occupant risk factors were within allowable limits.

The TxDOT C402 contained and redirected the 2270P vehicle. The hood of the vehicle was pushed into the windshield, which shattered, but did not penetrate or create excessive deformation into the occupant compartment. Maximum reduction of space in the occupant compartment was 1.0 inch in the driver side floor pan and kick panel areas. The 2270P vehicle remained upright during and after the test. Occupant risk factors were within the preferred limits.

The single-unit truck was successfully contained and redirected. The vehicle remained stable and upright as it came to a stop.

The TxDOT C402 bridge rail performed acceptably according to MASH TL-4 evaluation criteria as shown in Table 2.10.

Table 2.10. Assessment Summary for MASH TL-4 Tests on TxDOT C402 Bridge Rail.

Evaluation Factors	Evaluation Criteria	Test No. 469468-1-1	Test No. 469468-1-2	Test No. 469468-1-3
Structural Adequacy	A	S	S	S
Occupant Risk	D	S	S	S
	F	S	S	N/A
	G	N/A	N/A	S
	Н	S	S	N/A
	I	S	S	N/A
	Test No.	MASH Test 4-10	MASH Test 4-11	MASH Test 4-12
	Pass/Fail	Pass	Pass	Pass

S = Satisfactory

U = Unsatisfactory

N/A = Not Applicable

CHAPTER 3: TXDOT C412 BRIDGE RAIL

3.1 BACKGROUND*

The TxDOT C412 bridge rail is an aesthetic concrete combination rail with windows designed to accommodate both vehicle and pedestrian traffic. Previously, it was successfully tested to *NCHRP Report 350* TL-4 under the name F411 (2). A variation of the C412 bridge rail was successfully tested to *MASH* TL-4 (3). TxDOT made changes to the reinforcement in the C412 rail to provide structural adequacy for *MASH* TL-5.

The TxDOT C412 bridge rail was constructed on site by a subcontractor under TTI Proving Ground supervision. The rail was tested and evaluated in accordance with *MASH* TL-5 criteria. Because a variation of the C412 bridge rail with similar geometry was successfully tested to *MASH* TL-4 (3), test designations 5-10 and 5-11 were deemed unnecessary by TxDOT and TTI researchers. Therefore, only *MASH* test designation 5-12 with an 80,000-lb tractor-van trailer was required to establish *MASH* TL-5 compliance.

3.2 TEST ARTICLE AND INSTALLATION DETAILS

The test installation was 119 ft-11½ inches long and consisted of a 42-inch tall reinforced concrete parapet mounted on an 8½-inch thick, 40-inch wide reinforced cantilevered concrete deck. The parapet was 17½ inches wide at top and bottom. A series of 12¼-inch wide posts and 5¾-inch wide windows on 18-inch centers were cast between an 18-inch tall lower wall section and an upper 6-inch concrete beam. The installation had a 2-inch wide joint in the parapet and deck located approximately 30 ft from one end of the rail represented the critical location for the structural adequacy test. Three dowel bars fabricated from #8 (1-inch outside diameter) rebar spanned the open joint (one in the beam and two in the wall section).

Figure 3.1 presents overall information on the TxDOT C412 bridge rail, and Figure 3.2 provides photographs of the installation. Appendix B.1 provides further details of the TxDOT C412 bridge rail.

3.3 MATERIAL SPECIFICATIONS

Appendix B.2 provides material certification documents for the materials used to install/construct the TxDOT C412 bridge rail.

^{*} The opinions/interpretations identified/expressed in Section 3.1 are outside the scope of TTI Proving Ground's A2LA Accreditation.

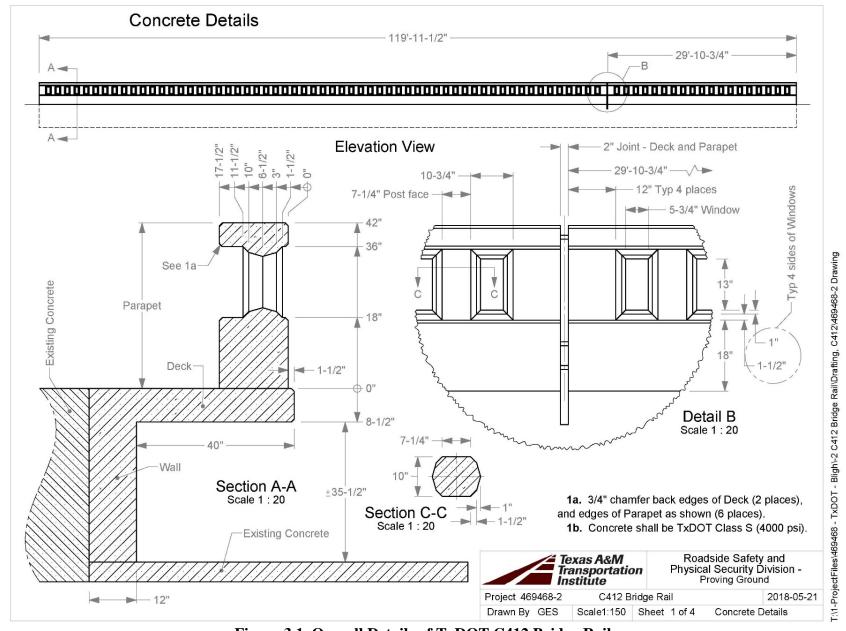


Figure 3.1. Overall Details of TxDOT C412 Bridge Rail.

Figure 3.2. TxDOT C412 Bridge Rail prior to Testing.

3.4 MASH TEST 5-12 (CRASH TEST NO. 469468-2-1)

3.4.1 Test Designation and Actual Impact Conditions

MASH Test 5-12 involves a 36000V vehicle weighing 79,300 lb ± 1100 lb impacting the CIP of the bridge rail at an impact speed of 50 mi/h ± 2.5 mi/h and an angle of $15^{\circ} \pm 1.5^{\circ}$. The CIP for MASH Test 5-12 on the TxDOT C412 bridge rail was 1 ft ± 1 ft downstream of the joint in the parapet and deck based on information in MASH Table 2.8.

The 2007 Freightliner CL120 with 2002 Utility 53-ft trailer used in the test weighed 80,300 lb, and the actual impact speed and angle were 50.8 mi/h and 15.0°, respectively. The actual impact point was 1.2 ft downstream of the joint in the parapet and deck. Minimum target IS was 404 kip-ft, and actual IS was 464 kip-ft.

3.4.2 Weather Conditions

The test was performed on the afternoon of June 15, 2018. Weather conditions at the time of testing were as follows: wind speed: 4 mi/h; wind direction: 217° (vehicle was traveling in a northerly direction); temperature: 93°F; relative humidity: 58 percent.

3.4.3 Test Vehicle

Figures 3.3 and 3.4 show the 2007 Freightliner CL20 with 2002 Utility 53-ft trailer used for the crash test. The vehicle's test inertia weight was 80,300 lb, and its gross static weight was 80,300 lb. The height to the lower edge of the vehicle bumper was 16.0 inches, and the height to the upper edge of the bumper was 34.5 inches. The height to the center of gravity of the trailer ballast was 71.2 inches. Tables B.1 and B.2 in Appendix B.3 give additional dimensions and information on the vehicle. The vehicle was directed into the installation under its own power using a cable guidance system that was released such that the vehicle was freewheeling and unrestrained just prior to impact.

Figure 3.3. TxDOT C412 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-2-1.

Figure 3.4. Test Vehicle before Test No. 469468-2-1.

3.4.4 Test Description

The test vehicle impacted the TxDOT C412 bridge rail 1.2 ft downstream of the joint in the parapet and deck at a speed of 50.8 mi/h and an angle of 15.0°. Table 3.1 lists events that occurred during Test No. 469468-2-1. Figures B.1 and B.2 in Appendix B.4 present sequential photographs during the test.

TIME (s)	EVENTS
0.000	Right front corner of tractor bumper contacts bridge rail
0.109	Tractor begins to redirect
0.204	Left front tire of tractor comes off ground
0.263	Tractor becomes parallel with the bridge rail
0.465	Left rear trailer tires come off the ground
0.514	Left front tire of tractor makes contact with ground
0.787	Trailer parallel with barrier
	Rear of trailer impacts bridge rail slightly upstream of initial impact
0.819	point
0.829	Barrier at maximum deflection after trailer contact
1.123	Maximum working width by trailer top

Table 3.1. Events during Test No. 469468-2-1.

For longitudinal barriers, it is desirable that the vehicle redirects and exits the bridge rail within the exit box criteria (not less than 65.6 ft downstream from loss of contact for heavy vehicles). The 36000V vehicle exited within the exit box criteria defined in *MASH*. After loss of contact with the barrier, the vehicle yawed counterclockwise and came to rest 206 ft downstream of the point of impact and 10 ft toward the field side.

3.4.5 Damage to Test Installation

Figures 3.5 through 3.7 show the damage to the TxDOT C412 bridge rail. The top concrete beam, some of the windows, and the lower wall had chips and spalls along the traffic face. A crack at the edge of the cantilever deck radiated in both directions from the joint (30 ft upstream and 17 ft downstream). Working width was 86.7 inches, and the height of maximum working width was 107.8 inches. Maximum dynamic deflection during the test was 1.2 inches, and there was no measurable maximum permanent deformation.

Figure 3.5. TxDOT C412 Bridge Rail/Test Vehicle after Test No. 469468-2-1.

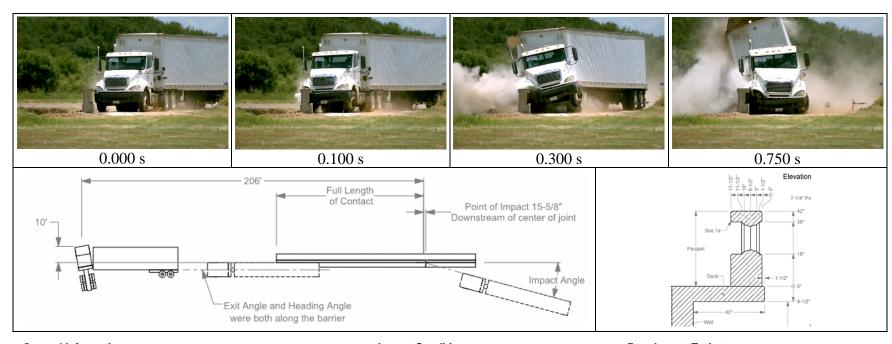
Figure 3.6. TxDOT C412 Bridge Rail after Test No. 469468-2-1.

Figure 3.7. Field Side of TxDOT C412 Bridge Rail after Test No. 469468-2-1.

3.4.6 Damage to Test Vehicle

Figure 3.8 shows the damage sustained by the vehicle. The front bumper, hood, front axle, right front U-bolts and springs, right front tire and rim, right front fuel tank, right rear outer tire and rim, and fifth wheel mount of the tractor were damaged. The right front and rear outer tires and rims, right side of the van box, and roof of the trailer were damaged. Maximum exterior crush to the vehicle was 14.0 inches in the side plane at the right front corner at bumper height. No occupant compartment deformation was observed. Figure 3.9 shows the interior of the vehicle.

Figure 3.8. Test Vehicle after Test No. 469468-2-1.


Figure 3.9. Interior of Test Vehicle for Test No. 469468-2-1.

3.4.7 Occupant Risk Factors

Data from the accelerometer, located at the fifth-wheel, were digitized for information purposes only and results are shown in Table 3.2. Figure 3.10 summarizes these data and other pertinent information from the test. Figure B.3 in Appendix B.5 shows the vehicle angular displacements, and Figures B.4 through B.12 in Appendix B.6 show acceleration versus time traces.

Table 3.2. Occupant Risk Factors for Test No. 469468-2-1.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	3.6 ft/s	at 0.2302 s on right side of interior
Lateral	14.4 ft/s	at 0.2302 s oil right side of interior
Occupant Ridedown Accelerations		
Longitudinal	10.1 g	0.2393–0.2493 s
Lateral	16.4 g	0.2473–0.2573 s
THIV	16.4 km/h	at 0.2299 s on right side of interior
11117	4.6 m/s	at 0.227) s on right side of interior
PHD	16.4 g	0.2474–0.2574 s
ASI	0.89	0.2615–0.3115 s
Maximum 50-ms Moving Average		
Longitudinal	−3.2 g	0.1993–0.2493 s
Lateral	-8.3 g	0.2461–0.2961 s
Vertical	9.0 g	1.1889–1.2389 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	15°	1.9482 s
Pitch	22°	1.4740 s
Yaw	42°	1.8995 s

General Information		Impact Conditions	Post-Impact Trajectory
Test Agency	Texas A&M Transportation Institute (TTI)	Speed 50.8 mi/h	Stopping Distance 206 ft downstream
Test Standard Test No	MASH Test 5-12	Angle 15.0°	10 ft twd field side
TTI Test No	469468-2-1	Location/Orientation 1.2 ft downstream of	Vehicle Stability
Test Date	2018-06-15	joint	Maximum Yaw Angle 42°
Test Article		Impact Severity464 ki-ft	Maximum Pitch Angle 22°
Type	Bridge Rail	Exit Conditions	Maximum Roll Angle 15°
Name		Speed 45.4°	Vehicle Snagging No
Installation Length	120 ft	Angle Along Barrier	Vehicle Pocketing No
Material or Key Elements	42-inch tall, 171/2 inches wide reinforced	Occupant Risk Values	Test Article Deflections
-	concrete parapet with 121/4 in wide posts	Longitudinal OIV 3.6 ft/s	Dynamic 1.2 inches
	and 5¾-in windows on 18-in centers	Lateral OIV 14.4 ft/s	Permanent None measurable
	between 18-in wall and 6-in top beam	Longitudinal Ridedown 10.1 g	Working Width 86.7 inches
Soil Type and Condition	Concrete deck, damp	Lateral Ridedown 16.4 g	Working Width Height 107.8 inches
Test Vehicle		THIV 16.4 km/h	Vehicle Damage
Type/Designation	36000V	PHD 16.4 g	VDS NA
Make and Model	2007 Freightliner CL120 with	ASI 0.89	CDC NA
	2003 Utility 53-ft trailer	Max. 0.050-s Average	Max. Exterior Deformation 14.0 inches
Curb	28,420 lb	Longitudinal −3.2 g	OCDI NA
Test Inertial	80,300 lb	Lateral −8.3 g	Max. Occupant Compartment
Dummy	No dummy	Vertical 9.0 g	Deformation None
Gross Static	80 300 lb	ŭ	

Figure 3.10. Summary of Results for MASH Test 5-12 on TxDOT C412 Bridge Rail.

3.4.8 Assessment of Results

Table 3.3 provides an assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 5-12.

3.5 CONCLUSIONS

The tractor-trailer was contained and redirected. The trailer rolled on top of the bridge rail and rode along the top until it exited the end of the installation. The trailer disconnected from the tractor, and the trailer rolled onto its side after exiting the installation. The trailer roll began to recover from its maximum prior to exiting the system.

The TxDOT C412 bridge rail performed acceptably according to *MASH* Test 5-12 evaluation criteria.

Table 3.3. Performance Evaluation Summary for MASH Test 5-12 on TxDOT C412 Bridge Rail.

Test Agency: Texas A&M Transportation Institute	Test No.: 469468-2-1	Test Date: 2018-06-15
MASH Test 5-12 Evaluation Criteria	Test Results	Assessment
Structural Adequacy		
A. Test article should contain and redirect the vehicle bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection the test article is acceptable	the 36000V vehicle. The vehicle did not penetrate, underride, or override the installation.	Pass
Occupant Risk		
D. Detached elements, fragments, or other debris f the test article should not penetrate or show pot for penetrating the occupant compartment, or p an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth a Section 5.3 and Appendix E of MASH.	from the test article were present to penetrate or show potential for penetrating the occupant compartment or to present hazard to others in the area. No occupant compartment deformation occurred	Pass
G. It is preferable, although not essential, that the remain upright during and after collision.	vehicle The 36000V vehicle remained upright during and after the collision event. Maximum roll was 15°.	Pass
Vehicle Trajectory		
For redirective devices, it is preferable that the version smoothly redirected and leave the barrier within the box criteria (not less than 65.6 ft for the 36000V vand should be documented.	he exit criteria.	Documentation only

CHAPTER 4: TXDOT C411 BRIDGE RAIL

4.1 BACKGROUND*

The T411 bridge rail, also known as the Texas Classic Rail, is an aesthetic concrete rail with windows and pilasters. It has an overall height of 32 inches with 18-inch tall windows. The C411 bridge rail is a 42-inch tall version of the T411 rail that meets pedestrian code requirements and accommodates both vehicle and pedestrian traffic. The windows in the C411 bridge rail are 24 inches tall.

TxDOT and TTI researchers determined that the C411 bridge rail is more critical to evaluate through crash testing than the T411 bridge rail. The taller 24-inch windows are more critical from a vehicle interaction and snagging standpoint, and the overall 42-inch rail height is more critical from an occupant interaction standpoint. If this more critical configuration meets *MASH* requirements, the less critical T411 would also be considered *MASH* compliant.

The C411 bridge rail was constructed on site by a subcontractor under TTI Proving Ground supervision. TTI Proving Ground performed the full *MASH* TL-2 test matrix on this rail system to fully evaluate vehicle and occupant interaction with the concrete rail system. The full-scale crash tests included *MASH* test designations 2-10 (small passenger car) and 2-11 (pickup truck). With the large window openings, it was considered necessary to evaluate the impact performance of the small car at the 25° impact angle prescribed by *MASH*. Because the rail height exceeds 33 inches, a crash dummy was placed in the pickup truck test per *MASH* requirements. TTI researchers also evaluated occupant trajectory and any head contact with the bridge rail system.

4.2 SYSTEM DETAILS

4.2.1 Test Article and Installation Details

The test installation was 75 ft long and consisted of a 42-inch tall reinforced concrete rail mounted on an 8-inch thick reinforced cantilevered concrete deck. The rail was 12 inches thick and consisted of 10-inch thick \times 12-inch wide posts alternated with 10-inch deep \times 24-inch tall \times 6-inch wide windows on 18-inch centers positioned between upper and lower concrete beams.

Figure 4.1 presents overall information on the TxDOT C411 bridge rail, and Figure 4.2 provides photographs of the installation. Appendix C.1 provides further details of the TxDOT C411 bridge rail.

4.2.2 Material Specifications

Appendix C.2 provides material certification documents for the materials used to install/construct the TxDOT C411 bridge rail.

TR No. 0-6946-R2 41 2019-03-27

^{*} The opinions/interpretations identified/expressed in Section 4.1 are outside the scope of TTI Proving Ground's A2LA Accreditation.

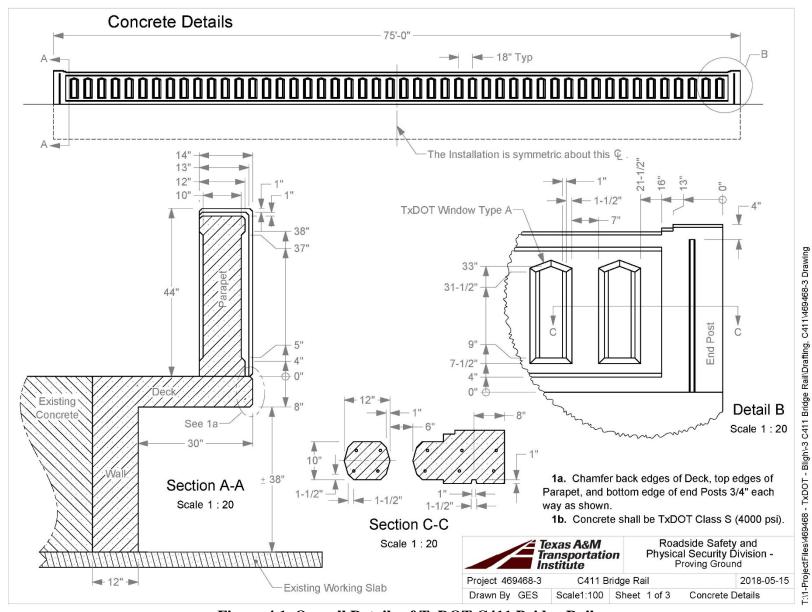


Figure 4.1. Overall Details of TxDOT C411 Bridge Rail.

Figure 4.2. TxDOT C411 Bridge Rail prior to Testing.

4.3 *MASH* TEST 2-10 (TEST NO. 469468-3-1)

4.3.1 Test Designation and Actual Impact Conditions

MASH Test 2-10 involves an 1100C vehicle weighing 2420 lb ± 55 lb impacting the CIP of the bridge rail at an impact speed of 44 mi/h ± 2.5 mi/h and an angle of $25^{\circ} \pm 1.5^{\circ}$. The target CIP for MASH Test 2-10 on the TxDOT C411 was 3.3 ft ± 1 ft upstream of the downstream edge of the 30th parapet window (see Figure 4.3).

The 2010 Kia Rio^* used in the test weighed 2447 lb, and the actual impact speed and angle were 44.2 mi/h and 23.9°, respectively. The actual impact point was 2.7 ft upstream of the downstream edge of the 30th parapet window. Minimum target IS was 25 kip-ft, and actual IS was 26 kip-ft.

TR No. 0-6946-R2 43 2019-03-27

^{*} The 2010 model vehicle used is older than the 6-year age noted in *MASH*, and was selected based upon availability. An older model vehicle is permitted by AASHTO as long as it is otherwise *MASH* compliant. Other than the vehicle's year model, this 2010 model vehicle met the *MASH* requirements.

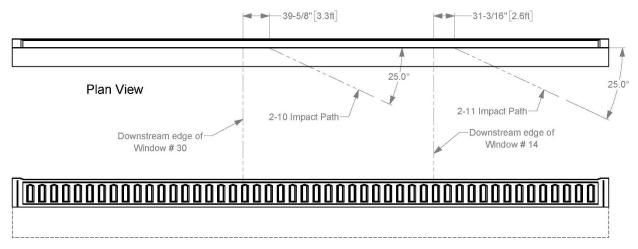


Figure 4.3. Target CIPs for Test No. 469468-3-1 and 3-2.

4.3.2 Weather Conditions

MASH Test 2-10 on the TxDOT C411 bridge rail was performed on the morning of May 24, 2018. Weather conditions at the time of testing were as follows: wind speed: 3 mi/h; wind direction: 173° (vehicle was traveling in a southwesterly direction); temperature: 82°F; relative humidity: 79 percent.

4.3.3 Test Vehicle

Figures 4.4 and 4.5 show the 2010 Kia Rio used for the crash test. The vehicle's test inertia weight was 2447 lb, and its gross static weight was 2612 lb. The height to the lower edge of the vehicle bumper was 7.75 inches, and the height to the upper edge of the bumper was 21.5 inches. Table C.1 in Appendix C.3.1 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 4.4. TxDOT C411 Bridge Rail/Test Vehicle Geometrics for Test No. 469468-3-1.

Figure 4.5. Test Vehicle before Test No. 469468-3-1.

4.3.4 Test Description

The test vehicle impacted the C411 bridge rail 2.7 ft upstream of the downstream edge of the 30th parapet window at a speed of 44.2 mi/h and an angle of 23.9°. Table 4.1 lists events that occurred during Test No. 469468-3-1. Figures C.1 and C.2 in Appendix C.3.2 present sequential photographs during the test.

	8
TIME (s)	EVENTS
0.000	Right front corner of vehicle bumper contacts bridge rail
0.042	Vehicle begins to redirect
0.072	Left rear tire on vehicle lifts off pavement
0.186	Vehicle loses contact with bridge rail traveling at 23.8 mi/h and
	trajectory/heading angle of 7.8°/28.9°
0.376	Left rear tire on vehicle contacts pavement
0.759	Vehicle contacts bridge rail a second time

Table 4.1. Events during Test No. 469468-3-1.

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The 1100C vehicle exited within the exit box criteria defined in *MASH*. After loss of contact with the barrier, the vehicle yawed clockwise and came to rest 39 ft downstream of the point of impact.

4.3.5 Damage to Test Installation

Figure 4.6 shows the damage to the TxDOT C411 bridge rail. The bridge rail received mostly cosmetic damage in the form of scrapes and tire marks from post 28 through post 31. Working width was 12.0 inches (the width of the barrier), and the height of maximum working width was 42.0 inches (the height of the barrier). No measurable dynamic deflection or permanent deformation occurred.

Figure 4.6. TxDOT C411 Bridge Rail after Test No. 469468-3-1.

4.3.6 Damage to Test Vehicle

Figure 4.7 shows the damage sustained by the vehicle. The front bumper, hood, radiator and support, right front tire and rim, right front strut and tower, right front fender, and right front door were damaged. The windshield was cracked in the lower right corner due to the corner of the hood being pushed into it. No holes or tears were observed in the windshield. Maximum exterior crush to the vehicle was 14.0 inches in the front plane at the right front corner at bumper height. Maximum occupant compartment deformation was 4.0 inches in the right side fire wall/toe pan area. Figure 4.8 shows the interior of the vehicle. Tables C.2 and C.3 in Appendix C.3.1 provide exterior crush and occupant compartment measurements.

Figure 4.7. Test Vehicle after Test No. 469468-3-1.

Figure 4.8. Interior of Test Vehicle after Test No. 469468-3-1.

4.3.7 Occupant Risk Factors

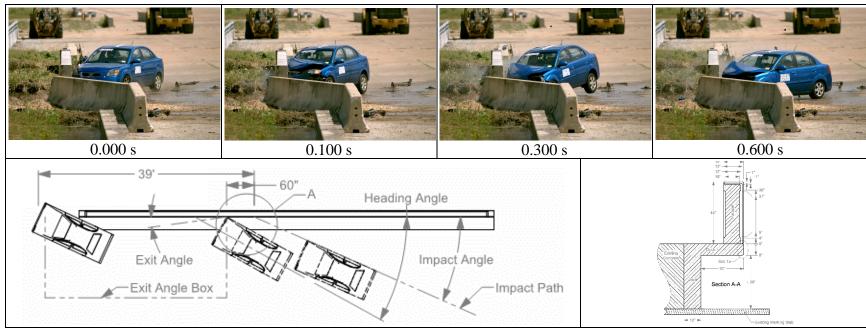

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk and results are shown in Table 4.2. Figure 4.9 summarizes these data and other pertinent information from the test. Figure C.3 in Appendix C.3.3 shows the vehicle angular displacements, and Figures C.4 through C.9 in Appendix C.3.4 show acceleration versus time traces.

Table 4.2. Occupant Risk Factors for Test No. 469468-3-1.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	35.1 ft/s	at 0.1002 s on right side of interior
Lateral	17.4 ft/s	at 0.1092 s on right side of interior
Occupant Ridedown Accelerations		
Longitudinal	4.9 g	0.7757–0.7857 s
Lateral	5.4 g	0.1114–0.1214 s
THIV	42.7 km/h 11.9 m/s	at 0.1119 s on front of interior
PHD	5.6 g	0.1119–0.1219 s
ASI	1.78	0.0574–0.1074 s
Maximum 50-ms Moving Average		
Longitudinal	−16.4 g	0.0305–0.0805 s
Lateral	− 8.9 g	0.0256–0.0756 s
Vertical	−3.4 g	0.0565–0.1065 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	26°	2.0000 s
Pitch	13°	1.3813 s
Yaw	23°	1.1686 s

4.3.8 Assessment of Results

Table 4.3 provides an assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 2-10.

Test Standard Test No TTI Test No Test Date Test Article Type Name Installation Length	469468-3-1 2018-05-24 Longitudinal Barrier - Bridge Rail TxDOT C411 Bridge Rail	Impact Conditions Speed	Post-Impact Trajectory Stopping Distance
Soil Type and Condition Test Vehicle Type/Designation Make and Model Curb Test Inertial Dummy Gross Static	1100C 2010 Kia Rio 2490 lb 2447 lb 165 lb	THIV	Vehicle Damage 02-RFQ-5 VDS 02-RFQ-5 CDC 02FREW5 Max. Exterior Deformation 14.0 inches OCDI RF1130000 Max. Occupant Compartment 4.0 inches

Figure 4.9. Summary of Results for MASH Test 2-10 on TxDOT C411 Bridge Rail.

 $Table \ 4.3. \ Performance \ Evaluation \ Summary \ for \ \textit{MASH} \ Test \ 2-10 \ on \ the \ TxDOT \ C411 \ Bridge \ Rail.$

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 469468-3-1	Test Date: 2018-05-24
	MASH Test 2-10 Evaluation Criteria	Test Results	Assessment
Stru A.	actural Adequacy Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The TxDOT C411 bridge rail contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. No measurable dynamic deflection or permanent deformation was observed.	Pass
Occ D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. Maximum occupant compartment deformation was 4.0 inches in the right firewall area.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 26° and 13°, respectively.	Pass
Н.	Longitudinal and lateral occupant impact velocities should fall below the preferred value of 30 ft/s, or at least below the maximum allowable value of 40 ft/s.	Longitudinal OIV was 35.1 ft/s, and lateral OIV was 17.4 ft/s.	Pass
I.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 Gs, or at least below the maximum allowable value of 20.49 Gs.	Maximum longitudinal 10-ms occupant ridedown was 4.9 g, and maximum lateral 10-ms occupant ridedown was 5.4 g.	Pass
Vel	For redirective devices, it is preferable that the vehicle be smoothly redirected and leave the barrier within the exit box criteria (not less than 32.8 ft for the 1100C and 2270P vehicles) and should be documented.	The 1100C vehicle exited within the exit box criteria.	Documentation only

4.4 *MASH* TEST 2-11 (TEST NO. 469468-3-2)

4.4.1 Test Designation and Actual Impact Conditions

MASH Test 2-11 involves a 2270P vehicle weighing 5000 lb ± 110 lb impacting the CIP of the bridge rail at an impact speed of 44 mi/h ± 2.5 mi/h and an angle of $25^{\circ} \pm 1.5^{\circ}$. The target CIP for MASH Test 2-11 on the TxDOT C411 was 2.6 ft ± 1 ft upstream of the downstream edge of the 14^{th} parapet window (see Figure 4.3).

The 2013 RAM 1500 pickup used in the test weighed 5012 lb, and the actual impact speed and angle were 45.0 mi/h and 24.4 $^{\circ}$, respectively. The actual impact point was 2.2 ft upstream of the downstream edge of the 14th parapet window. Minimum target IS was 52 kip-ft, and actual IS was 58 kip-ft.

4.4.2 Weather Conditions

MASH Test 2-11 on the TxDOT C411 bridge rail was performed on the morning of May 22, 2018. Weather conditions at the time of testing were as follows: wind speed: 3 mi/h; wind direction: 183° (vehicle was traveling in a southwesterly direction); temperature: 82°F; relative humidity: 79 percent.

4.4.3 Test Vehicle

Figures 4.10 and 4.11 show the 2013 RAM 1500 pickup used for the crash test. The vehicle's test inertia weight was 5012 lb, and its gross static weight was 5177 lb. The height to the lower edge of the vehicle bumper was 11.75 inches, and the height to the upper edge of the bumper was 27.0 inches. The height to the vehicle's center of gravity was 28.9 inches. Tables C.4 and C.5 in Appendix C.4.1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 4.10. TxDOT C411 Bride Rail/Test Vehicle Geometrics for Test No. 469468-3-2.

Figure 4.11. Test Vehicle before Test No. 469468-3-2.

4.4.4 Test Description

The test vehicle impacted the C411 bridge rail 2.2 ft upstream of the downstream edge of the 14th parapet window at a speed of 45.0 mi/h and an angle of 24.4°. Table 3.4 lists events that occurred during Test No. 469468-3-2. Figures C.10 and C.11 in Appendix C.4.2 present sequential photographs during the test.

	8
TIME (s)	EVENTS
0.000	Right front corner of vehicle bumper contacts bridge rail
0.039	Vehicle begins to redirect
0.219	Vehicle loses contact with bridge rail
0.313	Vehicle becomes parallel to, but not in contact with bridge rail
0.313	(approximately 5 inches away)
0.343	Right rear bed contacts bridge rail
0.482	Vehicle loses contact with bridge rail while traveling at 29.9 mi/h and
0.462	trajectory/heading angle of 5.9°/5.6°
1.182	Left front of vehicle recontacts bridge rail
1.936	Vehicle contacts secondary safety barrier that was not part of test

Table 4.4. Events during Test No. 469468-3-2.

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The 2270P vehicle exited within the exit box criteria defined in *MASH*. After loss of contact with the barrier, the vehicle yawed counterclockwise and came to rest 85 ft downstream of the point of impact and 6 ft toward traffic lanes.

4.4.5 Damage to Test Installation

Figure 4.12 shows the damage to the TxDOT C411 bridge rail. The bridge rail received mostly cosmetic damage consisting of scrapes and tire marks from post 14 through post 17. Working width was 12.0 inches (the width of the barrier), and the height of maximum working

width was 42.0 inches (the height of the barrier). No measurable dynamic deflection or permanent deformation occurred.

Figure 4.12. TxDOT C411 Bridge Rail after Test No. 469468-3-2.

4.4.6 Damage to Test Vehicle

Figure 4.13 shows the damage sustained by the vehicle. The front bumper, hood, grill, right front fender, right lower A-arm, right upper and lower ball joints, right tie rod end, right front tire and rim, right front door, right rear exterior bed, and rear bumper were damaged. The windshield was cracked at the right lower edge due to slight contact by the hood. Maximum exterior crush to the vehicle was 12.0 inches in the side plane at the right front corner at bumper

height. Maximum occupant compartment deformation was 4.0 inches in the firewall area. Figure 4.14 shows the interior of the vehicle. Tables C.6 and C.7 in Appendix C.4.1 provide exterior crush and occupant compartment measurements.

Figure 4.13. Test Vehicle after Test No. 469468-3-2.

Figure 4.14. Interior of Test Vehicle after Test No. 469468-3-2.

4.4.7 Occupant Risk Factors

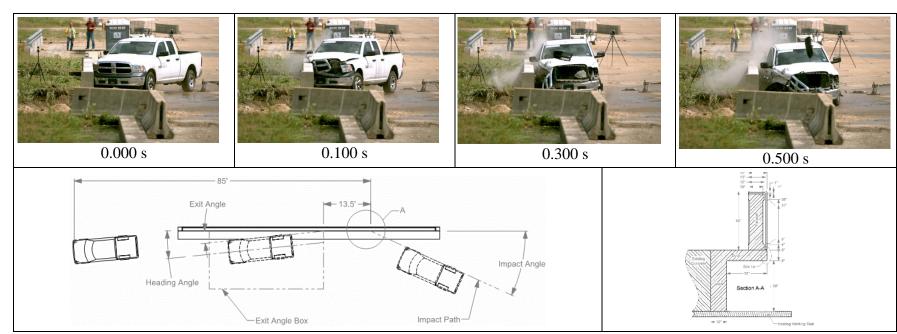

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk, and results are shown in Table 4.5. Figure 4.15 summarizes these data and other pertinent information from the test. Figure C.12 in Appendix C.4.3 shows the vehicle angular displacements, and Figures C.13 through C.18 in Appendix C.4.4 show acceleration versus time traces.

Table 4.5. Occupant Risk Factors for Test No. 469468-3-2.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	20.0 ft/s	at 0.1175 s on right side of interior
Lateral	18.0 ft/s	at 0.1173 s on right side of interior
Occupant Ridedown Accelerations		
Longitudinal	3.8 g	0.1437–0.1537 s
Lateral	5.0 g	0.3941-0.4041 s
THIV	29.3 km/h 8.1 m/s	at 0.1138 s on right side of interior
PHD	5.6 g	0.3941-0.4041 s
ASI	1.27	0.0692-0.1192 s
Maximum 50-ms Moving Average		
Longitudinal	-8.4 g	0.0451–0.0951 s
Lateral	−9.4 g	0.0490-0.0990 s
Vertical	2.5 g	0.1027–0.1527 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	7 °	0.3944 s
Pitch	3 °	0.9749 s
Yaw	31°	0.4107 s

4.4.8 Assessment of Results

Table 4.6 provides an assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 2-11.

General Information Test AgencyTest Standard Test No	Texas A&M Transportation Institute (TTI) MASH Test 2-11	Impact Conditions Speed	Post-Impact Trajectory Stopping Distance
TTI Test No	469468-3-2	Location/Orientation 2.2 ft upstream of	Vehicle Stability
Test Date Test Article	2018-05-22	14 th parapet window Impact Severity58 kip-ft	Maximum Yaw Angle 31° Maximum Pitch Angle 3°
	Longitudinal Barrier - Bridge Rail	Exit Conditions	Maximum Roll Angle 7°
Name	•	Speed	Vehicle Snagging Slight
Installation Length Material or Key Elements	42-inch tall x 12 inches thick reinforced	Trajectory/Heading Angle 5.9°/5.6° Occupant Risk Values	Vehicle Pocketing No Test Article Deflections
,	concrete wall w/series of 10- deep x 24-	Longitudinal OIV20.0 ft/s	Dynamic
	inch tall × 6-inch wide windows on 18-inch centers	Lateral OIV18.0 ft/s Longitudinal Ridedown3.8 g	Permanent
Soil Type and Condition		Lateral Ridedown 5.0 g	Height of Working Width 42.0 inches
Test Vehicle Type/Designation	2270P	THIV29.3 km/h PHD5.6 g	Vehicle Damage VDS 02-RFQ-3
Make and Model		ASI1.27	CDC
Curb		Max. 0.050-s Average	Max. Exterior Deformation 12.0 inches
Test Inertial Dummy		Longitudinal −8.4 g Lateral −9.4 g	OCDIRF1030000 Max. Occupant Compartment
Gross Static		Vertical2.5 g	Deformation

Figure 4.15. Summary of Results for MASH Test 2-11 on TxDOT C411 Bridge Rail.

Table 4.6. Performance Evaluation Summary for MASH Test 2-11 on TxDOT C411 Bridge Rail.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 469468-3-2	Test Date: 2018-05-22
	MASH Test 2-11 Evaluation Criteria	Test Results	Assessment
Stru A.	nctural Adequacy Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The TxDOT C411 bridge rail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. No measurable dynamic deflection or permanent deformation was observed.	Pass
Occ D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant	No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. Maximum occupant compartment deformation was	Pass
F.	compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	4.0 inches in the right firewall area. The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 7° and 3°, respectively.	Pass
Н.	Longitudinal and lateral occupant impact velocities should fall below the preferred value of 30 ft/s, or at least below the maximum allowable value of 40 ft/s.	Longitudinal OIV was 20.0 ft/s, and lateral OIV was 18.0 ft/s.	Pass
I.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 Gs, or at least below the maximum allowable value of 20.49 Gs.	Maximum longitudinal 10-ms occupant ridedown was 3.8 g, and maximum lateral 10-ms occupant ridedown was 5.0 g.	Pass
Veł	For redirective devices, it is preferable that the vehicle be smoothly redirected and leave the barrier within the exit box criteria (not less than 32.8 ft for the 1100C and 2270P vehicles), and should be documented.	The 2270P vehicle exited within the exit box criteria.	Documentation only

4.5 CONCLUSIONS

The TxDOT C411 bridge rail contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. No dynamic deflection or permanent deformation was observed. No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. Maximum occupant compartment deformation was 4.0 inches in the right firewall area. The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 26° and 13°, respectively. Occupant risk factors were within the allowable limits specified in *MASH*. The 1100C vehicle exited within the exit box criteria.

The TxDOT C411 bridge rail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. No measurable dynamic deflection or permanent deformation was observed. No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. Maximum occupant compartment deformation was 4.0 inches in the right firewall area. The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 7° and 3°, respectively. Occupant risk factors were within the preferred limits specified in *MASH*. The 2270P vehicle exited within the exit box criteria.

The TxDOT C411 bridge rail performed acceptably according to *MASH* TL-2 evaluation criteria as shown in Table 4.7.

Table 4.7. Assessment Summary for MASH TL-2 Tests on TxDOT C411 Bridge Rail.

Evaluation Factors	Evaluation Criteria	Test No. 469468-3-1	Test No. 469468-3-2
Structural Adequacy A		S	S
	D	S	S
Occupant	F	S	S
Risk	Н	S	S
	I	S	S
Test No.		MASH Test 2-10	MASH Test 2-11
Pass/Fail		Pass	Pass

S = Satisfactory U = Unsatisfactory N/A = Not Applicable

CHAPTER 5: TXDOT T1W BRIDGE RAIL

5.1 BACKGROUND

The TxDOT T1W bridge rail is a variation of a rail initially developed by the Wyoming Department of Transportation (WYDOT). The bridge rail is a 32-inch tall rail that consists of two rectangular tubular steel rail elements attached to fabricated steel posts mounted on a 9-inch tall concrete curb. The T1W bridge rail was fabricated and installed by a subcontractor under TTI Proving Ground supervision. An additional length of deck and curb was built to accommodate *MASH* test designation 4-12 on the TxDOT C1W bridge rail to be performed in Phase III. Construction of the longer length of rail during initial mobilization for the T1W rail provided overall cost savings to the project. The TxDOT T1W rail was evaluated in accordance with *MASH* TL-3 requirements.

The full *MASH* TL-3 test matrix was performed on the T1W rail system to fully evaluate any vehicle interaction and snagging on the steel posts and longitudinal rail splices, and any occupant contact with the tubular rail members. Test designations 3-10 (small passenger car) and 3-11 (pickup truck) were performed. Both tests were performed because the relationships between vehicle snagging severity and rail geometrics (such as clear opening between rail elements, post setback distance, and rail contact surface) are not established for the new *MASH* design test vehicles or for the small car at the new 25° impact angle prescribed by *MASH*.

5.2 SYSTEM DETAILS

5.2.1 Test Article and Installation Details

The TxDOT T1W test installation consisted of two rectangular tubular steel rail elements attached to fabricated steel posts mounted on a concrete curb that was cast on an 8-inch reinforced cantilevered concrete deck. The curb was 9 inches tall and 14 inches wide, and had embedded anchor bolts for attachment of the steel posts. The posts were spaced on 9 ft centers. The total height of the rail was 32 inches above the deck. Two joints extended through the curb and one of the joints continued through the cantilever deck. The joint in the parapet was for geometric evaluation of the passenger car during Test 3-10 (the 1100C test location). The other joints that extended through both the parapet and deck provided evaluation of both rail geometry and structural adequacy during Test 3-11.

Figure 5.1 presents overall information on the TxDOT T1W bridge rail, and Figure 5.2 provides photographs of the installation. Appendix D.1 provides further details of the TxDOT T1W bridge rail.

5.2.2 Material Specifications

Appendix D.2 provides material certification documents for the materials used to install/construct the TxDOT T1W bridge rail.

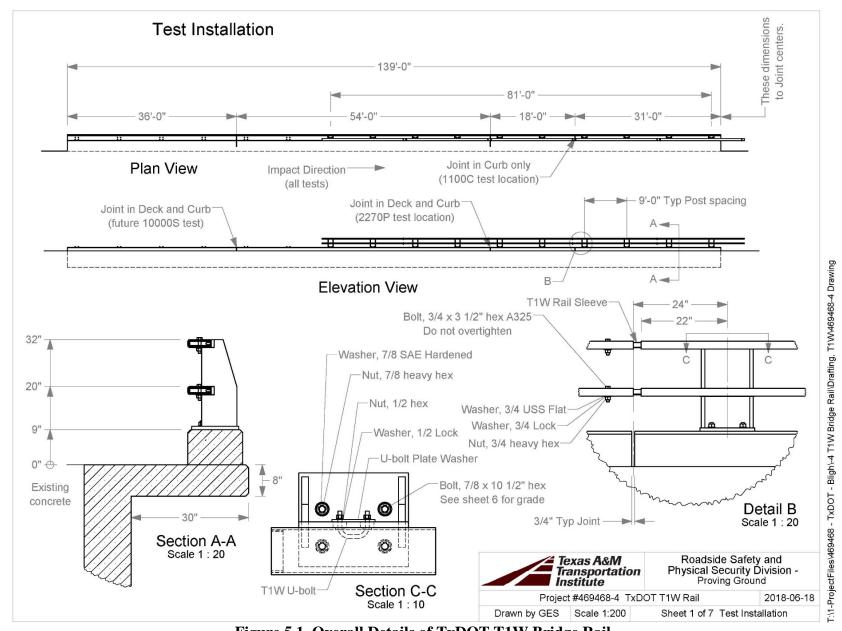


Figure 5.1. Overall Details of TxDOT T1W Bridge Rail.

Figure 5.2. TxDOT T1W Bridge Rail prior to Testing.

5.3 MASH TEST 3-10 (TEST NO. 469468-4-1)

5.3.1 Test Designation and Actual Impact Conditions

MASH Test 3-10 involves an 1100C vehicle weighing 2420 lb ± 55 lb impacting the CIP of the bridge rail at an impact speed of 62 mi/h ± 2.5 mi/h and an angle of 25° ± 1.5 °. The target CIP for MASH Test 3-10 on the TxDOT T1W was 3.6 ft ± 1 ft upstream of the joint in the curb between posts 6 and 7 (see Figure 5.3).

The 2009 Kia Rio^* used in the test weighed 2430 lb, and the actual impact speed and angle were 61.9 mi/h and 24.8°, respectively. The actual impact point was 3.9 ft upstream of the joint in the curb. Minimum target IS was 51 kip-ft, and actual IS was 55 kip-ft.

5.3.2 Weather Conditions

MASH Test 3-10 on the TxDOT T1W bridge rail was performed on the morning of August 3, 2018. Weather conditions at the time of testing were as follows: wind speed: 2 mi/h;

^{*} The 2009 model vehicle used is older than the 6-year age noted in *MASH*, and was selected based upon availability. An older model vehicle is permitted by AASHTO as long as it is otherwise *MASH* compliant. Other than the vehicle's year model, this 2009 model vehicle met the *MASH* requirements.

wind direction: 184° (vehicle was traveling in a northwesterly direction); temperature: 89°F; relative humidity: 55 percent.

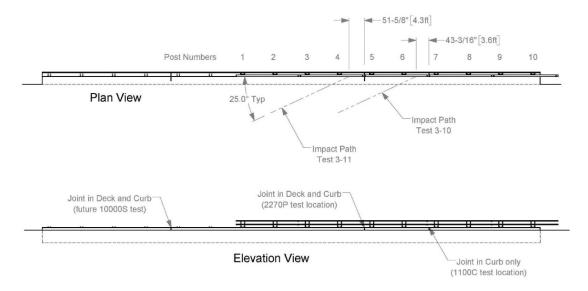


Figure 5.3. Target CIPs for Test Nos. 469468-4-1 and 4-2.

5.3.3 Test Vehicle

Figures 5.4 and 5.5 show the 2009 Kia Rio used for the crash test. The vehicle's test inertia weight was 2430 lb, and its gross static weight was 2595 lb. The height to the lower edge of the vehicle bumper was 7.75 inches, and the height to the upper edge of the bumper was 21.5 inches. Table D.1 in Appendix D.3.1 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 5.4. TxDOT T1W Bridge Rail/Test Vehicle Geometrics for Test No. 469468-4-1.

Figure 5.5. Test Vehicle before Test No. 469468-4-1.

5.3.4 Test Description

The test vehicle impacted the T1W bridge rail 3.9 ft upstream of the joint in the curb between posts 6 and 7 at a speed of 61.9 mi/h and an angle of 24.8°. Table 5.1 lists events that occurred during Test No. 469468-4-1. Figures D.1 and D.2 in Appendix D.3.2 present sequential photographs during the test.

TIME (s)	EVENTS
0.000	Left front corner of vehicle bumper contacts bridge rail
0.036	Vehicle begins to redirect
0.055	Left front quarter panel of vehicle is peeled back by post 7
0.082	Dummy breaks driver side window
0.093	Right front tire loses contact with pavement
0.109	Right rear tire loses contact with pavement
0.164	Vehicle begins traveling parallel with bridge rail
0.196	Rear left side of vehicle impacts rail
0.292	Right front tire regains contact with ground
	Vehicle loses contact with bridge rail at 47.7 mi/h and
0.304	trajectory/heading angle of 7.5°/9.5°, respectively

Table 5.1. Events during Test No. 469468-4-1.

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The 1100C vehicle exited within the exit box criteria defined in *MASH*. After loss of contact with the barrier, the vehicle came to rest 154 ft downstream of the point of impact and 16 ft toward traffic lanes.

5.3.5 Damage to Test Installation

Figure 5.6 shows the damage to the TxDOT T1W bridge rail. The bridge rail received mostly cosmetic damage consisting of scrapes and tire marks in the impact area and small cracks on the field side of the curb at post 7. Working width was 15.3 inches, and the height of

maximum working width was 25.0 inches. Maximum dynamic deflection was 1.1 inches, and there was no permanent deformation.

Figure 5.6. TxDOT T1W Bridge Rail after Test No. 469468-4-1.

5.3.6 Damage to Test Vehicle

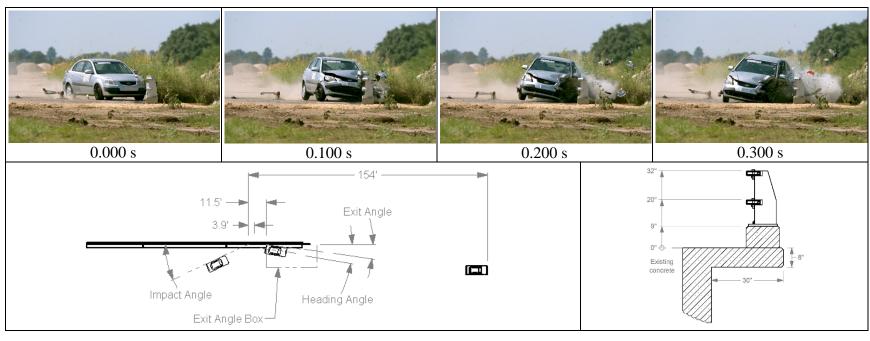
Figure 5.7 shows the damage sustained by the vehicle. The front bumper, hood, radiator and support, left strut and tower, left front tire and rim, left front door and window glass, left rear door, and left rear quarter panel were damaged. The windshield was cracked in the lower left corner and the cracks radiated toward the center. No holes or tears were observed in the windshield. Maximum exterior crush to the vehicle was 10.0 inches in the side plane at the left

front corner at bumper height. Maximum occupant compartment deformation was 3.5 inches in the left side fire wall/toe pan area. Figure 5.8 shows the interior of the vehicle. Tables D.2 and D.3 in Appendix D.3.1 provide exterior crush and occupant compartment measurements.

Figure 5.7. Test Vehicle after Test No. 469468-4-1.

Figure 5.8. Interior of Test Vehicle after Test No. 469468-4-1.

5.3.7 Occupant Risk Factors


Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk, and results are shown in Table 5.2. Figure 5.9 summarizes these data and other pertinent information from the test. Figure D.3 in Appendix D.3.3 shows the vehicle angular displacements, and Figures D.4 through D.9 in Appendix D.3.4 show acceleration versus time traces.

5.3.8 Assessment of Results

Table 5.3 assesses the test based on the applicable safety evaluation criteria for *MASH* Test 3-10.

Table 5.2. Occupant Risk Factors for Test No. 469468-4-1.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	24.0 ft/s	0.0725 a on left side of interior
Lateral	31.8 ft/s	0.0735 s on left side of interior
Occupant Ridedown Accelerations		
Longitudinal	5.4 g	0.0751–0.0851 s
Lateral	5.7 g	0.2152–0.2252 s
THIV	43.4 km/h 12.1 m/s	at 0.0718 s on left side of interior
PHD	8.1 g	0.0718-0.0818 s
ASI	2.69	0.0446-0.0946 s
Maximum 50-ms Moving Average		
Longitudinal	−13.7 g	0.0275–0.0775 s
Lateral	19.2 g	0.0185–0.0685 s
Vertical	-2.8 g	0.0007–0.0507 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	12°	0.7059 s
Pitch	4 °	0.7500 s
Yaw	44°	0.5412 s

Exit Angle Box →		44
General Information	Impact Conditions	Post-Impact Trajectory
Test Agency Texas A&M Transportation Institute	(TTI) Speed 61.9 mi/h	Stopping Distance 154 ft downstream
Test Standard Test No MASH Test 3-10	Angle24.8°	16 ft toward traffic
TTI Test No 469468-4-1	Location/Orientation 3.9 ft upstream of	
Test Date 2018-08-03	curb joint	Maximum Yaw Angle 44°
Test Article	Impact Severity 55 kip-ft	Maximum Pitch Angle 4°
Type Longitudinal Barrier - Bridge Rail	Exit Conditions	Maximum Roll Angle 12°
Name TxDOT T1W Bridge Rail	Speed 47.8 mi/h	Vehicle Snagging Slight
Installation Length 139 ft	Exit Trajectory/Heading 7.5°/9.5°	Vehicle Pocketing No
Material or Key Elements 32-in tall rail with two steel rails attac		Test Article Deflections
to fabricated steel posts spaced at 9		Dynamic 1.1 inches
mounted on a 9-in tall x 14-in wide c	urb Lateral OIV31.8 ft/s	Permanent None measurable
cast on an 8-in thick concrete deck.	Longitudinal Ridedown 5.4 g	Working Width 15.3 inches
Soil Type and Condition Concrete Deck, Damp	Lateral Ridedown 5.7 g	Height of Working Width 25.0 inches
Test Vehicle	THIV 43.4 km/h	Vehicle Damage
Type/Designation 1100C	PHD 8.1 g	VDS11LFQ4
Make and Model 2009 Kia Rio	ASI 2.69	CDC 11FLEW4
Curb 2464 lb	Max. 0.050-s Average	Max. Exterior Deformation 10.0 inches
Test Inertial 2430 lb	Longitudinal13.7 g	OCDILF0030000
Dummy 165 lb	Lateral 19.2 g	Max. Occupant Compartment
Gross Static 2595 lb	Vertical2.8 g	Deformation 3.5 inches

Figure 5.9. Summary of Results for MASH Test 3-10 on TxDOT T1W Bridge Rail.

 $Table \ 5.3. \ Performance \ Evaluation \ Summary \ for \ \textit{MASH} \ Test \ 3-10 \ on \ the \ TxDOT \ T1W \ Bridge \ Rail.$

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 469468-4-1	Test Date: 2018-08-03
	MASH Test 3-10 Evaluation Criteria	Test Results	Assessment
Stru A.	Ictural Adequacy Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The TxDOT T1W bridge rail contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 1.1 inches.	Pass
Occ D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. Maximum occupant compartment deformation was 3.5 inches in the left firewall area.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 12° and 4°, respectively.	Pass
Н.	Longitudinal and lateral occupant impact velocities should fall below the preferred value of 30 ft/s, or at least below the maximum allowable value of 40 ft/s.	Longitudinal OIV was 24.0 ft/s, and lateral OIV was 31.8 ft/s.	Pass
I.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 Gs, or at least below the maximum allowable value of 20.49 Gs.	Maximum longitudinal 10-ms occupant ridedown was 5.4 g, and maximum lateral 10-ms occupant ridedown was 5.7 g.	Pass
Vel	For redirective devices, it is preferable that the vehicle be smoothly redirected and leave the barrier within the exit box criteria (not less than 32.8 ft for the 1100C and 2270P vehicles) and should be documented.	The 1100C vehicle exited within the exit box criteria.	Documentation only

5.4 *MASH* TEST 3-11 (TEST NO. 469468-4-2)

5.4.1 Test Designation and Actual Impact Conditions

MASH Test 3-11 involves a 2270P vehicle weighing 5000 lb ± 110 lb impacting the CIP of the bridge rail at an impact speed of 62 mi/h ± 2.5 mi/h and an angle of 25° ± 1.5 °. The target CIP for MASH Test 3-11 on the TxDOT T1W was 4.3 ft upstream of the joint in the deck and curb between posts 4 and 5 (see Figure 5.3).

The 2012 Dodge RAM 1500 pickup used in the test weighed 5002 lb, and the actual impact speed and angle were 62.0 mi/h and 25.0° , respectively. The actual impact point was 5.0 ft upstream of the joint in the deck and curb. Minimum target impact severity was 106 kip-ft, and actual IS was 115 kip-ft.

5.4.2 Weather Conditions

MASH Test 3-11 on the TxDOT T1W bridge rail was performed on the morning of August 1, 2018. Weather conditions at the time of testing were as follows: wind speed: 4 mi/h; wind direction: 327° (vehicle was traveling in a northwesterly direction); temperature: 87°F; relative humidity: 50 percent.

5.4.3 Test Vehicle

Figures 5.10 and 5.11 show the 2012 Dodge RAM 1500 pickup used for the crash test. The vehicle's test inertia weight was 5002 lb, and its gross static weight was 5002 lb. The height to the lower edge of the vehicle bumper was 11.75 inches, and the height to the upper edge of the bumper was 27.0 inches. The height to the vehicle's center of gravity was 28.0 inches. Tables D.4 and D.5 in Appendix D.4.1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 5.10. TxDOT T1W Bridge Rail/Test Vehicle Geometrics for Test No. 469468-4-2.

Figure 5.11. Test Vehicle before Test No. 469468-4-2.

5.4.4 Test Description

The test vehicle impacted the T1W bridge rail 5.0 ft upstream of the joint in the deck and curb at a speed of 62.0 mi/h and an angle of 25.0°. Table 5.4 lists events that occurred during Test No. 469468-4-2. Figures D.10 and D.11 in Appendix D.4.2 present sequential photographs during the test.

Table 5.4. Events during Test 110. 407400-4-2.			
TIME (s)	EVENTS		
0.000	Left front corner of vehicle bumper contacts bridge rail		
0.037	Vehicle begins to redirect		
0.102	Maximum dynamic deflection of rail of 13.0 inches		
0.150	Right rear tire leaves the pavement		
0.171	Right front tire leaves the pavement		
0.194	Rear of vehicle contacts rail		
0.196	Vehicle becomes parallel with bridge rail		
0.369	Vehicle loses contact with bridge rail while traveling at 47.4 mi/h and		
	trajectory/heading angle of 8.5°/9.2°		
0.431	Right front tire recontacts pavement		

Table 5.4. Events during Test No. 469468-4-2.

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The 2270P vehicle exited within the exit box criteria defined in *MASH*. After loss of contact with the barrier, the vehicle yawed counterclockwise and came to rest 143 ft downstream of the point of impact and 10 ft toward traffic lanes.

5.4.5 Damage to Test Installation

Figures 5.12 and 5.13 show the damage to the TxDOT T1W bridge rail. The curb showed slight cracking at post 4 on the field side. The bottom splice bolt failed at the splice upstream of post 5, and the curb and deck were cracked on the field side. The curb at post 5 was deflected toward the field side 1.0 inch, and the deck was pushed down approximately 0.75 inch from the joint to 2 ft downstream of post 5. The U-bolt on the bottom rail of post 6 failed, but no concrete

damage was observed. Working width was 19.3 inches, and the height of maximum working width was 43.2 inches. Maximum dynamic deflection was 13.0 inches, and maximum permanent deformation was 3.0 inches.

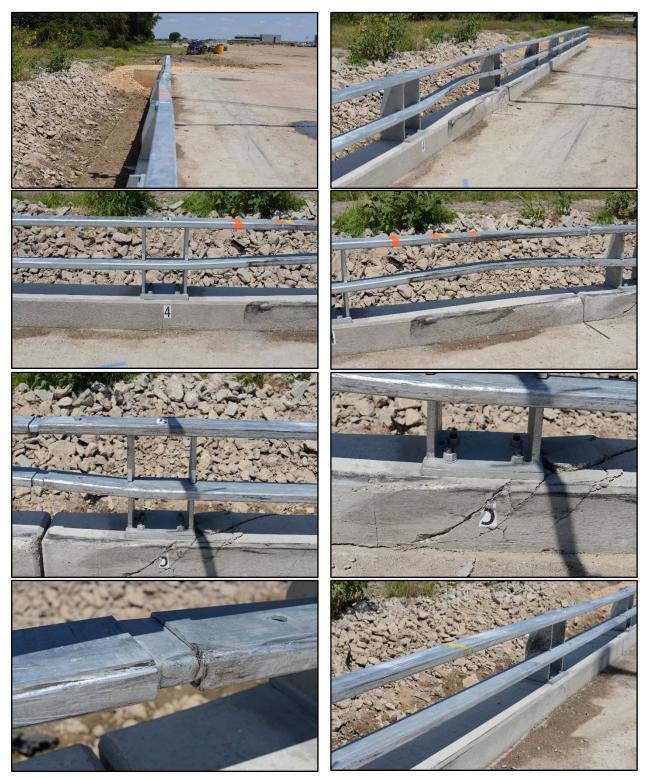


Figure 5.12. TxDOT T1W Bridge Rail after Test No. 469468-4-2.

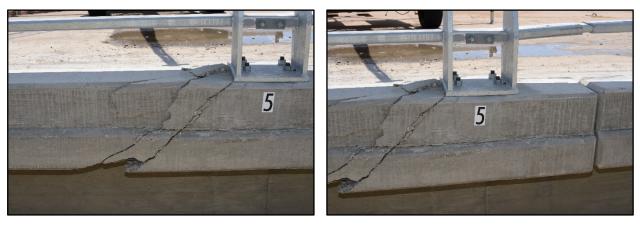
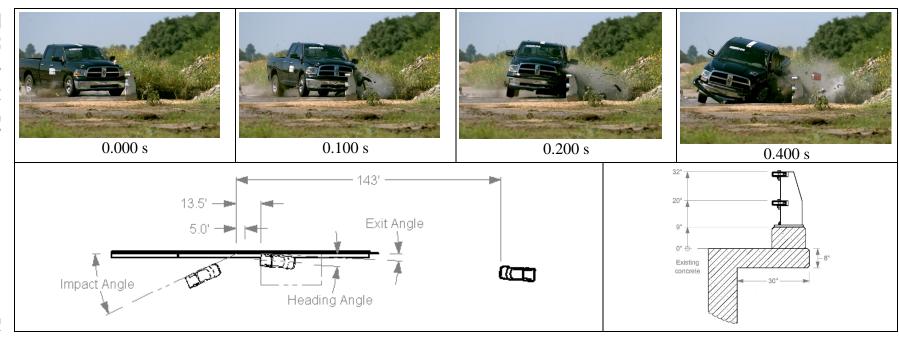


Figure 5.13. Field Side of Post 5 after Test No. 469468-4-2.

5.4.6 Damage to Test Vehicle

Figure 5.14 shows the damage sustained by the vehicle. The front bumper, hood, grill, radiator and support, left front fender, left front tire and rim, left frame rail, left upper and lower A-arms, left front and rear door, left cab corner, left rear exterior bed, left rear tire and rim, and left front floor pan were damaged. Maximum exterior crush to the vehicle was 12.0 inches in the side plane at the left front corner at bumper height. Maximum occupant compartment deformation was 3.0 inches in the left side firewall area. Figure 5.15 shows the interior of the vehicle. Tables D.6 and D.7 in Appendix D.4.1 provide exterior crush and occupant compartment measurements.

Figure 5.14. Test Vehicle after Test No. 469468-4-2.


Figure 5.15. Interior of Test Vehicle for Test No. 469468-4-2.

5.4.7 Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk, and results are shown in Table 5.5. Figure 5.16 summarizes these data and other pertinent information from the test. Figure D.12 in Appendix D.4.3 shows the vehicle angular displacements, and Figures D.13 through D.18 in Appendix D.4.4 show acceleration versus time traces.

Table 5.5. Occupant Risk Factors for Test No. 469468-4-2.

Occupant Risk Factor	Value	Time
Impact Velocity		
Longitudinal	19.4 ft/s	at 0.1003 s on left side of interior
Lateral	25.6 ft/s	at 0.1003 s on left side of interior
Ridedown Accelerations		
Longitudinal	10.1 g	0.1003-0.1103 s
Lateral	9.4 g	0.2353–0.2453 s
THIV	34.0 km/h	at 0.0976 s on left side of interior
11111	9.4 g	at 0.0770 3 off fert side of interior
PHD	12.5 g	0.0976–0.1076 s
ASI	1.66	0.0616–0.1116 s
Maximum 50-ms Moving Average		
Longitudinal	-8.6 g	0.0524–0.1024 s
Lateral	12.6 g	0.0425–0.0925 s
Vertical	2.9 g	0.2910–0.3410 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	15°	0.4383 s
Pitch	4 °	0.1169 s
Yaw	37°	0.6805 s

General Information		Impact Conditions	Po
Test Agency	Texas A&M Transportation Institute (TTI)	Speed 62.0 mi/h	(
Test Standard Test No	MASH Test 3-11	Angle 25.0°	
TTI Test No	469468-4-2	Location/Orientation 5.0 ft upstream of	Ve
Test Date	2018-08-01	deck/curb joint	1
Test Article		Impact Severity 115 kip-ft	1
Туре	Longitudinal Barrier - Bridge Rail	Exit Conditions	1
Name	TxDOT T1W Bridge Rail	Speed 47.4 mi/h	1
Installation Length	139 ft	Exit Trajectory/Heading 8.4°/9.2°	1
Material or Key Elements	32-in tall rail with two steel rails attached	Occupant Risk Values	Te
	to fabricated steel posts spaced at 9 ft	Longitudinal OIV19.4 ft/s	[
	mounted on a 9-in tall x 14-in wide curb	Lateral OIV 25.6 ft/s	F
	cast on an 8-in thick concrete deck.	Longitudinal Ridedown 10.1 g	١
Soil Type and Condition	Concrete Deck, Damp	Lateral Ridedown 9.4 g	H
Test Vehicle		THIV 34.0 km/h	Ve
Type/Designation	2270P	PHD 12.5 g	1
Make and Model	2012 Dodge RAM 1500 Pickup	ASI 1.66	(
Curb	4877 lb	Max. 0.050-s Average	1
Test Inertial	5002 lb	Longitudinal8.6 g	(
Dummy	None	Lateral 12.6 g	1
Gross Static	5002 lb	Vertical 2.9 g	

Post-Impact Trajectory	
Stopping Distance	143 ft downstream
-	10 ft toward traffic
Vehicle Stability	
Maximum Yaw Angle	37°
Maximum Pitch Angle	4°
Maximum Roll Angle	
Vehicle Snagging	
Vehicle Pocketing	
Test Article Deflections	
Dynamic	13.0 inches
Permanent	
Working Width	19.3 inches
Height of Working Width	
Vehicle Damage	
VDS	11-LFQ-3
CDC	11FLEW3
Max. Exterior Deformation	12.0 inches
OCDI	LF0030000
Max. Occupant Compartment	
Deformation	3.0 inches

Figure 5.16. Summary of Results for MASH Test 2-11 on TxDOT C411 Bridge Rail.

5.4.8 Assessment of Results

Table 5.6 provides an assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 3-11.

5.5 CONCLUSIONS

The TxDOT T1W bridge rail contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 1.1 inches. There was no permanent deformation. No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. Maximum occupant compartment deformation was 3.5 inches in the left firewall area. The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 12° and 4°, respectively. Occupant risk factors were within the allowable limits specified in *MASH*. The 1100C vehicle exited within the exit box criteria.

The TxDOT T1W bridge rail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 13.0 inches, and maximum permanent deformation was 3.0 inches. No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. Maximum occupant compartment deformation was 3.0 inches in the left firewall area. The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 15° and 4°, respectively. Occupant risk factors were within the preferred limits specified in *MASH*. The 2270P vehicle exited within the exit box criteria.

The TxDOT T1W bridge rail performed acceptably according to *MASH* TL-3 evaluation criteria as shown in Table 5.7.

Table 5.6. Performance Evaluation Summary for MASH Test 3-11 on TxDOT T1W Bridge Rail.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 469468-4-2	Test Date: 2018-08-01
	MASH Test 3-11 Evaluation Criteria	Test Results	Assessment
Stru A.	actural Adequacy Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The TxDOT T1W bridge rail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 13.0 inches, and maximum permanent deformation was 3.0 inches.	Pass
Occ D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. Maximum occupant compartment deformation was 3.0 inches in the left firewall area.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 15° and 4°, respectively.	Pass
Н.	Longitudinal and lateral occupant impact velocities should fall below the preferred value of 30 ft/s, or at least below the maximum allowable value of 40 ft/s.	Longitudinal OIV was 19.4 ft/s, and lateral OIV was 25.6 ft/s.	Pass
I.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 Gs, or at least below the maximum allowable value of 20.49 Gs.	Maximum longitudinal 10-ms occupant ridedown was 10.1 g, and maximum lateral 10-ms occupant ridedown was 9.4 g.	Pass
Vel	For redirective devices, it is preferable that the vehicle be smoothly redirected and leave the barrier within the exit box criteria (not less than 32.8 ft for the 1100C and 2270P vehicles) and should be documented.	The 2270P vehicle exited within the exit box criteria.	Documentation only

Table 5.7. Assessment Summary for *MASH* TL-3 Tests on TxDOT T1W Bridge Rail.

Evaluation Factors	Evaluation Criteria	Test No. 469468-4-1	Test No. 469468-4-2
Structural Adequacy	A	S	S
	D	S	S
Occupant	F	S	S
Risk	Н	S	S
	I	S	S
Test No.		MASH Test 3-10	MASH Test 3-11
Pass/Fail		Pass	Pass

S = Satisfactory U = Unsatisfactory N/A = Not Applicable

CHAPTER 6: ROUND WOOD POST W-BEAM GUARDRAIL

6.1 BACKGROUND*

Details of TxDOT W-beam guardrail or metal beam guard fence (MBGF) is provided on standard GF(31)-14. TxDOT uses a Midwest guardrail system (MGS) with 8-inch deep offset blocks between the posts and W-beam rail. The MGS system has a mounting height of 31 inches to the top of the W-beam and rail splices located midspan between support posts. Three different post types can be used in the TxDOT W-beam guardrail system: a W6×8.5 steel post, a nominal 6-inch \times 8-inch rectangular wood post, and a round wood post with a minimum 7-inch diameter.

The steel and rectangular wood post variations of the MGS have been successfully tested to *MASH* criteria in a variety of configurations (4,5,6). Various configurations of W-beam guardrail with round wood posts were successfully tested to *NCHRP Report 350* requirements (7,8). However, none of these round wood post configurations have been evaluated according to *MASH* criteria. Thus, there was a desire to evaluate the Texas W-beam guardrail with round wood posts following TxDOT standards in accordance with *MASH*.

The primary consideration for the evaluation of the W-beam guardrail with round wood post is structural adequacy. The rectangular and round wood posts that have been successfully tested have a greater section modulus than the nominal 7-inch diameter round wood post used by TxDOT. Thus, *MASH* Test 3-11 with the pickup truck was considered the critical test by TxDOT and TTI researchers. The impact performance with the passenger car should be acceptable based on the reduced snagging severity associated with the geometry of the round post compared to the steel and rectangular wood posts that have been successfully tested.

6.2 SYSTEM DETAILS

6.2.1 Test Article and Installation Details

The test installation consisted of a 31-inch tall W-beam guardrail with round wood posts (posts 3 through 28) installed in *MASH* compacted soil, with a TxDOT downstream anchor terminal (DAT) [GF (31) DAT-14] on each end, for a total installation length of 181 ft-3 inches. Modified wood blockouts (similar to PDB01) for round wood posts were installed on posts 3 through 28 using 18-inch long guardrail bolts, USS flat washers, and recessed guardrail nuts (FBB04).

Standard 12-gauge W-beam guardrail (type RWM04a) was used in the system. The top of the W-beam was 31 inches above grade, and the guardrail splices were located mid-span between every other post. Posts were equally spaced at 6 ft-3 inches.

Guardrail posts 3 through 28 were nominal 7-inch diameter, 6 ft-3 inch—long (including a rounded top) round wood guardrail line posts. The wood blockouts nominally measured

^{*} The opinions/interpretations identified/expressed in Section 6.1 are outside the scope of TTI Proving Ground's A2LA Accreditation.

14 inches tall \times 6 inches wide \times 8 inches deep, including a routered 3½-inch radius on the post side. These posts were installed 40 inches deep in drilled holes that were backfilled and compacted with soil meeting Grading B of AASHTO standard specification M147-65(2004) "Materials for Aggregate and Soil Aggregate Subbase, Base and Surface Courses."

Each TxDOT GF (31) DAT-14 terminal was 9 ft-4½ inches long as measured from their anchor posts to the W-beam splice between posts 2 and 3 and posts 28 and 29, respectively.

Figure 6.1 presents overall information on the Round Wood Post W-Beam Guardrail, and Figure 6.2 provides photographs of the installation. Appendix E.1 provides further details of the Round Wood Post W-Beam Guardrail.

6.2.2 Material Specifications

Appendix E.2 provides material certification documents for the materials used to install/construct the Round Wood Post W-Beam Guardrail.

6.2.3 Soil Conditions

The test installation was installed in standard soil meeting grading B of AASHTO standard specification M147-65(2004) "Materials for Aggregate and Soil Aggregate Subbase, Base and Surface Courses."

In accordance with Appendix B of *MASH*, soil strength was measured the day of the crash test. During installation of the guardrail for full-scale crash testing, two W6×16 posts were installed in the immediate vicinity of the guardrail using the same fill materials and installation procedures used in the test installation and the prior standard dynamic tests. Table E.1 in Appendix E.3 presents minimum soil strength properties established through the prior dynamic testing performed in accordance with *MASH* Appendix B.

As determined by the tests summarized in Appendix E.3, Table E.1, the minimum post loads required for deflections at 5 inches, 10 inches, and 15 inches, measured at a height of 25 inches, are 3940 lb, 5500 lb, and 6540 lb, respectively (90 percent of static load for the initial standard installation). On the day of the test, November 27, 2017, loads on the post at deflections of 5 inches, 10 inches, and 15 inches were 7676 lbf, 8686 lbf, and 8737 lbf, respectively. Table E.2 in Appendix E.3 shows the strength of the backfill material in which the guardrail was installed met minimum *MASH* requirements.

6.3 MASH TEST 3-11 (CRASH TEST NO. 469468-5-1)

6.3.1 Test Designation and Actual Impact Conditions

MASH Test 3-11 involves a 2270P vehicle weighing 5000 lb ± 110 lb impacting the CIP of the guardrail at an impact speed of 62 mi/h ± 2.5 mi/h and an angle of 25° ± 1.5 °. The target CIP for MASH Test 3-11 on the Round Wood Post W-Beam Guardrail was 12 ft ± 1 ft upstream of post 14 (which corresponds to 6 inches downstream of post 12 as shown in Figure 6.3). This point was selected using information in MASH section 2.3.2.

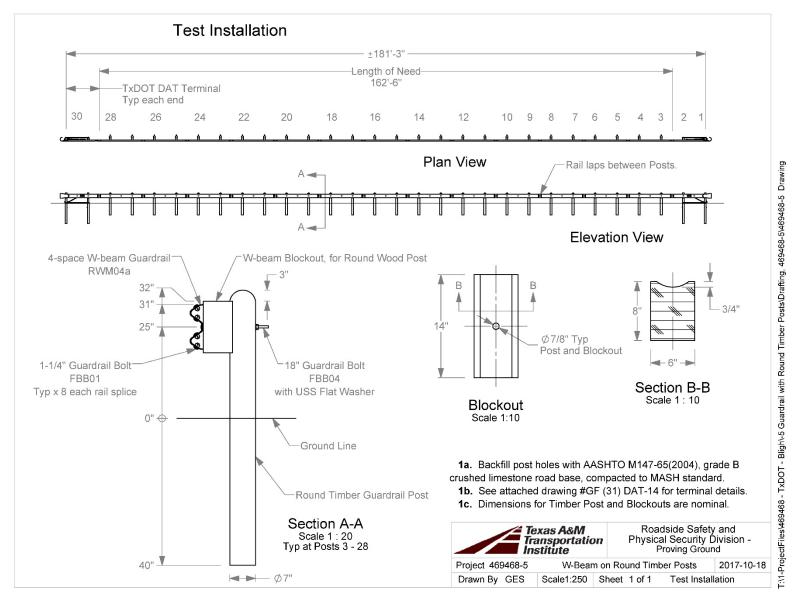


Figure 6.1. Overall Details of Round Wood Post W-Beam Guardrail.

Figure 6.2. Round Wood Post W-Beam Guardrail prior to Testing.

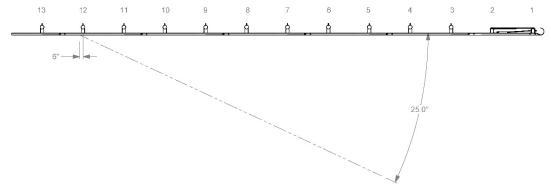


Figure 6.3. Target CIP for MASH Test 3-11 on the Round Wood Post W-Beam Guardrail.

The 2012 Dodge RAM 1500 pickup truck used in the test weighed 5029 lb, and the actual impact speed and angle were 64.2 mi/h and 25.6°, respectively. The actual impact point was at post 12. Minimum target IS was 106 kip-ft, and actual IS was 129 kip-ft.

6.3.2 Weather Conditions

The test was performed on the morning of November 27, 2017. Weather conditions at the time of testing were as follows: wind speed: 5 mi/h; wind direction: 167° (vehicle was traveling in a southwesterly direction); temperature: 67°F; relative humidity: 54 percent.

6.3.3 Test Vehicle

Figures 6.4 and 6.5 show the 2012 Dodge RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 5029 lb, and its gross static weight was 5029 lb. The height to the lower edge of the vehicle bumper was 11.75 inches, and the height to the upper edge of the bumper was 27.0 inches. The height to the vehicle's center of gravity was 29.0 inches. Tables E.3 and E.4 in Appendix E.4 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 6.4. Round Wood Post W-Beam Guardrail/Test Vehicle Geometrics for Test No. 469468-5-1.

Figure 6.5. Test Vehicle before Test No. 469468-5-1.

6.3.4 Test Description

The test vehicle impacted the Round Wood Post W-Beam Guardrail at post 12 at a speed of 64.2 mi/h and an angle of 25.6°. Table 6.1 lists events that occurred during Test No. 469468-5-1. Figures E.1 and E.2 in Appendix E.5 present sequential photographs during the test.

Table 6.1. Events during Test No. 469468-5-1.

TIME (s)	EVENTS
0.000	Right front corner of vehicle bumper contacts guardrail
0.012	Post 12 begins to deflect to field side and then fractures
0.021	Post 13 begins to deflect to field side and then fractures
0.031	Post 11 begins to deflect to field side and then fractures
0.035	Vehicle begins to redirect
0.041	Blockout and bolt release from post 12
0.050	Post 14 begins to deflect to field side and then fractures
0.065	Blockout and bolt release from post 13
0.068	Post 15 deflects to field side and then fractures
0.084	Right front tire impacts post 13 and rides up and over post
0.085	Post 12 fully fractured at grade level
0.106	Blockout and bolt release from post 14
0.113	Post 16 begins to deflect to field side
0.119	Post 16 fractures on traffic side of post about 6 inches above grade level
0.169	Vehicle begins to override guardrail at post 15
0.248	Right rear quarter panel and bumper impacts rail between posts 12 and 13
0.350	Right rear wheel rides over guardrail at post 16-17
0.375	Vehicle becomes parallel with guardrail
0.595	Vehicle overrides and loses contact with guardrail while traveling at 51.2 mi/h
0.598	Right rear wheel lands back on soil behind guardrail
0.739	Right front wheel lands back on soil behind guardrail
0.930	Vehicle lands on right side and begins to roll

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft downstream from impact for cars and pickups). The 2270P vehicle vaulted and penetrated behind the guardrail and did not redirect or exit within the exit box criteria defined in *MASH*. After overriding the guardrail, the vehicle came to rest 160 ft downstream of the point of impact and 11 ft behind the guardrail.

6.3.5 Damage to Test Installation

Figures 6.6 through 6.9 show damage to the Round Wood Post W-Beam Guardrail. Post 1 was pulled upstream 4.0 inches, and post 2 was pulled upstream 2.6 inches. The W-beam rail element released from posts 1 through 18. Post 11 was pulled upstream and pushed toward field side 0.5 inch. Posts 12 through 17 fractured at ground level. Post 12 with blockout attached was resting 10 ft toward the field side, and post 13 was resting under the rail element. The blockout on post 14 split, and the post was resting 7 ft toward the traffic side. Post 15 and 16 were resting on the field side close to their initial locations, and the blockout of post 16 was split. Post 17 was resting 10 ft downstream and 7 ft toward the field side of its initial position. The soil around post 18 was disturbed, the blockout was split and released from the post, but the post was intact. The vehicle came to rest 11 ft behind the installation. Maximum dynamic deflection during the test was 4.8 ft, and maximum permanent deformation was 3.0 ft.

Figure 6.6. Round Wood Post W-Beam Guardrail/Test Vehicle after Test No. 469468-5-1.

Figure 6.7. Upstream Terminal after Test No. 469468-5-1.

Figure 6.8. Posts 11 through 17 after Test No. 469468-5-1.

Figure 6.9. Round Wood Post W-Beam Guardrail after Test No. 469468-5-1.

6.3.6 Damage to Test Vehicle

Figure 6.10 shows the damage sustained by the vehicle. The front bumper, hood, left and right front fenders, left and right front tires and rims, left and right front and rear doors, left and right exterior bed, rear bumper, roof, and windshield were damaged. Maximum exterior crush to the vehicle was 10.0 inches in the front plane at the right front corner at bumper height. Maximum occupant compartment deformation was 5.0 inches in the right front floor pan. Figure 6.11 shows the interior of the vehicle. Tables E.5 and E.6 in Appendix E.4 provide exterior crush and occupant compartment measurements.

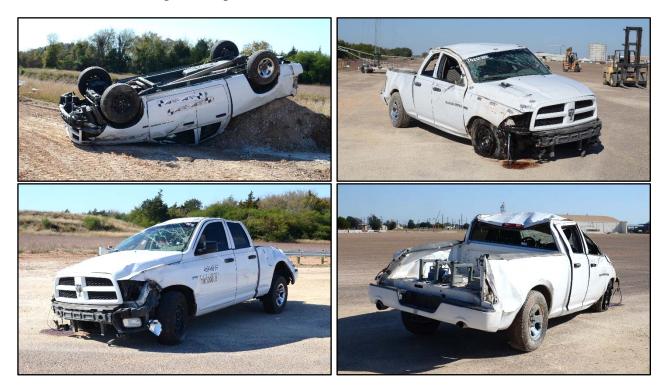
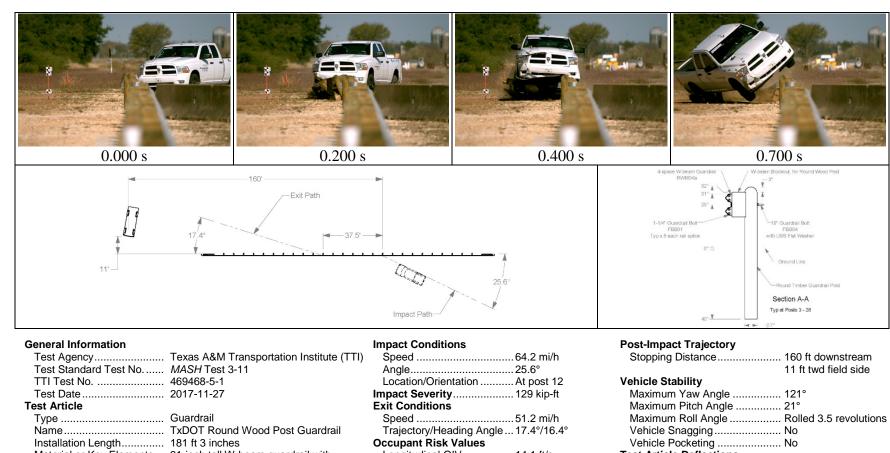


Figure 6.10. Test Vehicle after Test No. 469468-5-1.


Figure 6.11. Interior of Test Vehicle for Test No. 469468-5-1.

6.3.7 Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk, and results are shown in Table 6.2. Figure 6.12 summarizes these data and other pertinent information from the test. Figure E.3 in Appendix E.5 shows the vehicle angular displacements, and Figures E.4 through E.9 in Appendix E.6 show acceleration versus time traces.

Table 6.2. Occupant Risk Factors for Test No. 469468-5-1.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	14.1 ft/s	at 0.1745 s on right side of interior
Lateral	14.8 ft/s	at 0.1743 s off right side of interior
Occupant Ridedown Accelerations		
Longitudinal	6.0 g	0.2970–0.3070 s
Lateral	17.0 g	3.6466–3.6566 s
THIV	21.1 km/h 5.9 m/s	at 0.1685 s on right side of interior
PHD	17.1 g	3.6465–3.6565 s
ASI	1.39	3.6530–3.7030 s
Maximum 50-ms Moving Average		
Longitudinal	−4.2 g	0.1396–0.1896 s
Lateral	−10.7 g	3.6319–3.6819 s
Vertical	7.0 g	1.9069–1.9569 s
Maximum Roll, Pitch, and Yaw Angles		
Yaw	121°	3.7231 s
Pitch	21°	3.0410 s
Roll	1265°	5.0000 s

Test Date	2017-11-27	Impact Severity129 kip-ft	Maximum Yaw Angle	. 121°
Test Article		Exit Conditions	Maximum Pitch Angle	. 21°
Type	Guardrail	Speed51.2 mi/h	Maximum Roll Angle	. Rolled 3.5 revolutions
Name	TxDOT Round Wood Post Guardrail	Trajectory/Heading Angle 17.4°/16.4°	Vehicle Snagging	
Installation Length	181 ft 3 inches	Occupant Risk Values	Vehicle Pocketing	. No
Material or Key Elements	31-inch tall W-beam guardrail with	Longitudinal OIV14.1 ft/s	Test Article Deflections	
	nominal 7-in diameter round wood posts	Lateral OIV 14.8 ft/s	Dynamic	. 57.4 inches
	at 6 ft-3 in spacing embedded 40 in	Longitudinal Ridedown 6.0 g	Permanent	. 36.0 inches
Soil Type and Condition	AASHTO M147-65(2004), grading B Soil	Lateral Ridedown17.0 g	Working Width	. NA
	(crushed limestone), Damp	THIV21.1 km/h	Height of Working Width	. NA
Test Vehicle		PHD17.1 g	Vehicle Damage	
Type/Designation	2270P	ASI1.39	VDS	. 01R&T2
Make and Model	2012 Dodge RAM 1500 pickup truck	Max. 0.050-s Average	CDC	. 01FREK3/01FROA3
Curb	4936 lb	Longitudinal4.2 g	Max. Exterior Deformation	. 10.0 inches
Test Inertial	5029 lb	Lateral10.7 g	OCDI	. AS0200000
Dummy	No dummy	Vertical7.0 g	Max. Occupant Compartment	
Gross Static	5029 lb	· ·	Deformation	. 5.0 inches

Figure 6.12. Summary of Results for MASH Test 3-11 on Round Wood Post W-Beam Guardrail.

6.3.8 Assessment of Test Results

Table 6.3 provides an assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 3-11.

6.4 CONCLUSIONS

The Round Wood Post W-Beam Guardrail did not contain or redirect the 2270P vehicle. The vehicle overrode the installation. Maximum dynamic deflection prior to override of the installation was 4.8 ft. Post and blockout fragments were present but did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. Maximum occupant compartment deformation was 5.0 inches in the right front floor pan area. The 2270P vehicle rolled 3.5 revolutions after overriding the installation. Occupant risk factors were within the limits specified in *MASH*.

Due to override of the installation and subsequent rollover of the 2270P vehicle, the Round Wood Post W-Beam Guardrail did not perform acceptably for *MASH* Test 3-11.

 $Table \ 6.3. \ Performance \ Evaluation \ Summary \ for \ \textit{MASH} \ Test \ 3-11 \ on \ Round \ Wood \ Post \ W-Beam \ Guardrail.$

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 469468-5-1	Test Date: 2017-11-27
	MASH Test 3-11 Evaluation Criteria	Test Results	Assessment
Stru	actural Adequacy		
<i>A</i> .	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The Round Wood Post W-Beam Guardrail did not contain or redirect the 2270P vehicle. The vehicle overrode the installation. Maximum dynamic deflection prior to override of the installation was 4.8 ft.	Fail
Occ	cupant Risk		
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	Post and blockout fragments were present but did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	Maximum occupant compartment deformation as 5.0 inches in the right front floor pan area.	
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 2270P vehicle rolled 3.5 revolutions after overriding the installation.	Fail
Н.	Longitudinal and lateral occupant impact velocities should fall below the preferred value of 30 ft/s, or at least below the maximum allowable value of 40 ft/s.	Longitudinal OIV was 14.1 ft/s, and lateral OIV was 14.8 ft/s.	Pass
I.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 Gs, or at least below the maximum allowable value of 20.49 Gs.	Maximum longitudinal occupant ridedown acceleration was 6.0 g, and maximum lateral occupant ridedown acceleration was 17.0 g.	Pass
Vel	For redirective devices, it is preferable that the vehicle be smoothly redirected and leave the barrier within the exit box criteria (not less than 32.8 ft for the 1100C and 2270P vehicles) and should be documented.	The 2270P vehicle overrode the guardrail and did not exit the guardrail within the exit box criteria.	Documentation only

CHAPTER 7: TXDOT 42-INCH SINGLE SLOPE CONCRETE MEDIAN BARRIER WITH LIGHT POLE

7.1 BACKGROUND*

Light poles are sometimes attached to concrete median barrier to provide desired roadway illumination. TxDOT has a standard detail sheet for this practice for both a 32-inch concrete F-shape median barrier (CSB(4)-10) and a 42-inch single slope median barrier (SSCB(4)-10).

The 32-inch F-shape barrier does not meet the minimum 36-inch height requirement for a *MASH* TL-4 barrier; therefore, it would only be suitable to test this system to *MASH* TL-3. The 42-inch single slope barrier accommodates *MASH* TL-4 when proper anchorage or lateral support is provided to the barrier.

MASH Test 4-12 on a 42-inch single slope concrete median barrier with light pole was considered more critical. The box of the 10000S single unit truck will have significant interaction with the light pole at a substantial height. This will evaluate the structural adequacy of the median barrier mounted light pole. It is desirable for the tall light pole to maintain structural integrity and not collapse, bend, or otherwise release from the barrier and fall across oncoming traffic. MASH Tests 4-11 and 4-10 were not considered necessary because the single slope profile is considered a crashworthy shape and, given the height of the barrier, the test vehicles would not engage the barrier-mounted light pole.

7.2 TEST ARTICLE AND INSTALLATION DETAILS

The test installation was 120 ft long and consisted of a 42-inch-tall reinforced single slope concrete barrier (SSCB) with a light pole mounted approximately 40 ft from one end. The parapet was $9\frac{1}{4}$ inches wide at the top for a distance of 24 inches centered at the light pole, tapering to 8 inches wide over 48 inches of length each direction. The SSCB was 24 inches wide at bottom for its full length. The 10-ft tapered section to which the light pole was mounted was secured to an 8-inch thick \times 24-inch wide reinforced slab. A 1-inch thick \times 9 ft wide layer of asphalt was placed on both sides of the installation to provide lateral support for the SSCB. Thus, the height of the barrier above the asphalt overlay was 41 inches.

The light pole was mounted to the top of the SSCB following details and specifications of standard sheet RIP(2)-11. The light pole was supplied and installed by a subcontractor under supervision of TTI Proving Ground. The light pole was secured to the top of the barrier using the appropriate concrete barrier anchor bolt assembly detail. The 43-ft tall pole was configured with double mast arms that had a nominal length of 12 ft. The effective mounting height of the luminaires was 48 ft above the top of the barrier.

Figure 7.1 presents overall information on the TxDOT 42-inch single slope concrete median barrier with light pole, and Figure 7.2 provides photographs of the installation. Appendix F.1 provides further details of the TxDOT 42-inch single slope concrete median barrier with light pole.

TR No. 0-6946-R2 93 2019-03-27

^{*} The opinions/interpretations identified/expressed in Section 7.1 are outside the scope of TTI Proving Ground's A2LA Accreditation.

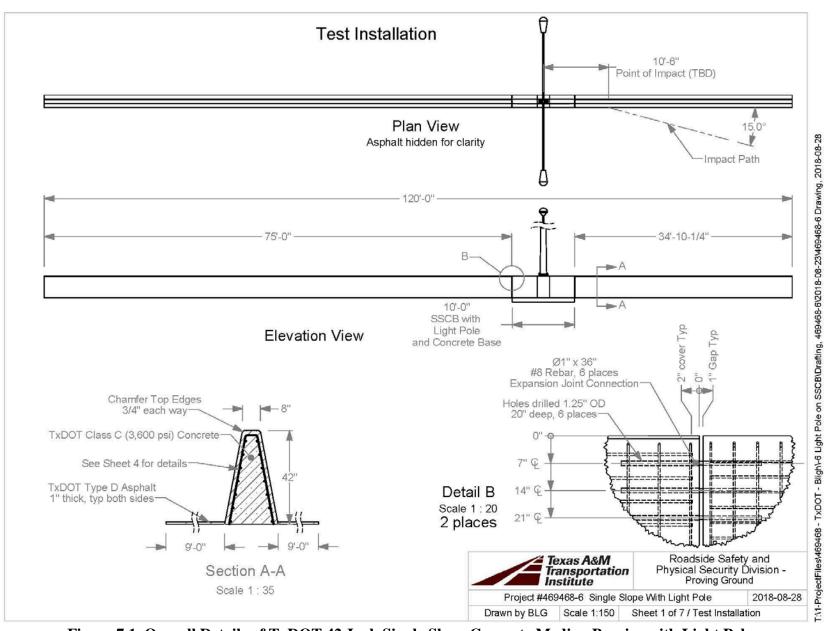


Figure 7.1. Overall Details of TxDOT 42-Inch Single Slope Concrete Median Barrier with Light Pole.

Figure 7.2. TxDOT 42-Inch Single Slope Concrete Median Barrier with Light Pole prior to Testing.

7.3 MATERIAL SPECIFICATIONS

Appendix F.2 provides material certification documents for the materials used to install/construct the TxDOT C412 bridge rail.

7.4 MASH TEST 3-12 (469468-6-1)

7.4.1 Test Designation and Actual Impact Conditions

MASH Test 4-12 involves a 10000S vehicle weighing 22,000 lb \pm 660 lb impacting the CIP of the barrier at an impact speed of 56 mi/h \pm 2.5 mi/h and an angle of 15° \pm 1.5°. The CIP for MASH Test 4-12 on the TxDOT 42-inch single-slope concrete barrier with light pole was 10.6 ft \pm 1 ft upstream of the light pole. This distance was determined to generate the maximum lateral penetration of the box of the single unit truck based on video analysis of MASH Test 4-12 on a 42-inch single slope barrier (9).

The 2013 International 4300 single-unit truck used in the test weighed 22,100 lb, and the actual impact speed and angle were 57.2 mi/h and 14.5°, respectively. The actual impact point was 10.4 ft upstream of the light pole. Minimum target IS was 142 kip-ft, and actual IS was 152 kip-ft.

7.4.2 Weather Conditions

The test was performed on the morning of August 28, 2018. Weather conditions at the time of testing were as follows: wind speed: 6 mi/h; wind direction: 219° (vehicle was traveling in a southwesterly direction); temperature: 88°F; relative humidity: 68 percent.

7.4.3 Test Vehicle

Figures 7.3 and 7.4 show the 2013 International 4300 single-unit truck used for the crash test. The vehicle's test inertia weight was 22,100 lb. The height to the lower edge of the vehicle bumper was 16.25 inches, and the height to the upper edge of the bumper was 33.25 inches. The height to the center of gravity of the vehicle's ballast was 63.25 inches. Table F.1 in Appendix F.3 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 7.3. TxDOT 42-Inch Single Slope Concrete Median Barrier with Light Pole/Test Vehicle Geometrics for Test No. 469468-6-1.

Figure 7.4. Test Vehicle before Test No. 469468-6-1.

7.4.4 Test Description

The test vehicle impacted the 42-inch single slope barrier 10.4 ft upstream of the light pole at a speed of 57.2 mi/h and an angle of 14.5°. Table 7.1 lists events that occurred during Test No. 469468-6-1. Figure F.1 in Appendix F.33 presents sequential photographs during the test.

Table 7.1. Events during Test No. 469468-6-1.

TIME (s)	EVENTS
0.000	Right front corner of vehicle bumper contacts barrier
0.051	Right front bumper reaches joint in barrier
0.900	Vehicle begins to redirect
0.110	Right front of vehicle contacts light pole
0.122	Right front fender begins to wrap around light pole
0.206	Right front box contacts light pole
0.225	Right side wall of box begins to separate from the vehicle
0.262	Top left of box begins to open at top seam and roof of box begins to tear
	off
0.278	Vehicle becomes parallel with barrier
0.449	Light pole reaches rear roll-up door of box
0.481	Right side of rear door begins to pull off right side wall
0.489	Left side of rear door begins to pull off left side wall
0.555	Door and right side wall separate from vehicle

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 65.6 ft downstream from loss of contact for heavy vehicles). The 10000S vehicle exited within the exit box criteria defined in *MASH*. After loss of contact with the barrier, the vehicle yawed counterclockwise and came to rest 298 ft downstream of the point of impact and 2 ft toward traffic lanes.

7.4.5 Damage to Test Installation

Figure 7.5 shows the damage to the TxDOT 42-inch Single Slope Concrete Median Barrier with Light Pole. The barrier had gouge marks in the impact area, but there were no cracks or other damage observed. The light pole remained upright and intact with some marring around the base. The light fixtures disconnected from the luminaire arms and fell to the ground on each side of the barrier. The concrete around the upstream field side anchor bolt spalled off. Working width was 80.5 inches, and the height of maximum working width was 130.0 inches. Maximum dynamic deflection was not obtainable due to the vehicle obstructing the view of the barrier. There was no measurable permanent deformation.

Figure 7.5. TxDOT 42-Inch Single Slope Concrete Median Barrier with Light Pole/Test Vehicle after Test No. 469468-6-1.

Figure 7.6. TxDOT 42-Inch Single Slope Concrete Median Barrier after Test No. 469468-6-1.

Figure 7.7. Light Pole after Test No. 469468-6-1.

7.4.6 Damage to Test Vehicle

Figure 7.8 shows the damage to the vehicle. The front bumper, hood, right front tire and rim, front axle, front springs and U-bolts, right door, right fuel tank and side steps, right rear outer tire and rim were damaged. The right side of the box, roof of the box, rear of the box, and the roll-up rear door were pulled off of the bed of the truck. Maximum exterior crush to the exterior of the vehicle was 14.0 inches in the side plane at the right front corner at bumper height, and maximum occupant compartment deformation was 5.0 inches in the right front corner of the floor pan. Figure 7.9 shows the interior of the vehicle.

7.4.7 Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for information purposes only, and results are shown in Table 7.2. Figure 7.10 summarizes these data and other pertinent information from the test. Figure F.2 in Appendix F.5 shows the vehicle angular displacements, and Figures F.3 through F.8 in Appendix F.6 show acceleration versus time traces.

Figure 7.8. Test Vehicle after Test No. 469468-6-1.

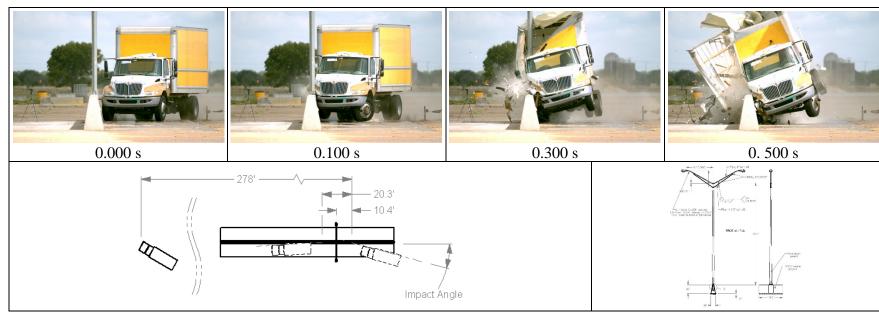


Figure 7.9. Interior of Test Vehicle after Test No. 469468-6-1.

Table 7.2. Occupant Risk Factors for Test No. 469468-6-1.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	6.9 ft/s	at 0.2199 s on right side of interior
Lateral	11.2 ft/s	at 0.2188 s on right side of interior
Occupant Ridedown Accelerations		
Longitudinal	11.7 g	0.2849–0.2949 s
Lateral	10.0 g	0.2289–0.2389 s
THIV	14.7 km/h	at 0.2126 s on right side of interior
IHIV	4.1 m/s	at 0.2126 s on right side of interior
PHD	12.3 g	0.2847–0.2947 s
ASI	0.56	0.3069–0.3569 s
Maximum 50-ms Moving Average		
Longitudinal	−4.2 g	0.2846–0.3346 s
Lateral	−4.8 g	0.2907–0.3407 s
Vertical	2.5 g	0.1662–0.2162 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	30°	0.7333 s
Pitch	33°	4.8915 s
Yaw	37°	3.0135 s

Test Standard Test No TTI Test No Test Date Test Article	469468-6-1	Impact Conditions Speed	Post-Impact Trajectory Stopping Distance
NameInstallation Length	luminaire arms 42-inch Single Slope CMB 120 ft 43-ft tall light pole with double mast arms mounted on 42-inch single slope concrete median barrier keyed in 1-in asphalt	Speed	Vehicle Snagging
Test Vehicle Type/Designation Make and Model Curb Test Inertial Dummy Gross Static	2013 International 4300 13,980 lb 22,100 lb No dummy	PHD	VDS

Figure 7.10. Summary of Results for *MASH* Test 5-12 on TxDOT 42-Inch Single Slope Concrete Median Barrier with Light Pole.

7.4.8 Assessment of Test Results

Table 7.3 provides an assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 4-12.

7.5 CONCLUSIONS

The TxDOT 42-inch Single Slope Concrete Median Barrier with Light Pole contained and redirected the 10000S vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was not obtainable due to vehicle obstruction of view. No detached elements, fragments, or other debris from the test article were present to penetrate or show potential for penetrating the occupant compartment or to present hazard to others in the area. The 10000S vehicle remained upright during and after the collision event. Maximum roll was 30°. The 10000S vehicle exited within the exit box criteria.

The TxDOT 42-inch Single Slope Concrete Median Barrier with Light Pole performed acceptably for *MASH* Test 4-12.

Table 7.3. Performance Evaluation Summary for *MASH* Test 5-12 on TxDOT 42-Inch Single Slope Concrete Median Barrier with Light Pole.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 469468-6-1 T	est Date: 2018-08-28
	MASH Test 4-12 Evaluation Criteria	Test Results	Assessment
Stru A.	actural Adequacy Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The TxDOT 42-inch Single Slope Concrete Median Barrier with Light Pole contained and redirected the 10000S vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was not obtainable due to vehicle obstruction of view.	Pass
Occ D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	No detached elements, fragments, or other debris from the test article were present to penetrate or show potential for penetrating the occupant compartment or to present hazard to others in the area. Maximum occupant compartment deformation was 5.0 inches in the right front corner of the floor pan.	Pass
G.	It is preferable, although not essential, that the vehicle remain upright during and after collision.	The 10000S vehicle remained upright during and after the collision event. Maximum roll was 30°.	Pass
Vel	For redirective devices, it is preferable that the vehicle be smoothly redirected and leave the barrier within the exit box criteria (not less than 65.6 ft for the 36000V vehicle) and should be documented.	The 10000S vehicle exited within the exit box criteria.	Documentation only

CHAPTER 8: SKID-MOUNTED SINGLE-POST PERFORATED STEEL TUBE TEMPORARY SIGN SUPPORT

8.1 BACKGROUND*

The skid-mounted single perforated steel tube temporary sign support system is designed for use with a 9 sq. ft lightweight, extruded, hollow-core plastic sign substrate. Details can be found on TxDOT Barricade and Construction sheet BC(5)-14. The single support system was considered acceptable based on the original development and testing of a similar dual post system under *NCHRP Report 350* at both 0° and 90°, which is a requirement of a free-standing work zone traffic control device (10).

Although the small passenger car has changed under *MASH*, its performance in frontal impacts with large, skid-mounted, breakaway sign support systems is not expected to differ appreciably. Therefore, only test designation 3-72 with the 2270P pickup truck in both the 0° and 90° impact orientations was considered necessary to assess *MASH* compliance.

MASH states "that lightweight free-standing features cannot cause sufficient velocity change to result in failure of the test under occupant risk criteria. Therefore, Tests 3-71 and 3-72 can be conducted without the instrumentation necessary for determining occupant risk whenever the test article has a total weight of 220 lb (100 kg) or less." Consequently, the pickup truck test vehicle was not instrumented in the testing of the free-standing skid-mounted single perforated steel tube temporary sign support system.

8.2 SYSTEM DETAILS

These test installations consisted of three main parts. A 36-inch square extruded, hollow-core plastic sign panel was secured to an approximately 11 ft long section of 1¾-inch square perforated steel tubing with two hex bolts with fender washers under the head of the bolt. This tubing was inserted into a 4-ft long sleeve fabricated from 2-inch square perforated steel tubing and secured with a bolt, nut, and fender washers such that the bottom corner of the sign was approximately 84 inches above grade. The sleeve was welded to an I-shaped skid fabricated from 1¾-inch and 2-inch square perforated steel tubing. All square perforated tubing was 12 gauge. Excluding the four 40-lb sandbags, the test article weighed 63 lb.

The skid-mounted sign support systems were placed on a concrete apron but were not secured to it. The installation for Test No. 469468-7-1 was placed with the sign panel perpendicular to the vehicle path. For Test No. 469468-7-2, the sign panel was oriented parallel to the vehicle path.

Figure 8.1 presents overall information on the skid-mounted single perforated steel tube temporary sign support system, and Figure 8.2 provides photographs of the installation.

^{*} The opinions/interpretations identified/expressed in Section 8.1 are outside the scope of TTI Proving Ground's A2LA Accreditation.

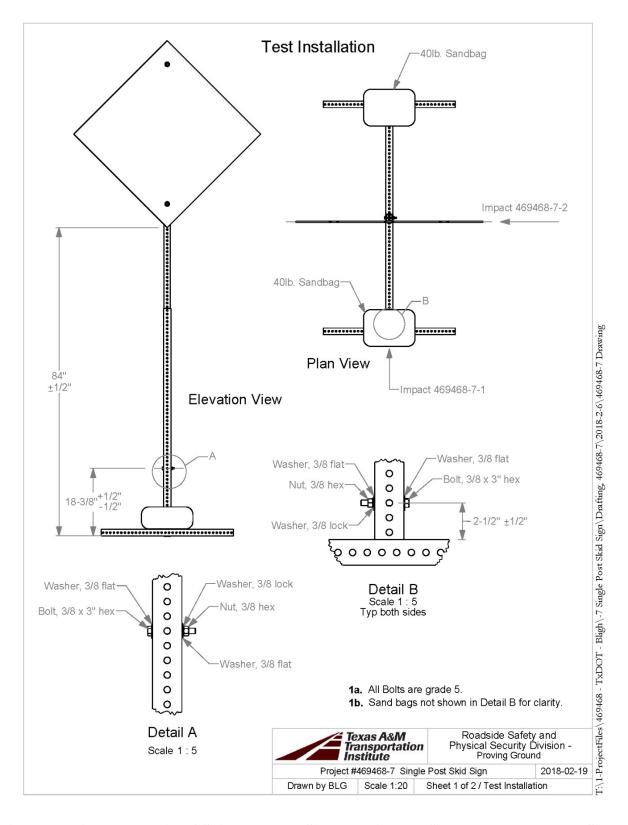


Figure 8.1. Overall Details of Skid-Mounted Single Perforated Steel Tube Temporary Sign Support System.

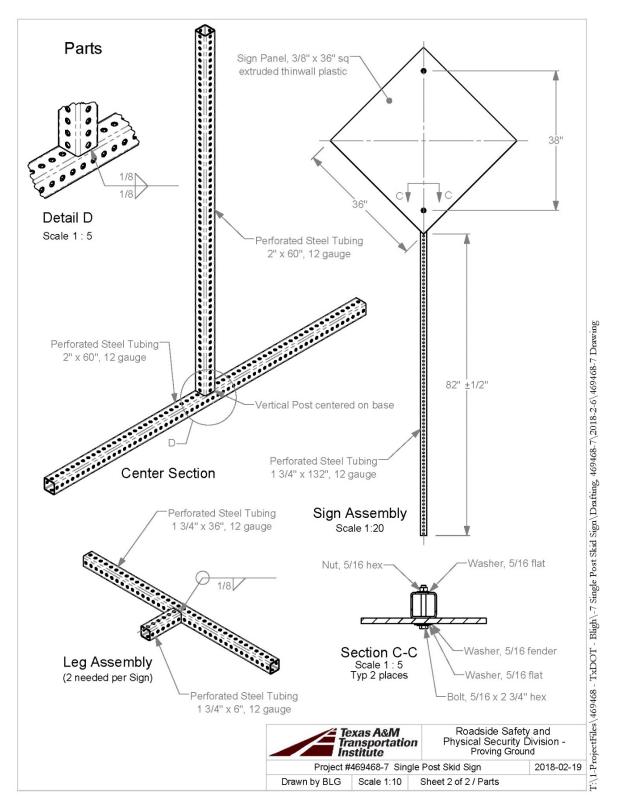


Figure 8.1. Overall Details of Skid-Mounted Single Perforated Steel Tube Temporary Sign Support System (Continued).

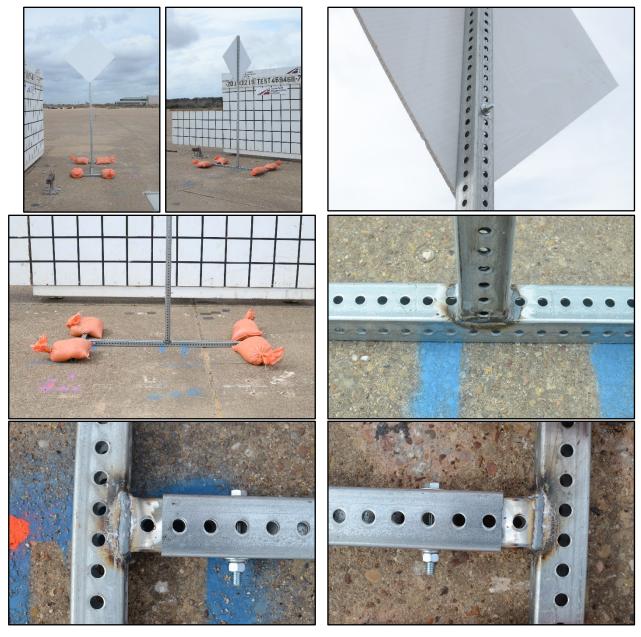


Figure 8.2. Skid-Mounted Single Perforated Steel Tube Temporary Sign Support System prior to Testing.

8.3 *MASH* TEST 3-72 AT 0° (CRASH TEST NO. 469468-7-1)

8.3.1 Test Designation and Actual Impact Conditions

MASH Test 3-72 involves a 2270P vehicle weighing 5000 lb ± 110 lb impacting the traffic control device at an impact speed of 62 mi/h ± 2.5 mi/h and an angle of $0^{\circ} \pm 1.5^{\circ}$. The target impact point for MASH Test 3-72 on the skid-mounted single perforated steel tube temporary sign support system was the left quarter point of the vehicle aligned with the centerline of the traffic control device.

The 2012 Dodge RAM 1500 pickup truck used in the test weighed 5034 lb, and the actual impact speed and angle were 62.7 mi/h and 0° , respectively. The actual impact point was the left quarter point of the vehicle aligned with the centerline of the traffic control device. Target kinetic energy (KE) was 594 kip-ft, and actual KE was 662 kip-ft.

8.3.2 Weather Conditions

The test was performed on the afternoon of February 19, 2018. Weather conditions at the time of testing were as follows: wind speed: 16 mi/h; wind direction: 186° (vehicle was traveling in a northerly direction); temperature: 78°F; relative humidity: 75 percent.

8.3.3 Test Vehicle

Figures 8.3 and 8.4 show the 2012 Dodge RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 5034 lb, and its gross static weight was 5034 lb. The height to the lower edge of the vehicle bumper was 9.5 inches, and the height to the upper edge of the bumper was 27.0 inches. The height to the vehicle's center of gravity was 28.5 inches. Tables G.1 and G.2 in Appendix G.1.1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 8.3. Skid-Mounted Single Perforated Steel Tube Temporary Sign Support System/Test Vehicle Geometrics for Test No. 468469-7-1.

Figure 8.4. Test Vehicle before Test No. 468469-7-1.

8.3.4 Test Description

The test vehicle impacted the skid-mounted single perforated steel tube temporary sign support system with the left quarter point of the vehicle aligned with the centerline of the device at a speed of 62.7 mi/h and an angle of 0° . Table 8.1 lists events that occurred during Test No. 469468-7-1. Figure G.1 in Appendix G.1.2 presents sequential photographs during the test.

TIME (s)	EVENT
0.000	Left front quarter point of vehicle contacts support
0.023	Vehicle loses contact with the device; vehicle traveling at 62.4 mi/h
0.088	Sign panel begins to impact windshield
0.098	Sign panel fully engaged and slightly deflecting windshield
0.126	Sign panel begins to rebound off windshield
0.225	Vehicle clears sand bags

Table 8.1. Events during Test No. 469468-7-1.

8.3.5 Damage to Test Installation

Figure 8.5 shows the damage to the skid-mounted single perforated steel tube temporary sign support system. The vertical sleeve broke away from the skid at the welds, and the skid assembly was resting 5 ft downstream of the impact location. The sign panel remained attached to the upright support and sleeve and came to rest 377 ft downstream from the impact location. Two sandbags remained intact, and two were damaged. Sand was scattered in the impact area.

8.3.6 Damage to Test Vehicle

Figure 8.6 shows the damage sustained by the vehicle. A very small depression in the left side of the bumper and hood were observed. The windshield was cracked at the upper left corner over an area measuring 12 inches × 14 inches, and the edge of the roof just above this location was slightly dented and scraped over an area measuring 7 inches × 8 inches. The windshield also had a slight indentation (that was so slight as to be unmeasurable) 18 inches to the left of centerline. No hole or tear was observed in the windshield. Maximum exterior crush to the vehicle was so slight as to be unmeasurable. No occupant compartment deformation or intrusion was observed. Figure 7.7 shows the interior of the vehicle. Tables G.3 and G.4 in Appendix G.1.1 provide exterior crush and occupant compartment measurements.

8.3.7 Occupant Risk Factors

MASH does not require instrumentation of the test vehicle when the weight of the traffic control device is less than 220 lb. The skid-mounted single perforated steel tube temporary sign support system weighed 63 lb. Therefore, occupant risk factors were not measured for this test. Figure 8.8 summarizes other pertinent information from the test.

8.3.8 Assessment of Test Results

Table 8.2 provides an assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 3-72. Table 8.2 shows the skid-mounted single perforated steel tube temporary sign support system met all applicable criteria for *MASH* Test 3-72 at 0°.

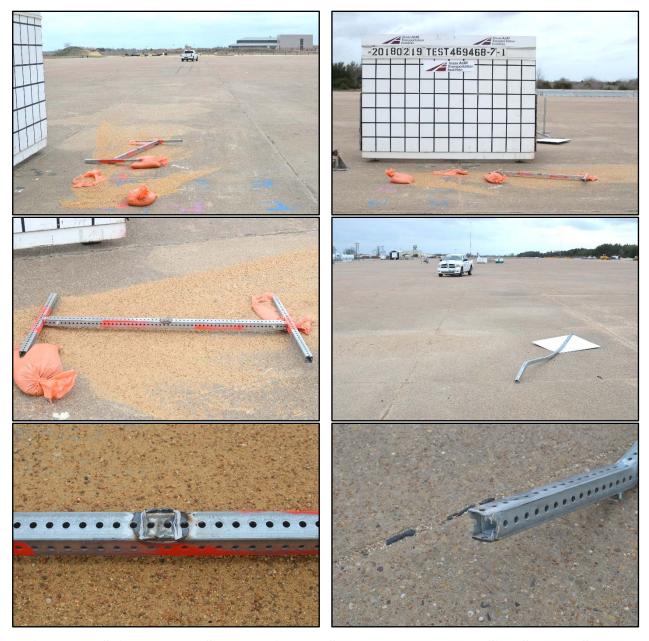


Figure 8.5. Skid-Mounted Single Perforated Steel Tube Temporary Sign Support System after Test No. 469468-7-1.

Figure 8.6. Test Vehicle after Test No. 469468-7-1.

Figure 8.7. Interior of Test Vehicle for Test No. 469468-7-1.

2019-03-27

Test Standard Test No		Test Vehicle Type/Designation Make and Model Curb	2012 Dodge RAM 1500	Post-Impact Trajectory Stopping Distance	272 ft downstream
TTI Test No Test Date		Test Inertial	5034 lb	Longitudinal	
Test Article Type	Work Zone Traffic Control Device	Dummy Gross Static		Lateral Vehicle Damage	7 ft
	Skid-mounted single perforated steel tube temporary sign support system	Impact Conditions Speed	62.7 mi/h	VDS	
Installation Height Material or Key Elements	84 inches from ground to bottom of sign. 36-inch square hollow core plastic sign panel secured to 1%-inch square	Angle Location/Orientation Kinetic Energy	0° Left quarter point	Max. Exterior Deformation OCDI Max. Occupant Compartment	Not measurable
	perforated tubing inserted into a sleeve made from 2-inch square perforated steel tubing attached to an I-shaped skid Placed on concrete surface, dry	Exit Conditions SpeedAngle	62.4 mi/h	Deformation	None

Figure 8.8. Summary of Results for MASH Test 3-72 at 0° on Skid-Mounted Single Perforated Steel Tube Temporary Sign Support System.

Table 8.2. Performance Evaluation Summary for *MASH* Test 3-72 at 0° on Skid-Mounted Single Perforated Steel Tube Temporary Sign Support System.

Test Agency: Texas A&M Transportation Institute Test No.: 469468-7-1 Test Date: 2018-02-19 **MASH** Test 3-72 Evaluation Criteria **Test Results** Assessment Structural Adequacy The test article should readily activate in a predictable The skid-mounted single perforated steel tube manner by breaking away, fracturing, or yielding. temporary sign support system readily fractured **Pass** and released from its skid upon impact. Occupant Risk D. Detached elements, fragments, or other debris from the The detached sign panel and upright support did test article should not penetrate or show potential for not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel to others in the area. Pass in a work zone. Deformations of, or intrusions into, the occupant The windshield was cracked, but no holes or compartment should not exceed limits set forth in Section measurable deformation were observed. No other 5.3 and Appendix E of MASH. occupant compartment deformation was observed. Detached elements, fragments, or other debris from the The sign panel and upright support briefly slapped test article, of vehicular damage should not block the the windshield, but would not block the driver's Pass driver's vision or otherwise cause the driver to lose vision enough to cause loss of control of the control of the vehicle. vehicle. The vehicle should remain upright during and after The 2270P vehicle remained upright during and collision. The maximum roll and pitch angles are not to after the collision event. Pass exceed 75 degrees. H. Longitudinal and lateral occupant impact velocities MASH does not require vehicle instrumentation should fall below the preferred value of 10 ft/s, or at least NA when the weight of the traffic control device is below the maximum allowable value of 16.4 ft/s. less than 220 lb. The skid-mounted single Longitudinal and lateral occupant ridedown perforated steel tube temporary sign support accelerations should fall below the preferred value of system weighed 63 lb. Therefore, occupant risk NA 15.0 Gs. or at least below the maximum allowable value factors were not obtained for this test. of 20.49 Gs. Vehicle Trajectory Vehicle trajectory behind the test article is acceptable. The 2270P vehicle came to rest 272 ft behind **Pass** device.

8.4 *MASH* TEST 3-72 AT 90° (CRASH TEST NO. 469468-7-2)

8.4.1 Test Designation and Actual Impact Conditions

MASH Test 3-72 involves a 2270P vehicle weighing 5000 lb ± 110 lb impacting the traffic control device at an impact speed of 62 mi/h ± 2.5 mi/h and an angle of 90° ± 1.5 °. The target impact point for MASH Test 3-72 on the skid-mounted single perforated steel tube temporary sign support system was the right quarter point of the vehicle aligned with the centerline of the traffic control device.

The 2013 RAM 1500 pickup truck used in the test weighed 5029 lb, and the actual impact speed and angle were 62.6 mi/h and 90°, respectively. The actual impact point was the right quarter point of the vehicle aligned with the centerline of the traffic control device. Target kinetic energy (KE) was 594 kip-ft, and actual KE was 659 kip-ft.

8.4.2 Weather Conditions

The test was performed on the afternoon of February 19, 2018. Weather conditions at the time of testing were as follows: wind speed: 19 mi/h; wind direction: 167° (vehicle was traveling in a northerly direction); temperature: 77°F; relative humidity: 70 percent.

8.4.3 Test Vehicle

Figures 8.9 and 8.10 show the 2013 RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 5029 lb, and its gross static weight was 5029 lb. The height to the lower edge of the vehicle bumper was 12.0 inches, and the height to the upper edge of the bumper was 26.5 inches. The height to the vehicle's center of gravity was 28.5 inches. Tables G.5 and G.6 in Appendix G.2.1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 8.9. Skid-Mounted Single Perforated Steel Tube Temporary Sign Support System/Test Vehicle Geometrics for Test No. 468469-7-2.

Figure 8.10. Test Vehicle before Test No. 468469-7-2.

8.4.4 Test Description

The test vehicle impacted the skid-mounted single perforated steel tube temporary sign support system with the right quarter point of the vehicle aligned with the centerline of the device at a speed of 62.6 mi/h and an angle of 90°. Table 8.3 lists events that occurred during Test No. 469468-7-2. Figure G.2 in Appendix G.2.1 presents sequential photographs during the test.

o a contract of the contract o	
TIME (s)	EVENT
0.000	Right front quarter point of vehicle contacts support
0.068	Corner of sign impacts with windshield
0.092	Top of post impacts windshield, and plastic sign begins to tear.
0.110	Windshield is fully deflected and is cracked from impact with sign panel
0.149	Sign and post leave windshield, sign continues to be pushed forward by vehicle
0.247	Truck clears sand bags and continues dragging sign with front bumper

Table 8.3. Events during Test No. 469468-7-2.

8.4.5 Damage to Test Installation

Figure 8.11 shows the damage to the skid-mounted single perforated steel tube temporary sign support system. The vertical sleeve broke away from the skid at the welds, and the skid was resting 348 ft downstream and 2 ft left of the point of impact. The sign panel remained attached (by one bolt) to a 7 ft long piece of the upright support and came to rest 160 ft downstream and 5 ft left of the impact location. A 4 ft long fractured piece of upright support and vertical sleeve came to rest 150 ft downstream and 1 ft left of the impact location. Three sandbags remained intact, and one was damaged with a small amount of sand scattered in the impact area.

Figure 8.11. Skid-Mounted Single Perforated Steel Tube Temporary Sign Support System after Test No. 469468-7-2.

8.4.6 Damage to Test Vehicle

Figure 8.12 shows the damage sustained by the vehicle. A very small depression in the right side of the bumper and front of the hood was observed. The hood also had a small indentation at the right rear near the windshield over an area measuring 10 inches \times 6 inches. The upper right corner of the windshield was cracked over an area measuring 18 inches \times 16 inches. The maximum deformation of the windshield was 2.0 inches. No holes or tears occurred in the windshield. The windshield also had a slight indentation (that was so slight as to be unmeasurable) 18 inches to the right of centerline. The rear right side of the roof sustained scuff

marks. A 2-inch \times 2-inch indentation and a small cut in the oil pan were observed. Maximum exterior crush to the vehicle was so slight as to be unmeasurable. No occupant compartment deformation or intrusion was noted other than the deformation of the windshield described above. Figure 7.13 shows the interior of the vehicle. Tables G.7 and G.8 in Appendix G.2.1 provide exterior crush and occupant compartment measurements.

Figure 8.12. Test Vehicle after Test No. 469468-7-2.

Figure 8.13. Interior of Test Vehicle after Test No. 469468-7-2.

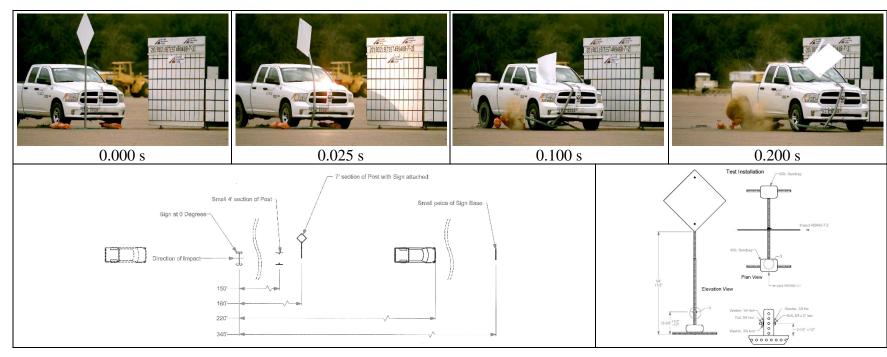
8.4.7 Occupant Risk Factors

MASH does not require instrumentation of the test vehicle when the weight of the traffic control device is less than 220 lb. The skid-mounted single perforated steel tube temporary sign support system weighed 63 lb. Therefore, occupant risk factors were not measured for this test. Figure 8.14 summarizes other pertinent information from the test.

8.4.8 Assessment of Test Results

Table 8.4 provides an assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 3-72. Table 8.4 shows the skid-mounted single perforated steel tube temporary sign support system met applicable criteria for *MASH* Test 3-72 at 90°.

8.5 CONCLUSIONS


During *MASH* Test 3-72 at 0°, the skid-mounted single perforated steel tube temporary sign support readily released from its skid upon impact. The detached sign panel and support did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. The windshield was cracked, but no holes or measurable deformation was observed. No other occupant compartment deformation was observed. The sign panel and support briefly slapped the windshield, but this contact would not block the driver's vision enough to cause loss of control of the vehicle. The 2270P vehicle remained upright during and after the collision event. The 2270P vehicle came to rest 272 ft behind the point of impact.

During *MASH* Test 3-72 at 90°, the skid-mounted single perforated steel tube temporary sign support yielded to the 2270P vehicle and released from its skid. The detached sign panel and upright support did not penetrate the occupant compartment. The debris did not present undue hazard to others in the area. The windshield was cracked and had a maximum deformation of 2 inches. No other occupant compartment deformation was observed. The sign panel and upright support would not block the driver's vision enough to cause loss of control of the vehicle. The 2270P vehicle remained upright during and after the collision event. The 2270P vehicle came to rest 220 ft behind device.

An assessment of the tests based on the applicable safety evaluation criteria for *MASH* Test 3-72 at 0° and 90° was provided in Tables 8.2 and 8.4, respectively. Table 8.5 shows that the skid-mounted single perforated steel tube temporary sign support system performed acceptably for *MASH* Test 3-72.

Soil Type and Condition Placed on concrete surface, dry

		· · · · · · · · · · · · · · · · · · ·		
General Information		Test Vehicle	Post-Impact Trajectory	
Test Agency	Texas A&M Transportation Institute (TTI)	Type/Designation 2270P	Stopping Distance	220 ft downstream
Test Standard Test No	MASH Test 3-72 at 90°	Make and Model2013 RAM 1500	•	
TTI Test No	469468-7-2	Curb 5026 lb	Test Article Debris Scatter	
Test Date	2018-02-19	Test Inertial 5029 lb	Longitudinal	348 ft
Test Article		Dummy No dummy	Lateral	2 ft
Type	Work Zone Traffic Control Device	Gross Static5029 lb	Vehicle Damage	
Name	Skid-mounted single perforated steel tube	Impact Conditions	VDS	12RF1
	temporary sign support system	Speed 62.6 mi/h	CDC	12FREN1
Installation Height	84 inches from ground to bottom of sign.	Angle90°	Max. Exterior Deformation	Not measurable
Material or Key Elements	36-inch square hollow core plastic sign	Location/Orientation Right quarter point	OCDI	RF0000000
•	panel secured to 1¾-inch square	Kinetic Energy 659 kip-ft	Max. Occupant Compartment	
	perforated tubing inserted into a sleeve	Exit Conditions	Deformation	2.0 inches
	made from 2-inch square perforated steel	Speed 60.4 mi/h		
	tubing attached to an I-shaped skid	Angle90°		

Figure 8.14. Summary of Results for *MASH* Test 3-72 at 90° on Skid-Mounted Single Perforated Steel Tube Temporary Sign Support System.

Table 8.4. Performance Evaluation Summary for MASH Test 3-72 at 90° on Skid-Mounted Single Perforated Steel Tube Temporary Sign Support System.

Test Agency: Texas A&M Transportation Institute Test No.: 469468-7-2 Test Date: 2018-02-19 MASH Test 3-72 Evaluation Criteria **Test Results Assessment** Structural Adequacy The test article should readily activate in a predictable The skid-mounted single perforated steel tube temporary sign support system yielded to the manner by breaking away, fracturing, or yielding. **Pass** 2270P vehicle and the support released from the skid. Occupant Risk D. Detached elements, fragments, or other debris from the The detached sign panel and upright support did test article should not penetrate or show potential for not penetrate the occupant compartment. The penetrating the occupant compartment, or present an debris did not present undue hazard to others in the undue hazard to other traffic, pedestrians, or personnel area. Pass in a work zone. The windshield was cracked and had a maximum Deformations of, or intrusions into, the occupant deformation of 2.0 inches. No other occupant compartment should not exceed limits set forth in Section compartment deformation or intrusion was 5.3 and Appendix E of MASH. observed. Detached elements, fragments, or other debris from the The sign panel and upright support would not block the driver's vision enough to cause loss of test article, of vehicular damage should not block the Pass driver's vision or otherwise cause the driver to lose control of the vehicle. control of the vehicle. The vehicle should remain upright during and after The 2270P vehicle remained upright during and collision. The maximum roll and pitch angles are not to after the collision event. **Pass** exceed 75 degrees. H. Longitudinal and lateral occupant impact velocities MASH does not require vehicle instrumentation should fall below the preferred value of 10 ft/s, or at least when the weight of the traffic control device is NA below the maximum allowable value of 16.4 ft/s. less than 220 lb. The skid-mounted single Longitudinal and lateral occupant ridedown perforated steel tube temporary sign support accelerations should fall below the preferred value of system weighed 63 lb. Therefore, occupant risk NA 15.0 g, or at least below the maximum allowable value of factors were not obtained for this test. 20.49 g. Vehicle Trajectory *Vehicle trajectory behind the test article is acceptable.* The vehicle came to rest 220 ft behind the device. **Pass**

 Table 8.5. Performance Evaluation Summary for MASH Test 3-72
 on Skid-Mounted Single Perforated Steel Tube Temporary Sign Support System.

Evaluation Factors	Evaluation Criteria	Crash Test No. 469468-7-1	Crash Test No. 469468-7-2
Structural B		S	S
	D	S	S
	F	S	S
Occupant Risk	E	S	S
	Н	NA	NA
	I	NA	NA
Post Impact Trajectory	N	S	S
MASH Test No.		MASH 3-72 (at 0°)	MASH 3-72 (at 90°)
Pass/Fail		Pass	Pass

Legend:

S = Satisfactory U = Unsatisfactory NA = Not applicable

CHAPTER 9: MAILBOXES

9.1 BACKGROUND*

The small passenger car is considered the critical design vehicle for evaluation of mailbox support systems based on the required mailbox mounting height. As shown in Figure 9.1, the mounting height regulated for mailboxes by the United States Postal Service places mailboxes at a height that makes interaction with the windshield of the pickup truck design vehicle improbable. The taller hood height and longer wrap-around distance (i.e., the distance from the ground, around the front end, and across the hood to the base of the windshield) of the 2270P pickup truck significantly decreases the probability of windshield impact and occupant compartment intrusion. Therefore, Test 3-62 with the pickup truck was considered unnecessary for the *MASH* evaluation of the TxDOT mailbox systems.

Figure 9.1. Mailbox Geometrics with 2270P Pickup Truck (11).

The *MASH* test matrix for breakaway supports includes two tests with the 1100C small passenger car: a low-speed test at 19 mi/h (Test 3-60) and a high-speed test at 62 mi/h (Test 3-61). In the low speed small car test, *MASH* testing has shown that the mailbox support assembly will be pushed forward by the impacting vehicle (*12*). It is unlikely that the mailbox will separate from the support or that the support assembly will interact with the vehicle windshield during this lower impact severity test.

TTI researchers consider the most critical test for evaluation of mailbox systems to be *MASH* test designation 3-61, which involves the 1100C small passenger car impacting at high speed. This test evaluates both the structural adequacy of the mailbox connection hardware and the interaction of the mailbox support assembly with the vehicle windshield. If the mailbox remains attached during this high-speed test, it is not expected to detach in the low-speed test.

^{*} The opinions/interpretations identified/expressed in Section 9.1 are outside the scope of TTI Proving Ground's A2LA Accreditation.

Four different mailbox support systems were selected for *MASH* testing and evaluation during Phase II of the project. The details of these systems and the results of the crash testing are provided below.

9.2 SINGLE MAILBOX WITH RECYCLED RUBBER SUPPORT POST IN TYPE 4 FOUNDATION

9.2.1 System Details

An *Elite* No. 1-A (Model #E1600B00) standard arched-top medium size mailbox from Solar Group, Inc., a division of Gibraltar Industries, was attached to the top of a recycled rubber support post at a height of 42 inches above grade. The mailbox, which weighed 7 lb, had approximate dimensions of 11 inches tall × 8¾ inches wide × 21½ inches deep. Attachment of the *Elite* mailbox to the post was accomplished using a mailbox bracket (DHT #161443), two extension brackets (DHT #148938), and associated SAE grade 5 bolts, nuts, and washers. The mailbox with the attachment brackets and hardware weighed 10 lb.

The recycled rubber support post was inserted into a Type 4 foundation socket (DHT #160891) and secured with a tapered semi-circular HDTP wedge (DHT #160892) on the impact side. The foundation socket was installed flush with the surface of a 12-inch diameter × 30-inch deep unreinforced concrete foundation. The concrete was specified as TxDOT Class B having a minimum 28-day unconfined compressive strength of 2000 psi.

Figure 9.2 presents overall information on the single mailbox with recycled rubber support in Type 4 foundation, and Figure 9.3 provides photographs of the installation. Appendix H.1.1 provides further details. Appendix H.1.2 provides material certification documents.

9.2.2 *MASH* Test 3-61 (Crash Test No. 469468-8-1)

9.2.2.1 Test Designation and Actual Impact Conditions

MASH Test 3-61 involves an 1100C vehicle weighing 2420 lb ± 55 lb impacting the mailbox support at an impact speed of 62 mi/h ± 2.5 mi/h and an angle of $0^{\circ} \pm 1.5^{\circ}$. The target impact point for MASH Test 3-61 was the right quarter point of the vehicle aligned with the centerline of the mailbox support.

The 2011 Kia Rio^* used in the test weighed 2433 lb, and the actual impact speed and angle were 63.8 mi/h and 0°, respectively. The actual impact point was the right quarter point of the vehicle aligned with the centerline of the mailbox support. Target KE was 288 kip-ft, and actual KE was 331 kip-ft.

9.2.2.2 Weather Conditions

The test was performed on the afternoon of April 4, 2018. Weather conditions at the time of testing were as follows: wind speed: 13 mi/h; wind direction: 30° (vehicle was traveling in a southerly direction); temperature: 66°F; relative humidity: 38 percent.

TR No. 0-6946-R2 124 2019-03-27

^{*} The 2011 model vehicle used is older than the 6-year age noted in *MASH* and was selected based upon availability. An older model vehicle is permitted by AASHTO as long as it is otherwise *MASH* compliant. Other than the vehicle's year model, this 2011 model vehicle met the *MASH* requirements.

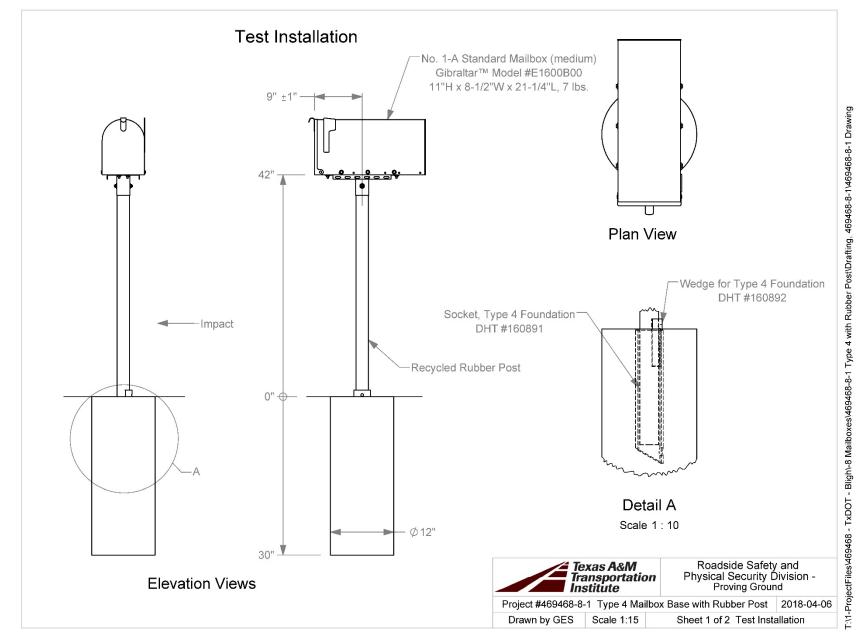


Figure 9.2. Details of Single Mailbox with Recycled Rubber Support Post in Type 4 Foundation.

Figure 9.3. Single Mailbox with Recycled Rubber Support Post in Type 4 Foundation prior to Testing.

9.2.2.3 Test Vehicle

Figures 9.4 and 9.5 show the 2011 Kia Rio used for the crash test. The vehicle's test inertia weight was 2433 lb, and its gross static weight was 2598 lb. The height to the lower edge of the vehicle bumper was 7.75 inches, and the height to the upper edge of the bumper was 21.5 inches. Table H.1 in Appendix H.1.3 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 9.4. Single Mailbox with Recycled Rubber Support Post in Type 4 Foundation/Test Vehicle Geometrics for Test No. 468469-8-1.

Figure 9.5. Test Vehicle before Test No. 468469-8-1.

NOTE: Photos taken prior to insertion of Dummy.

9.2.2.4 Test Description

The test vehicle impacted the single mailbox with recycled rubber support post in Type 4 foundation with the right quarter point of the vehicle aligned with the centerline of the mailbox support at a speed of 63.8 mi/h and an angle of 0°. Table 9.1 lists events that occurred during Test No. 469468-8-1. Figure H.1 in Appendix H.1.4 presents sequential photographs during the test.

Table 9.1. Events during Test No. 469468-8-1.

TIME (s)	EVENT
0.000	Right front quarter point of vehicle contacts mailbox support
0.010	Mailbox mounting plate partially detached from mailbox
0.023	Support completely out of foundation socket
0.035	Mailbox imparts maximum deformation of car hood
0.051	Mailbox rebounding off of hood
0.071	Vehicle loses contact with support while traveling at 63.5 mi/h

Brakes on the vehicle were applied 2.3 s after impact, and the vehicle came to rest 366 ft downstream from the point of impact and along centerline of the impact path.

9.2.2.5 Damage to Test Installation

Figure 9.6 shows damage to the mailbox system. The mailbox remained attached to the support post, and the assembly came to rest 239 ft downstream from the point of impact and 15 ft to the right of centerline of the vehicle path. The lid detached from the mailbox and was came to rest 71 ft downstream from the point of impact and 12 ft to the right of centerline of the vehicle path. The wedge remained in the socket.

Figure 9.6. Single Mailbox with Recycled Rubber Support Post in Type 4 Foundation after Test No. 469468-8-1.

9.2.2.6 Damage to Test Vehicle

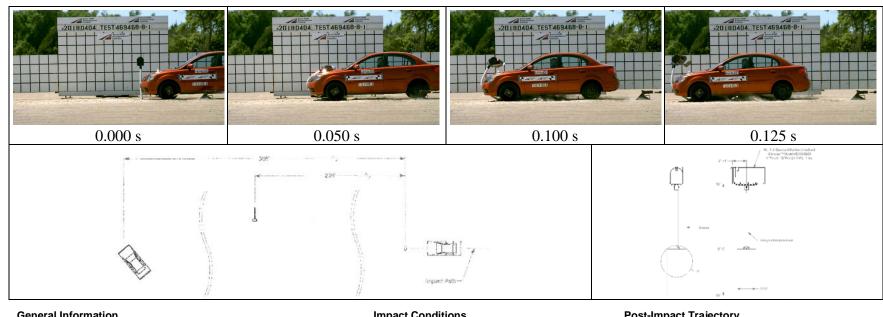
Figure 9.7 shows the damage sustained by the vehicle. Very small depressions in the right side of the bumper and hood were observed. The windshield had a 1-inch × 1-inch starburst crack in the right lower corner near the hood, but no hole or tear was observed. Maximum exterior crush to the vehicle was so slight as to be unmeasurable. No occupant compartment deformation or intrusion was observed. Figure 9.8 shows the interior of the vehicle. Tables H.2 and H.3 in Appendix H.1.3 provide exterior crush and occupant compartment measurements.

Figure 9.7. Test Vehicle after Test No. 469468-8-1.

Figure 9.8. Interior of Test Vehicle for Test No. 469468-8-1.

9.2.2.7 Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk, and results are shown in Table 9.2. Figure 9.9 summarizes these data and other pertinent information from the test. Figure H.2 in Appendix H.1.5 shows the vehicle angular displacements, and Figures H.3 through H.8 in Appendix H.1.6 show acceleration versus time traces.


Table 9.2. Occupant Risk Factors for Test No. 469468-8-1.

Occupant Risk Factor	Value	Time
Impact Velocity		
Longitudinal	No contact	
Lateral	No contact	
Ridedown Accelerations		
Longitudinal	NA	
Lateral	NA	
THIV	No contact	
PHD	NA	
ASI	0.05	0.0130–0.630 s
Maximum 50-ms Moving Average		
Longitudinal	−0.5 g	0.0000–0.0500 s
Lateral	0.3 g	0.2972–0.3472 s
Vertical	0.4 g	0.0269–0.0769 s
Maximum Roll, Pitch, and Yaw Angles		
Yaw	1 °	0.2413 s
Pitch	2 °	0.1289 s
Roll	6°	0.1405 s

9.2.2.8 Assessment of Test Results

The recycled rubber support post deformed around the front of the vehicle and pulled out of the ground socket. The released mailbox system was carried forward by the vehicle. The system subsequently rode up and over the vehicle. There was a minor crack in the windshield. No occupant compartment deformation was observed.

Table 9.3 provides an assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 3-61. Table 9.3 shows the single mailbox with recycled rubber support in Type 4 foundation met all applicable criteria for *MASH* Test 3-61.

		L	99 -
General Information Test Agency Test Standard Test No	Texas A&M Transportation Institute (TTI)	Impact Conditions Speed	Post-Impact Trajectory Stopping Distance
TTI Test No		Location/Orientation Right quarter point	Vehicle Stability
Test Date		Impact Severity	Maximum Yaw Angle 1°
Test Article	2010-04-04	Exit Conditions	Maximum Pitch Angle2°
Type	Support Structure	Speed 63.5 mi/h	Maximum Roll Angle6°
	Single Mailbox with Recycled Rubber	Angle0°	Maximum Roll / Rigio
Tallio	Support Post in Type 4 Foundation	Occupant Risk Values	Test Article Debris Scatter
Installation Height Material or Key Elements	71	Longitudinal OIV	Longitudinal
Soil Type and Condition	floater and secured with tapered wedge 12-in × 30-in deep concrete footer in crushed limestone, dry	Lateral Ridedown NA THIV	Vehicle Damage VDS
Test Vehicle	, , , , , , , , , , , , , , , , , , ,	ASI 0.05 g	Max. Exterior Deformation Not measurable
Type/Designation	1100C	Max. 0.050-s Average	OCDI RF0000000
Make and Model		Longitudinal0.5 g	Max. Occupant Compartment
Curb Test Inertial Dummy	2466 lb 2433 lb	Lateral	DeformationNone
Gross Static			

Figure 9.9. Summary of Results for *MASH* Test 3-61 on Single Mailbox with Recycled Rubber Support Post in Type 4 Foundation.

Table 9.3. Performance Evaluation Summary for *MASH* Test 3-61 on Single Mailbox with Recycled Rubber Support Post in Type 4 Foundation.

	1 Ost III 1	ype 4 roundation.	
Tes	t Agency: Texas A&M Transportation Institute	Test No.: 469468-8-1 T	est Date: 2018-04-04
	MASH Test 3-61 Evaluation Criteria	Test Results	Assessment
Stru	ictural Adequacy		
В.	The test article should readily activate in a predictable manner by breaking away, fracturing, or yielding.	The single mailbox with recycled rubber support post in Type 4 foundation readily pulled out of the socket upon impact by the 1100C vehicle.	Pass
Occ	cupant Risk		
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	The mailbox and support post did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	The windshield was cracked, but no measurable deformation, tear, or hole was observed. No other occupant compartment deformation was observed.	
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 1100C vehicle remained upright during and after the collision event.	Pass
Н.	Longitudinal and lateral occupant impact velocities should fall below the preferred value of 10 ft/s, or at least below the maximum allowable value of 16.4 ft/s.	No contact in longitudinal or lateral directions.	Pass
I.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 Gs, or at least below the maximum allowable value of 20.49 Gs.	No contact in longitudinal or lateral directions.	Pass
Vel	nicle Trajectory		
N.	Vehicle trajectory behind the test article is acceptable.	The 1100C vehicle came to rest 366 ft behind the original location of the test article.	Pass

9.3 DOUBLE MAILBOX WITH THIN-WALL GALVANIZED SUPPORT POST IN TYPE 4 FOUNDATION

9.3.1 System Details

Two *Elite* No. 1-A (Model #E1600B00) standard arched-top medium size mailboxes from Solar Group, Inc., a division of Gibraltar Industries, were attached to the top of a galvanized, thin-wall steel support post at a height of 42 inches above grade. The mailboxes, which weighed 7 lb, had approximate dimensions of 11 inches tall × 8¾ inches wide × 21½ inches deep. A mailbox bracket (DHT #161443) and extension bracket (DHT #148938) was attached to the bottom of each mailbox using SAE grade 5 bolts, nuts, and washers. Attachment of the *Elite* mailboxes to the post was accomplished using a bracket (DHT #162323) that consisted of a horizontal steel plate and tubular socket. The mailboxes were bolted to the horizontal plate at a center-to-center spacing of 10 inches. The bracket socket was then placed over the end of the support post and secured using a ¾-inch diameter × 3½-inch long SAE grade 5 hex bolt, flat and lock washers, and nut.

The galvanized steel support post (DHT #143426) was fabricated from 2-inch nominal 16 gauge (23% inches outside diameter × 0.109-inch wall thickness) thin wall ASTM A513 Type 5 DOM steel tubing. The support post, which had a length of 57 inches and weighed 7.5 lb, was inserted into a Type 4 foundation socket (DHT #160891) and secured with a tapered semicircular HDTP wedge (DHT #160892) on the impact side. The foundation socket was installed flush with the surface of a 12-inch diameter × 30-inch deep unreinforced concrete foundation. The concrete was specified as TxDOT Class B having a minimum 28-day unconfined compressive strength of 2000 psi. The total mass of the two mailboxes, connection hardware, and support post assembly was 31 lb.

Figure 9.10 presents overall information on the double mailbox with thin-wall galvanized support post in Type 4 foundation, and Figure 9.11 provides photographs of the installation. Appendix H.2.1 provides further details. Appendix H.1.2 contains material certification documents.

9.3.2 *MASH* Test 3-61 (Crash Test No. 469468-8-2)

9.3.2.1 Test Designation and Actual Impact Conditions

MASH Test 3-61 involves an 1100C vehicle weighing 2420 lb ± 55 lb impacting the support of the mailboxes at an impact speed of 62 mi/h ± 2.5 mi/h and an angle of $0^{\circ} \pm 1.5^{\circ}$. The target impact point for MASH Test 3-61 on the double mailbox was the right quarter point of the vehicle aligned with the centerline of the mailbox support.

The 2011 Kia Rio * used in the test weighed 2440 lb, and the actual impact speed and angle were 63.3 mi/h and 0 $^\circ$, respectively. The actual impact point was the right quarter point of the vehicle aligned with the centerline of the mailbox support. Target KE was 288 kip-ft, and actual KE was 327 kip-ft.

TR No. 0-6946-R2 133 2019-03-27

^{*} The 2011 model vehicle used is older than the 6-year age noted in *MASH* and was selected based upon availability. An older model vehicle is permitted by AASHTO as long as it is otherwise *MASH* compliant. Other than the vehicle's year model, this 2011 model vehicle met the *MASH* requirements.

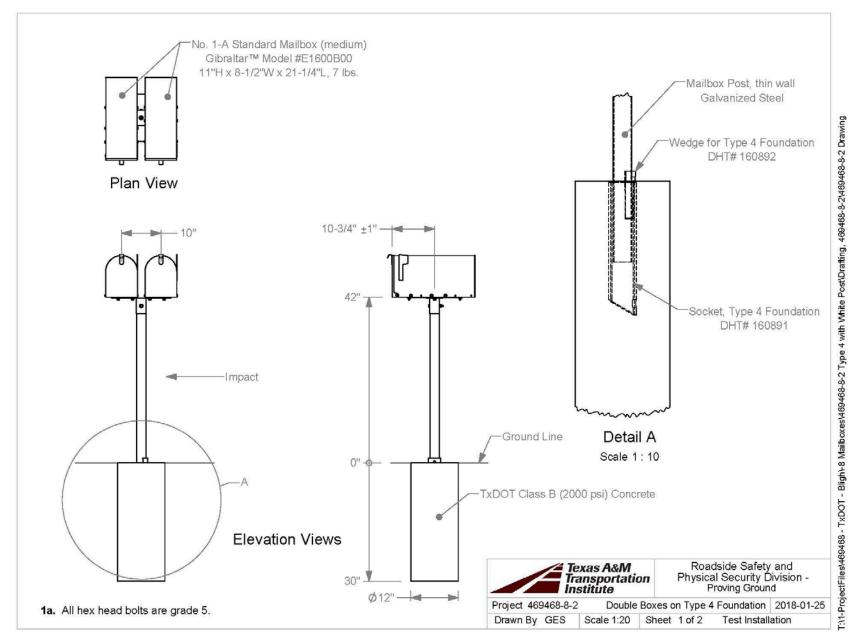


Figure 9.10. Details of Double Mailbox with Thin-Wall Galvanized Support Post in Type 4 Foundation.

Figure 9.11. Double Mailbox with Thin-Wall Galvanized Support Post in Type 4 Foundation prior to Testing.

9.3.2.2 Weather Conditions

The test was performed on the morning of April 3, 2018. Weather conditions at the time of testing were as follows: wind speed: 16 mi/h; wind direction: 184° (vehicle was traveling in a southerly direction); temperature: 77°F; relative humidity: 80 percent.

9.3.2.3 Test Vehicle

Figures 9.12 and 9.13 show the 2011 Kia Rio used for the crash test. The vehicle's test inertia weight was 2440 lb, and its gross static weight was 2605 lb. The height to the lower edge of the vehicle bumper was 7.75 inches, and the height to the upper edge of the bumper was 21.5 inches. Table H.4 in Appendix H.2.2 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 9.12. Double Mailbox with Thin-Wall Galvanized Support Post in Type 4 Foundation/Test Vehicle Geometrics for Test No. 468469-8-2.

Figure 9.13. Test Vehicle before Test No. 468469-8-1.

NOTE: Photos taken prior to insertion of dummy.

9.3.2.4 Test Description

The test vehicle impacted the double mailbox with thin-wall galvanized support post in Type 4 foundation with the right quarter point of the vehicle aligned with the centerline of the mailbox support at a speed of 63.3 mi/h an angle of 0°. Table 9.4 lists events that occurred during Test No. 469468-8-2. Figure H.9 in Appendix H.2.3 presents sequential photographs during the test.

Table 9.4. Events during Test No. 469468-8-2.

TIME (s)	EVENT
0.000	Right front quarter point of vehicle contacts mailbox support
0.021	Mailbox corner makes contact with hood
0.022	Post completely out of foundation socket
0.047	Mailbox and support post completely deformed around front bumper
0.048	Mailbox and hood deformed. Support post wrapped around bumper.
0.046	Vehicle traveling at 62.8 mi/h.
0.064	Mailbox loses contact with hood, post still deformed around bumper

Brakes on the vehicle were applied 1.4 s after impact, and the vehicle came to rest 306 ft downstream of the point of impact and along the centerline of the impact path.

9.3.2.5 Damage to Test Installation

Figure 9.14 shows damage to the mailbox system. The support with the mailboxes attached came to rest 120 ft downstream from impact. The wedge remained near the test site. The lid detached from one of the mailboxes and came to rest 34 ft downstream from the point of impact.

Figure 9.14. Double Mailbox with Thin-Wall Galvanized Support in Type 4 Foundation after Test No. 469468-8-2.

9.3.2.6 Damage to Test Vehicle

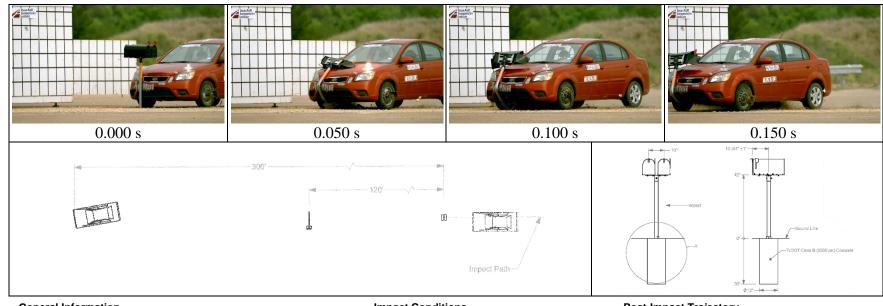
Figure 9.15 shows the damage sustained by the vehicle. A very small depression in the right side of the bumper and hood were observed. There was a 0.5-inch diameter hole in the hood just right of centerline. No contact with the windshield was observed. Maximum exterior crush to the vehicle was so slight as to be unmeasurable. No occupant compartment deformation or intrusion was observed. Figure 9.16 shows the interior of the vehicle. Tables H.5 and H.6 in Appendix H.2.2 provide exterior crush and occupant compartment measurements.

Figure 9.15. Test Vehicle after Test No. 469468-8-2.

Figure 9.16. Interior of Test Vehicle for Test No. 469468-8-1.

9.3.2.7 Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk, and the results are shown in Table 9.5. Figure 9.17 summarizes these data and other pertinent information from the test. Figure H.10 in Appendix H.2.4 shows the vehicle angular displacements, and Figures H.11 through H.16 in Appendix H.2.5 show acceleration versus time traces.


Table 9.5. Occupant Risk Factors for Test No. 469468-8-2.

Occupant Risk Factor	Value	Time
Impact Velocity		
Longitudinal	2.6 ft/s	at 0.8501 s on front of interior
Lateral	0.7 ft/s	at 0.8501 s off front of interior
Ridedown Accelerations		
Longitudinal	0.5 g	0.8501–0.8601 s
Lateral	0.7 g	0.8578–0.8678 s
THIV	2.7 km/h 0.8 m/s	at 0.8488 s on front of interior
PHD	0.8 g	0.8578–0.8678 s
ASI	0.13	0.0110-0.0610 s
Maximum 50-ms Moving Average		
Longitudinal	−1.3 g	0.0009–0.0509 s
Lateral	−0.4 g	0.0191–0.0691 s
Vertical	1.1 g	0.0242–0.0742 s
Maximum Roll, Pitch, and Yaw Angles		
Yaw	2 °	0. 3275 s
Pitch	5°	0.3343 s
Roll	4 °	0. 3717 s

9.3.2.8 Assessment of Test Results

The thin-wall galvanized support pipe yielded to the vehicle, deformed about the front end, and pulled out of its socket. The support and mailboxes were carried forward by the vehicle and remained attached as a system. No windshield contact was observed.

Table 9.6 provides an assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 3-61. Table 9.6 shows the double mailboxes with thin-wall galvanized support in Type 4 foundation met all applicable criteria for *MASH* Test 3-61.

General Information Test Agency Test Standard Test No	Texas A&M Transportation Institute (TTI) MASH Test 3-61	Impact Conditions Speed	Post-Impact Trajectory Stopping Distance
TTI Test No.		Location/Orientation Right quarter point	Vehicle Stability
Test Date	2018-04-03	Impact Severity 327 kip-ft	Maximum Yaw Angle 2°
Test Article		Exit Conditions	Maximum Pitch Angle 5°
Type	Support Structure	Speed 62.8 mi/h	Maximum Roll Angle 4°
Name	Two Mailboxes with 2-inch Steel Support in Type 4 Foundation	Angle0° Occupant Risk Values	Test Article Debris Scatter
Installation Height	42 inches above grade	Longitudinal OIV 2.6 ft/s	Longitudinal 120 ft
Material or Key Elements	Two medium mailboxes mounted on a single 2-inch thin wall steel post secured in socket with tapered wedge. System	Lateral OIV	Lateral 0 ft Vehicle Damage
	weighed 31 lb with hardware	THIV 2.7 km/h	VDS
Soil Type and Condition	Concrete footer in crushed limestone, dry	PHD 0.8 g	CDC
Test Vehicle	•	ASI 0.13	Max. Exterior Deformation Not measurable
Type/Designation	1100C	Max. 0.050-s Average	OCDI RF0000000
Make and Model	2011 Kia Rio	Longitudinal1.3 g	Max. Occupant Compartment
Curb Test Inertial Dummy Gross Static	2440 lb 165 lb	Lateral	Deformation None

Figure 9.17. Summary of Results for *MASH* Test 3-61 on Double Mailbox with Thin-Wall Galvanized Support in Type 4 Foundation.

Table 9.6. Performance Evaluation Summary for *MASH* Test 3-61 on Double Mailbox with Thin-Wall Galvanized Support in Type 4 Foundation.

Test Agency: Texas A&M Transportation Institute Test No.: 469468-8-2 Test Date: 2018-04-03 **MASH** Test 3-61 Evaluation Criteria **Test Results Assessment** Structural Adequacy The test article should readily activate in a predictable The double mailbox with thin-wall galvanized support pipe in Type 4 foundation deformed along manner by breaking away, fracturing, or yielding. **Pass** the front of the vehicle and pulled out of the socket. Occupant Risk D. Detached elements, fragments, or other debris from the The mailbox and support did not penetrate or show test article should not penetrate or show potential for potential for penetrating the occupant penetrating the occupant compartment, or present an compartment, or to present undue hazard to others undue hazard to other traffic, pedestrians, or personnel in the area. Pass in a work zone. Deformations of, or intrusions into, the occupant No measurable deformation was observed. No compartment should not exceed limits set forth in Section other occupant compartment deformation was 5.3 and Appendix E of MASH. observed. The 1100C vehicle remained upright during and F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to after the collision event. Pass exceed 75 degrees. H. Longitudinal and lateral occupant impact velocities Longitudinal OIV was 2.6 ft/s, and lateral OIV was should fall below the preferred value of 10 ft/s, or at least 0.7 ft/s.**Pass** below the maximum allowable value of 16.4 ft/s. Longitudinal and lateral occupant ridedown Maximum longitudinal occupant ridedown accelerations should fall below the preferred value of acceleration was 0.5 g, and maximum lateral Pass 15.0 Gs, or at least below the maximum allowable value occupant ridedown acceleration was 0.7 g. of 20.49 Gs. Vehicle Trajectory *Vehicle trajectory behind the test article is acceptable.* The 1100C vehicle came to rest 306 ft behind the Pass

original location of the test article.

9.4 MULTIPLE MAILBOXES WITH MULTI-MOUNT SUPPORT IN TYPE 4 FOUNDATION

9.4.1 Background*

This system consisted of four mailboxes attached to a powder-coated, thin-wall steel support fabricated in a semi-circular shape and secured inside a socket using a tapered semi-circular HDTP wedge. TxDOT standard MB-15(1) does not permit the use of large mailboxes on the outside positions of the multiple mailbox mount. The system was tested using two medium and two large standard mailboxes, which was more critical in terms of weight than four small or medium mailboxes.

9.4.2 System Details

The mailbox configuration evaluated in this test consisted of four mailboxes (two large and two medium) mounted at a height of 42 inches above grade to a semi-circular multiple-mount support post that was installed in a socket embedded in a concrete footing. Two large *Stanley* No. 2 mailboxes (Model #ST200B00) from Solar Group, Inc., a division of Gibraltar Industries, were attached at the two inside positions of the four mounting positions on the support post. The large *Stanley* mailboxes were approximately 15 inches tall \times 11½ inches wide \times 24¾ inches deep and weighed 11 lb.

Two medium *Elite* No. 1-A mailboxes (Model #E1600B00) from Solar Group, Inc., a division of Gibraltar Industries, were attached at the two outside mounting positions on the multiple-mount support. The medium *Elite* mailboxes were approximately 11 inches tall \times 8¾ inches wide \times 21½ inches deep and weighed 7 lb.

Attachment of each mailbox to the horizontal segment of the multiple-mount support post was accomplished using a mailbox bracket with a vertical steel tube sleeve (DHT #161443), two extension brackets (DHT #148938), and associated SAE grade 5 bolts, nuts, and washers.

The four mailboxes were supported with a TxDOT multiple-mount post (DHT #164116) fabricated from 2-inch nominal, 16 gauge (2.375-inch outside diameter × 0.065-inch wall thickness) thin wall ASTM A513 Type 5 DOM steel tubing. The support post incorporated a vertical section that inserted into a foundation sleeve with two small plates that controlled the embedment depth into the socket, a U-shaped section centered above the vertical section, and a horizontal section near the top. The ends of the semi-circular section of the support extended above the horizontal member to provide the outer connection points for mailbox attachment. There were two additional short vertical pipe sections attached to the interior of the horizontal member to provide two additional interior mailbox attachment points.

The leg of the multiple-mount support post was inserted approximately 12 inches into a Type 4 foundation socket (DHT #160891) and secured with a tapered HDPE wedge (DHT #160892) on the field side of the mailbox. The socket was embedded flush to the top of a non-reinforced concrete foundation that measured approximately 12 inches in diameter × 30 inches

^{*} The opinions/interpretations identified/expressed in Section 9.4.1 are outside the scope of TTI Proving Ground's A2LA Accreditation.

deep. The concrete was specified as TxDOT Class B having a minimum 28-day unconfined compressive strength of 2000 psi.

The total mass of the four mailboxes, connection hardware, and support post assembly was 70 lb. Figure 9.18 presents overall information on the multiple mailbox mount in Type 4 foundation, and Figure 9.19 provides photographs of the installation. Appendix H.3.1 provides further details. Appendix H.1.2 contains material certification documents.

9.4.3 *MASH* Test 3-61 (Crash Test No. 469468-8-3)

9.4.3.1 Test Designation and Actual Impact Conditions

MASH Test 3-61 involves an 1100C vehicle weighing 2420 lb ± 55 lb impacting the support of the mailboxes at an impact speed of 62 mi/h ± 2.5 mi/h and an angle of 0° ± 1.5 °. The target impact point for MASH Test 3-61 on the multiple mailboxes was the right quarter point of the vehicle aligned with the centerline of the mailbox support.

The 2011 Kia Rio * used in the test weighed 2440 lb, and the actual impact speed and angle were 65.7 mi/h and 0 $^\circ$, respectively. The actual impact point was the right quarter point of the vehicle aligned with the centerline of the mailbox support. Target KE was 288 kip-ft, and actual KE was 352 kip-ft.

9.4.3.2 Weather Conditions

The test was performed on the afternoon of April 3, 2018. Weather conditions at the time of testing were as follows: wind speed: 9 mi/h; wind direction: 202° (vehicle was traveling in a southerly direction); temperature: 81°F; relative humidity: 72 percent.

9.4.3.3 Test Vehicle

Figures 9.20 and 9.21 show the 2011 Kia Rio used for the crash test. The vehicle's test inertia weight was 2440 lb, and its gross static weight was 2605 lb. The height to the lower edge of the vehicle bumper was 7.75 inches, and the height to the upper edge of the bumper was 21.5 inches. Table H.7 in Appendix H.3.2 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

9.4.3.4 Test Description

The test vehicle impacted the multiple mailbox mount in Type 4 foundation with the right quarter point of the vehicle aligned with the centerline of the mailbox support at a speed of 65.7 mi/h and an angle of 0°. Table 9.7 lists events that occurred during Test No. 469468-8-3. Figure H.17 in Appendix H.3.3 presents sequential photographs during the test.

TR No. 0-6946-R2 143 2019-03-27

^{*} The 2011 model vehicle used is older than the 6-year age noted in *MASH* and was selected based upon availability. An older model vehicle is permitted by AASHTO as long as it is otherwise *MASH* compliant. Other than the vehicle's year model, this 2011 model vehicle met the *MASH* requirements.

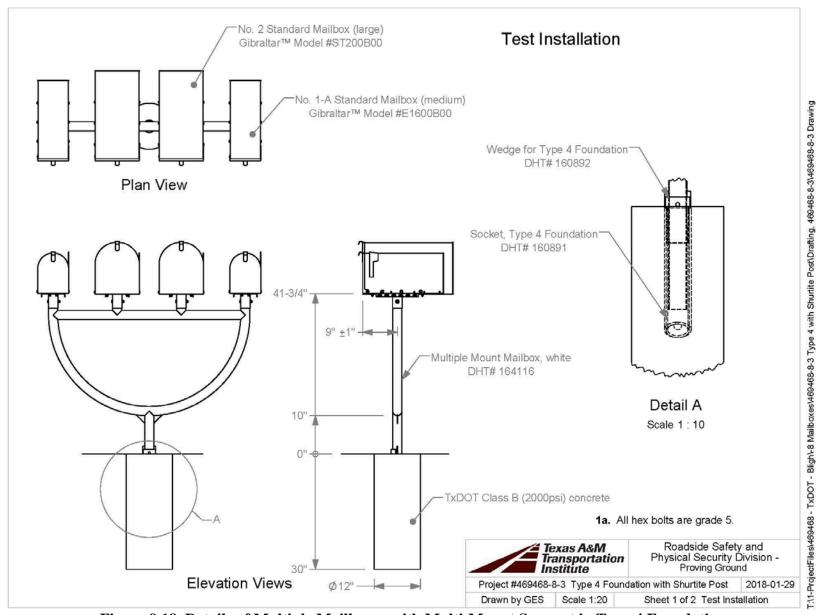


Figure 9.18. Details of Multiple Mailboxes with Multi-Mount Support in Type 4 Foundation.

Figure 9.19. Multiple Mailboxes with Multi-Mount Support in Type 4 Foundation prior to Testing.

Figure 9.20. Multiple Mailboxes with Multi-Mount Support in Type 4 Foundation/Test Vehicle Geometrics for Test No. 468469-8-3.

Figure 9.21. Test Vehicle before Test No. 468469-8-3. *NOTE: Photos taken prior to insertion of dummy.*

Table 9.7. Events during Test No. 469468-8-3.

TIME (s)	EVENT
0.000	Right front quarter point of vehicle contacts mailbox support
0.033	Post completely out of foundation socket
0.046	Mailbox corner makes contact with windshield
0.047	Windshield begins to crack from impact with mailbox
0.143	Mailbox no longer touching windshield and post not touching car
0.144	Car loses contact with the mailboxes and support while traveling at
0.144	63.8 mi/h

Brakes on the vehicle were applied 1.2 s after impact, and the vehicle came to rest 302 ft downstream of the point of impact and 10 ft to the left of centerline of the impact path.

9.4.3.5 Damage to Test Installation

Figure 9.22 shows damage to the mailbox system. The support with the mailboxes attached came to rest 160 ft downstream from impact and 10 ft to the right of centerline. The lid and rear of the mailbox on the impact side detached. The wedge remained near the impact location.

Figure 9.22. Multiple Mailboxes with Multi-Hanger Support in Type 4 Foundation after Test No. 469468-8-3.

9.4.3.6 Damage to Test Vehicle

Figure 9.23 shows the damage sustained by the vehicle. A very small depression in the right side of the bumper was observed, and the lower radiator support was deformed. The right side of the hood was deformed over an area measuring approximately 24 inches × 35 inches and 3 inches deep. The windshield was cracked in the right lower quadrant near the hood over an area 34 inches × 24 inches and 1.8 inches deep. No hole or tear was observed in the windshield. Maximum exterior crush to the front bumper of the vehicle was so slight as to be unmeasurable. Maximum occupant compartment deformation was 1.8 inches in the windshield area. Figure 9.24 shows the interior of the vehicle. Tables H.8 and H.9 in Appendix H.3.2 provide exterior crush and occupant compartment measurements.

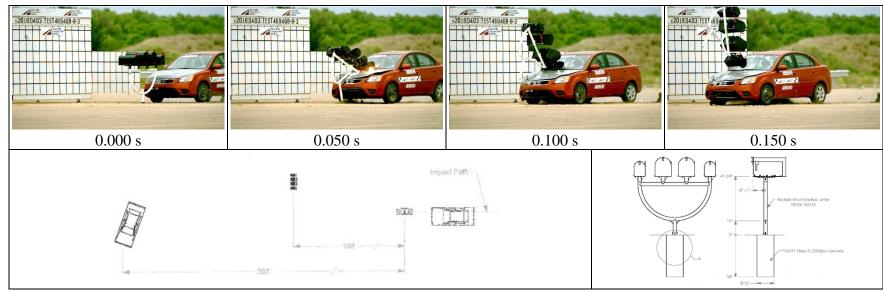
Figure 9.23. Test Vehicle after Test No. 469468-8-1.

Before Test After Test

Figure 9.24. Interior of Test Vehicle for Test No. 469468-8-1.

9.4.3.7 Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk, and the results are shown in Table 9.8. Figure 9.25 summarizes these data and other pertinent information from the test. Figure H.18 in Appendix H.3.4 shows the vehicle angular displacements, and Figures H.19 through H.24 in Appendix H.3.5 show acceleration versus time traces.


Table 9.8. Occupant Risk Factors for Test No. 469468-8-3.

Occupant Risk Factor	Value	Time
Impact Velocity		
Longitudinal	2.6 ft/s	at 0.7280 s on front of interior
Lateral	1.0 ft/s	at 0.7280 s on front of filterior
Ridedown Accelerations		
Longitudinal	0.2 g	0.8488–0.8588 s
Lateral	0.4 g	0.9358-0.9458 s
THIV	3.2 km/h	at 0.7229 s on front of interior
1111 Y	0.9 m/s	at 0.7229 5 on Holt of Interior
PHD	0.4 g	0.9355–0.9455 s
ASI	0.14	0.0128-0.0628 s
Maximum 50-ms Moving Average		
Longitudinal	−1.6 g	0.0016-0.0516 s
Lateral	0.4 g	0.0566–0.1066 s
Vertical	1.3 g	0.0468–0.0968 s
Maximum Roll, Pitch, and Yaw Angles		
Yaw	2 °	03218 s
Pitch	4 °	0.5126 s
Roll	2 °	0.2147 s

9.4.3.8 Assessment of Test Results

The support deformed around the front of the vehicle and pulled out of the ground socket. The released mailbox system rotated into the windshield and subsequently up and over the vehicle. The windshield sustained deformation of 1.8 inches, below the 3-inch maximum for *MASH*, and there were no tears or holes through the windshield.

Table 9.9 provides an assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 3-61. Table 9.9 shows the multiple mailboxes with multi-hanger support in Type 4 foundation met all applicable criteria for *MASH* Test 3-61.

181			Ø12 — M
General Information		Impact Conditions	Post-Impact Trajectory
Test Agency	Texas A&M Transportation Institute (TTI)	Speed 65.7 mi/h	Stopping Distance
Test Standard Test No	MASH Test 3-61	Angle 0°	10 ft twd left side
TTI Test No	469468-8-3	Location/Orientation Right quarter point	Vehicle Stability
Test Date	2018-04-03	Impact Severity 352 kip-ft	Maximum Yaw Angle 2°
Test Article		Exit Conditions	Maximum Pitch Angle 4°
Type	Support Structure	Speed 63.8 mi/h	Maximum Roll Angle 2°
	Multi-Mount "U"-shape Mailbox Support in	Angle 0°	=
	Type 4 Foundation	Occupant Risk Values	Test Article Debris Scatter
Installation Height		Longitudinal OIV 2.6 ft/s	Longitudinal 160 ft
· · · · · · · · · · · · · · · · · · ·	Semi-circular multiple-mount support with	Lateral OIV1.0 ft/s	Lateral 10 ft
Material of Rey Elements	2 medium & 2 large arched-top mailboxes	Longitudinal Ridedown 0.2 g	Lateral 10 ft
	installed in socket and secured by wedge	Lateral Ridedown 0.4 g	Vehicle Damage
Sail Type and Condition	12-in × 30-in deep concrete footer in	THIV 3.2 km/h	VDS 12FR1
Soil Type and Condition	•		
Total Webbele	crushed limestone, dry	PHD 0.4 g	CDC12FREN1
Test Vehicle		ASI	Max. Exterior Deformation Not measurable
Type/Designation		Max. 0.050-s Average	OCDI RF0000000
Make and Model		Longitudinal1.6 g	Max. Occupant Compartment
Curb	2455 lb	Lateral 0.4 g	Deformation 1.8 inches
Test Inertial	2440 lb	Vertical 1.3 g	
Dummy	165 lb		
Gross Static	2605 lb		

Figure 9.25. Summary of Results for *MASH* Test 3-61 on Multiple Mailboxes with Multi-Mount Support in Type 4 Foundation.

Table 9.9. Performance Evaluation Summary for *MASH* Test 3-61 on Multiple Mailboxes with Multi-Mount Support in Type 4 Foundation.

Test Agency: Texas A&M Transportation Institute Test No.: 469468-8-3 Test Date: 2018-04-03 **MASH** Test 3-61 Evaluation Criteria **Test Results** Assessment Structural Adequacy The test article should readily activate in a predictable The multiple mailboxes with 4-position multimount support in Type 4 foundation readily pulled manner by breaking away, fracturing, or yielding. Pass out of the socket upon impact by the 1100C vehicle. Occupant Risk Detached elements, fragments, or other debris from the The mailboxes and support did not penetrate or test article should not penetrate or show potential for show potential for penetrating the occupant compartment, or to present undue hazard to others penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in the area. in a work zone. Pass The windshield was cracked, and there was 1.8 inches of deformation inward toward the Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section occupant compartment. No tear or hole was 5.3 and Appendix E of MASH. observed. No other occupant compartment deformation was observed. The vehicle should remain upright during and after The 1100C vehicle remained upright during and collision. The maximum roll and pitch angles are not to after the collision event. **Pass** exceed 75 degrees. H. Longitudinal and lateral occupant impact velocities Longitudinal OIV was 2.6 ft/s, and lateral OIV was should fall below the preferred value of 10 ft/s, or at least 1.0 ft/s. Pass below the maximum allowable value of 16.4 ft/s. Longitudinal and lateral occupant ridedown Maximum longitudinal occupant ridedown acceleration was 0.2 g, and maximum lateral accelerations should fall below the preferred value of Pass 15.0 Gs. or at least below the maximum allowable value occupant ridedown acceleration was 0.4 g. of 20.49 Gs. Vehicle Trajectory *Vehicle trajectory behind the test article is acceptable.* The 1100C vehicle came to rest 302 ft behind and 10 ft to the left of the original impact location with Pass

the test article.

9.5 SINGLE MOLDED PLASTIC MAILMASTER® MAILBOX WITH WOOD SUPPORT IN TYPE 5 FOUNDATION

9.5.1 System Details

The mailbox configuration used for this test consisted of a two-piece molded plastic mailbox assembly mounted on a nominal $4 \times 4 \times 54$ -inch long wood post embedded 2 ft-6 inches in soil. The Step 2 Home Mailmaster® Plus plastic mailbox (Model #540200) was supplied with lag screws and wood screws, which were used to secure it to the support post at a height that placed the bottom of the integral mailbox at a height of 42 inches above grade.

Figure 9.26 presents overall information on the two-piece molded plastic Mailmaster[®] mailbox with wood support (Type 5 foundation), and Figure 9.27 provides photographs of the installation. Appendix H.4.1 provides further details. Appendix H.1.2 contains material certification documents.

9.5.2 *MASH* Test 3-61 (Crash Test No. 469468-8-4)

9.5.2.1 Test Designation and Actual Impact Conditions

MASH Test 3-61 involves an 1100C vehicle weighing 2420 lb ± 55 lb impacting the mailbox support at an impact speed of 62 mi/h ± 2.5 mi/h and an angle of $0^{\circ} \pm 1.5^{\circ}$. The target impact point for MASH Test 3-61 on the two-piece molded plastic mailbox was the right quarter point of the vehicle aligned with the centerline of the mailbox support.

The 2011 Kia Rio* used in the test weighed 2433 lb, and the actual impact speed and angle were 62.8 mi/h and 0°, respectively. The actual impact point was the right quarter point of the vehicle aligned with the centerline of the mailbox support. Target KE was 288 kip-ft, and actual KE was 321 kip-ft.

9.5.2.2 Weather Conditions

The test was performed on the morning of April 4, 2018. Weather conditions at the time of testing were as follows: wind speed: 7 mi/h; wind direction: 52° (vehicle was traveling in a southerly direction); temperature: 58°F; relative humidity: 47 percent.

9.5.2.3 Test Vehicle

Figures 9.28 and 9.29 show the 2011 Kia Rio used for the crash test. The vehicle's test inertia weight was 2433 lb, and its gross static weight was 2598 lb. The height to the lower edge of the vehicle bumper was 7.75 inches, and the height to the upper edge of the bumper was 21.5 inches. Table H.10 in Appendix H.4.2 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

TR No. 0-6946-R2 152 2019-03-27

^{*} The 2011 model vehicle used is older than the 6-year age noted in *MASH* and was selected based upon availability. An older model vehicle is permitted by AASHTO as long as it is otherwise *MASH* compliant. Other than the vehicle's year model, this 2011 model vehicle met the *MASH* requirements.

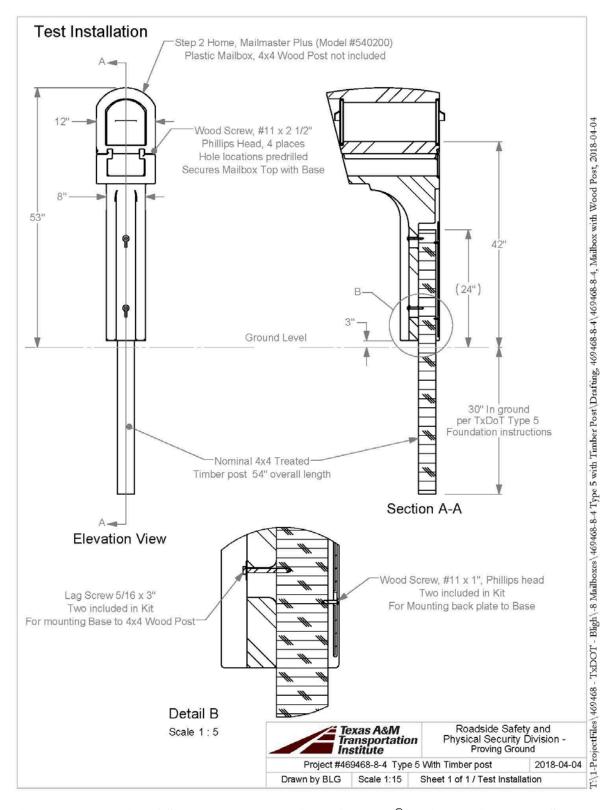


Figure 9.26. Details of Single Molded Plastic Mailmaster® Mailbox with Wood Support Post in Type 5 Foundation.

Figure 9.27. Single Molded Plastic Mailmaster® Mailbox with Wood Support Post in Type 5 Foundation prior to Testing.

Figure 9.28. Single Molded Plastic Mailmaster® Mailbox with Wood Support Post in Type 5 Foundation/Test Vehicle Geometrics for Test No. 468469-8-4.

Figure 9.29. Test Vehicle before Test No. 468469-8-4. *NOTE: Photos taken prior to insertion of dummy.*

9.5.2.4 Test Description

The test vehicle impacted the molded plastic mailbox assembly with Type 5 foundation with the right quarter point of the vehicle aligned with the centerline of the mailbox support at a speed of 62.8 mi/h and an angle of 0° . Table 9.10 lists events that occurred during Test No. 469468-8-4. Figure H.25 in Appendix H.4.3 presents sequential photographs during the test.

Table 9.10. Events during Test No. 469468-8-4.

TIME (s)	EVENT
0.000	Right front quarter point of vehicle contacts mailbox support
0.008	Plastic mailbox assembly begins to rip just above wood post
0.016	Top mailbox section separates from plastic support section
0.023	Wooden support post completely fractured
0.026	Plastic mailbox support completely ripped apart
0.047	Top mailbox part impacts windshield, windshield shatters
0.051	All parts of mailbox off front of car
0.083	Vehicle loses contact with support/mailbox while traveling at 61.8 mi/h

Brakes on the vehicle were applied at 1.3 s after impact, and the vehicle came to rest 288 ft downstream from the impact point and along centerline of the impact path.

9.5.2.5 Damage to Test Installation

Figure 9.30 shows damage to the support and mailbox. The wood support post fractured slightly below ground, and the support post and mailbox fractured into several pieces. The base of the mailbox was resting 51 ft downstream from impact and 30 ft to the right of centerline of the vehicle impact path. The top of the support post came to rest 83 ft downstream from impact and 2 ft to the right of centerline. The mailbox was resting 97 ft downstream and 30 ft to the right of centerline. A fractured piece of support post and the bottom of the base of the mailbox support came to rest 159 ft downstream and along the centerline of the vehicle impact path.

Figure 9.30. Single Molded Plastic Mailmaster® Mailbox with Wood Support in Type 5 Foundation after Test No. 469468-8-4.

9.5.2.6 Damage to Test Vehicle

Figure 9.31 shows the damage sustained by the vehicle. A very small depression in the right side of the bumper and hood were observed. The hood was deformed on the right side. The windshield was cracked in the right lower quadrant near the hood over an area measuring approximately 32 inches × 27 inches and 1.9 inches deep. No hole or tear was observed in the windshield. Maximum exterior crush to the vehicle was so slight as to be unmeasurable. Maximum occupant compartment deformation was 1.9 inches in the windshield area. Figure 9.32 shows the interior of the vehicle. Tables H.11 and H.12 in Appendix H.4.2 provide exterior crush and occupant compartment measurements.

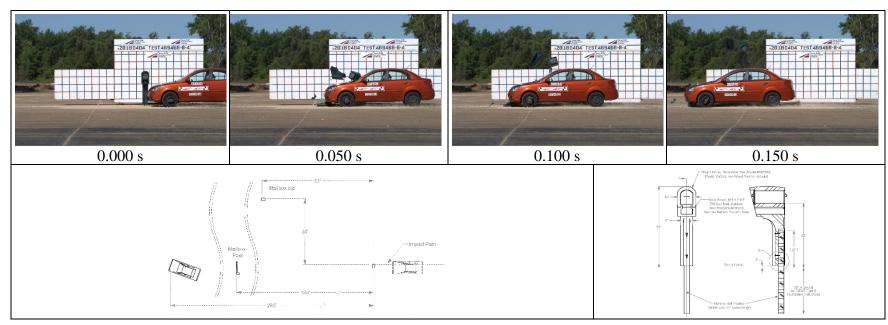
Figure 9.31. Test Vehicle after Test No. 469468-8-4.

After Test

Figure 9.32. Interior of Test Vehicle for Test No. 469468-8-4.

9.5.2.7 Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk, and results are shown in Table 9.11. Figure 9.33 summarizes these data and other pertinent information from the test. Figure H.26 in Appendix H.4.4 shows the vehicle angular displacements, and Figures H.27 through H.32 in Appendix H.4.5 show acceleration versus time traces.


Table 9.11. Occupant Risk Factors for Test No. 469468-8-4.

Occupant Risk Factor	Value	Time
Impact Velocity		
Longitudinal	1.0 ft/s	at 0.6758 s on left side of interior
Lateral	3.3 ft/s	at 0.0738 s off left side of lifterior
Ridedown Accelerations		
Longitudinal	0.2 g	0.8288–0.8388 s
Lateral	0.4 g	0.8026–0.8126 s
THIV	3.6 km/h	at 0.6737 s on left side of interior
DITO	1.0 m/s	0.0026, 0.0126
PHD	0.4 g	0.8026–0.8126 s
ASI	0.04	0.0027–0.0527 s
Maximum 50-ms Moving Average		
Longitudinal	-0.4 g	0.0000–0.0500 s
Lateral	0.4 g	0.2665–0.3165 s
Vertical	0.4 g	0.0135–0.0635 s
Maximum Roll, Pitch, and Yaw Angles		
Yaw	2 °	0.0819 s
Pitch	3 °	0.8198 s
Roll	5°	0.8099 s

9.5.2.8 Assessment of Test Results

The 4×4 wood support post fractured slightly below grade. The molded plastic mailbox system separated and fractured into several pieces. The separated upper section of the plastic mailbox system contacted the windshield. Maximum deformation of the windshield was 1.9 inches, and there were no tears or holes through the windshield.

Table 9.12 provides an assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 3-61. Table 9.12 shows the single molded plastic Mailmaster[®] mailbox with wood support post (Type 5 foundation) met all applicable criteria for *MASH* Test 3-61.

Test Standard Test No TTI Test No Test Date Test Article Type Name Installation Height Material or Key Elements Soil Type and Condition Test Vehicle Type/Designation Make and Model Curb	469468-8-4 2018-04-04 Support Structure Single Molded Plastic Mailmaster® Mailbox with Wood Support in Type 5 Foundation 42 inches above grade Two-piece molded mailbox mounted on a nominal 4 × 4 × 54-inch long wood post Direct embed in crushed limestone, damp 1100C 2011 Kia Rio	Impact Conditions Speed	Post-Impact Trajectory Stopping Distance
	2011 Kia Rio		
Dummy Gross Static		Lateral	Deformation

Figure 9.33. Summary of Results for *MASH* Test 3-61 on Single Molded Plastic Mastermail® Mailbox with Wood Support in Type 5 Foundation.

Table 9.12. Performance Evaluation Summary for MASH Test 3-61 on Single Molded Plastic Mailmaster® Mailbox with Wood Support Post in Type 4 Foundation.

Test Agency: Texas A&M Transportation Institute Test No.: 469468-8-4 Test Date: 2018-04-04 **MASH** Test 3-61 Evaluation Criteria **Test Results** Assessment Structural Adequacy The test article should readily activate in a predictable The wood post (Type 5 foundation) supporting the two-piece molded plastic Mailmaster® mailbox manner by breaking away, fracturing, or yielding. Pass fractured slightly below ground upon impact by the 1100C vehicle. Occupant Risk Detached elements, fragments, or other debris from the The mailbox and support did not penetrate or show potential for penetrating the occupant test article should not penetrate or show potential for penetrating the occupant compartment, or present an compartment, or to present undue hazard to others undue hazard to other traffic, pedestrians, or personnel in the area. in a work zone. Pass The windshield was cracked, and maximum Deformations of, or intrusions into, the occupant deformation was 1.9 inches. No tear or hole in the compartment should not exceed limits set forth in Section windshield was observed. No other occupant 5.3 and Appendix E of MASH. compartment deformation was observed. The vehicle should remain upright during and after The 1100C vehicle remained upright during and collision. The maximum roll and pitch angles are not to after the collision event. Pass exceed 75 degrees. H. Longitudinal and lateral occupant impact velocities Longitudinal OIV was 1.0 ft/s, and lateral OIV was should fall below the preferred value of 10 ft/s, or at least 3.3 ft/s. Pass below the maximum allowable value of 16.4 ft/s. Longitudinal and lateral occupant ridedown Maximum longitudinal occupant ridedown accelerations should fall below the preferred value of acceleration was 0.2 g, and maximum lateral Pass 15.0 Gs, or at least below the maximum allowable value occupant ridedown acceleration was 0.4 g. of 20.49 Gs. Vehicle Trajectory *Vehicle trajectory behind the test article is acceptable.* The 1100C vehicle came to rest 288 ft behind the Pass

original location of the test article.

9.6 CONCLUSIONS

An assessment of the four mailbox configurations based on the applicable safety evaluation criteria for *MASH* Test 3-61 was provided in Tables 9.3, 9.6, 9.9, and 9.12.

9.6.1 Single Mailbox with Recycle Rubber Support in Type 4 Foundation

The single mailbox with recycled rubber support in Type 4 foundation readily released out of the socket upon impact by the 1100C vehicle. The mailbox and support post did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. The windshield was cracked, but no hole, tear, or measurable deformation was observed. No other occupant compartment deformation was observed. The 1100C vehicle remained upright during and after the collision event. There was no occupant contact in the longitudinal or lateral directions. The 1100C vehicle came to rest 366 ft behind the original location of the test article.

9.6.2 Double Mailbox with Thin-Wall Galvanized Support in Type 4 Foundation

The double mailbox with thin-wall galvanized support pipe in Type 4 foundation deformed along the front of the vehicle and released out of the socket. The mailbox and support did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. No windshield contact or occupant compartment deformation was observed. The 1100C vehicle remained upright during and after the collision event. Occupant risk factors were within the preferred limits specified in *MASH*. The 1100C vehicle came to rest 306 ft behind the original location of the test article.

9.6.3 Multiple Mailboxes with Multi-Mount Support in Type 4 Foundation

The multiple mailboxes with multi-mount support in Type 4 foundation readily released out of the socket upon impact by the 1100C vehicle. The mailboxes and support did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. The windshield was cracked, and there was 1.8 inches of deformation inward toward the occupant compartment. No tear or hole was observed in the windshield. No other occupant compartment deformation was observed. The 1100C vehicle remained upright during and after the collision event. Occupant risk factors were within the preferred limits specified in *MASH*. The 1100C vehicle came to rest 302 ft behind and 10 ft to the left of the original location of the test article.

9.6.4 Single Molded Plastic Mailmaster® Mailbox with Wood Support in Type 5 Foundation

The single molded plastic Mailmaster[®] mailbox with wood support post in Type 5 foundation fractured slightly below ground upon impact by the 1100C vehicle. The mailbox and support did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. The windshield was cracked, and maximum deformation was 1.9 inches. No tear or hole was observed. Occupant risk factors were within the preferred limits specified in *MASH*. The 1100C vehicle remained upright during and after the

TR No. 0-6946-R2 161 2019-03-27

collision event. The 1100C vehicle came to rest 288 ft behind the original location of the test article.

9.6.5 Assessment

Table 9.13 summarizes the assessment of the mailbox configurations that were tested.

Table 9.13. Assessment Summary for Mailbox Tests.

Evaluation Factors	Evaluation Criteria	Test No. 469468-8-1 - Single Mailbox – Recycled Rubber Support	Test No. 469468-8-2 – Double Mailbox – Thin Wall Galvanized Support	Test No. 469468-8-3 – Multiple Mailboxes – Multi- Mount Support	Test No. 469468-8-4 – Single Molded Plastic Mailbox – Wood Support
Structural Adequacy	В	S	S	S	S
	D	S	S	S	S
Occupant	F	S	S	S	S
Risk	Н	S	S	S	S
	I	S	S	S	S
Vehicle Trajectory	N	S	S	S	S
<u> </u>	Test No.	MASH Test 3-61	MASH Test 3-61	MASH Test 3-61	MASH Test 3-61
	Pass/Fail	Pass	Pass	Pass	Pass

S = Satisfactory

U = Unsatisfactory

N/A = Not Applicable

CHAPTER 10: SKID-MOUNTED DUAL WOOD POST TEMPORARY SIGN SUPPORT SYSTEM

10.1 BACKGROUND*

The skid-mounted dual wood post temporary sign support system uses dual 4-inch \times 4-inch posts and is designed for use with a maximum 21 sq. ft sign panel. Details can be found on TxDOT Barricade and Construction sheet BC(5)-14.

The *MASH* test matrix for work zone traffic control devices includes a high-speed test with a passenger car (Test 3-71) and pickup truck (Test 3-72) at both 0° and 90° impact orientations. The skid-mounted dual wood post temporary sign support system was previously tested with a small passenger car at high speed under NCHRP Report 350 (*13*). Although the small passenger car design test vehicle has changed under *MASH*, its performance in frontal impacts with large skid-mounted sign support systems is not expected to differ appreciably.

A pickup truck test was performed on the skid-mounted dual wood post temporary sign support system with 5-ft mounting height at 0° under NCHRP Report 350 (14). TxDOT currently specifies a 7-ft mounting height, which is considered less critical for the pickup truck impact. Although the pickup truck design test vehicle has changed under *MASH*, review of the previous pickup truck test at the lower mounting height indicates that the impact performance of the skid-mounted dual wood post temporary sign support system at 7-ft mounting height with the *MASH* 2270P pickup truck at 0° should be acceptable. Therefore, only *MASH* Test 3-72 at 90° was considered necessary to assess *MASH* compliance.

MASH states "that lightweight free-standing features cannot cause sufficient velocity change to result in failure of the test under occupant risk criteria. Therefore, Tests 3-71 and 3-72 can be conducted without the instrumentation necessary for determining occupant risk whenever the test article has a total weight of 220 lb (100 kg) or less." Consequently, the pickup truck test vehicle was not instrumented in the testing of the skid-mounted dual wood post temporary sign support system.

10.2 SYSTEM DETAILS

This test installation consisted of a 48-inch square × ½-inch thick aluminum sign panel secured to a nominal 4×4 wood supports with 4 bolts. The panel had rounded corners and was placed in a diamond orientation, with the lower corner at 84 inches above grade. The wood frame consisted of nominal 4×4, 2×6, and 2×4 lumber and assorted hardware. All lumber was treated southern yellow pine. All hex bolts were grade 5, and each had two USS flat washers, one lock washer, and one hex nut. Each lag screw had a USS flat washer under the head.

The installation was placed on an existing concrete apron but was not secured to it. The skid-mounted dual wood post temporary sign support system was placed with the sign panel at 90° parallel to the vehicle path. Figure 10.1 presents details on the skid-mounted dual wood post temporary sign support system, and Figure 10.2 provides photographs of the installation.

TR No. 0-6946-R2 163 2019-03-27

_

^{*} The opinions/interpretations identified/expressed in Section 10.1 are outside the scope of TTI Proving Ground's A2LA Accreditation.

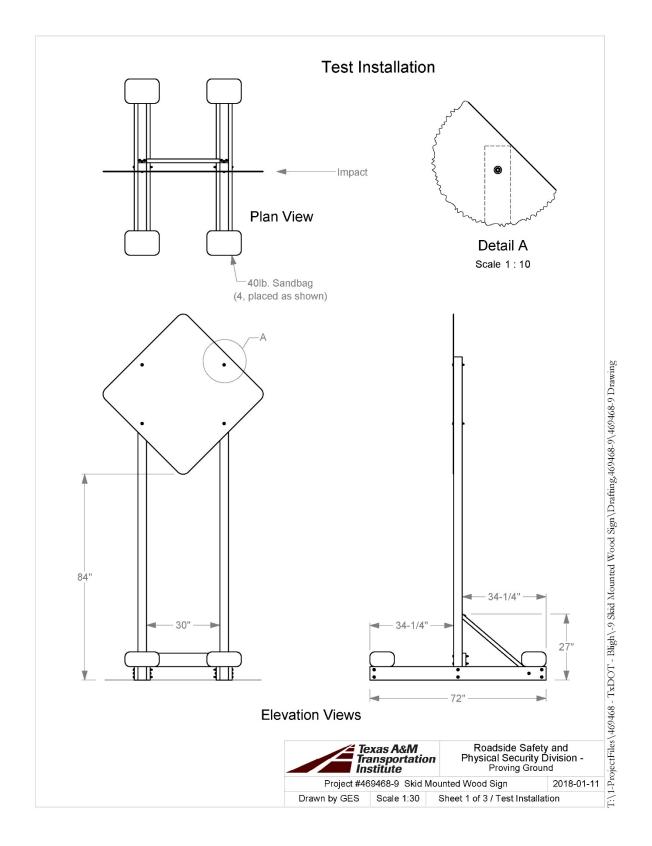


Figure 10.1. Overall Details of Skid-Mounted Dual Wood Post Temporary Sign Support System.

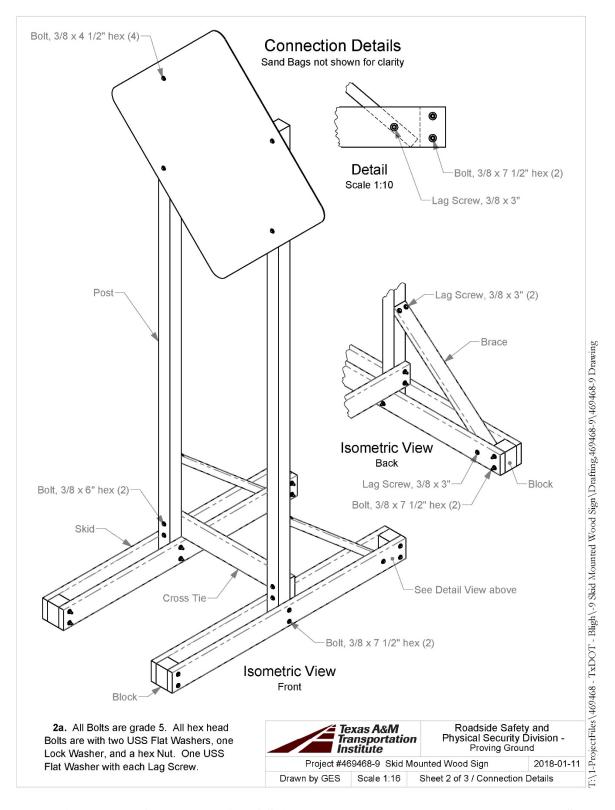


Figure 10.1. Overall Details of Skid-Mounted Dual Wood Post Temporary Sign Support System (Continued).

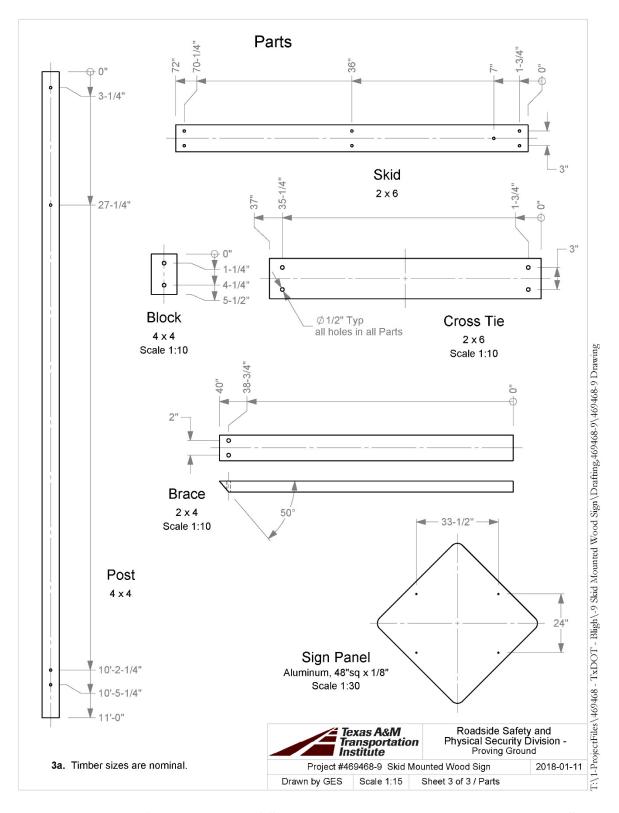


Figure 10.1. Overall Details of Skid-Mounted Dual Wood Post Temporary Sign Support System (Continued).

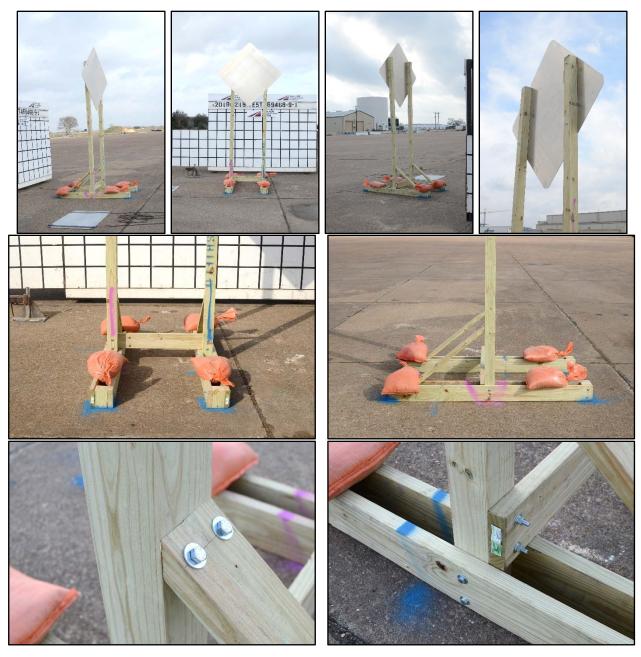


Figure 10.2. Skid-Mounted Dual Wood Post Temporary Sign Support System prior to Testing.

10.3 MASH TEST 3-72 (CRASH TEST NO. 469468-9-1)

10.3.1 Test Designation and Actual Impact Conditions

MASH Test 3-72 involves a 2270P vehicle weighing 5000 lb ± 110 lb impacting the traffic control device at an impact speed of 62 mi/h ± 2.5 mi/h and an angle of 90° ± 1.5 °. The target

impact point for MASH Test 3-72 on the traffic control device was the right front quarter point of the vehicle aligned with the centerline of the traffic control device.

The 2012 Dodge RAM 1500 pickup truck used in the test weighed 5034 lb, and the actual impact speed and angle were 61.1 mi/h and 90°, respectively. The actual impact point was the right front quarter point aligned with the centerline of the sign supports. Target KE was 594 kip-ft, and actual KE was 628 kip-ft.

10.3.2 Weather Conditions

The test was performed on the morning of February 19, 2018. Weather conditions at the time of testing were as follows: wind speed: 16 mi/h; wind direction: 180° (vehicle was traveling in a northerly direction); temperature: 75°F; relative humidity: 81 percent.

10.3.3 Test Vehicle

Figures 10.3 and 10.4 show the 2012 Dodge RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 5034 lb, and its gross static weight was 5034 lb. The height to the lower edge of the vehicle bumper was 9.5 inches, and the height to the upper edge of the bumper was 27.0 inches. The height to the vehicle's center of gravity was 28.5 inches. Tables I.1 and I.2 in Appendix I.1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 10.3. Skid-Mounted Dual Wood Post Temporary Sign Support System/Test Vehicle Geometrics for Test No. 469468-9-1.

Figure 10.4. Test Vehicle before Test No. 469468-9-1.

10.3.4 Test Description

The test vehicle impacted the skid-mounted dual wood post temporary sign support system at a speed of 61.1 mi/h and an angle of 90° with the right front quarter point aligned with the centerline of the sign supports. Table 10.1 lists events that occurred during Test No. 469468-9-1. Figure I.1 in Appendix I.2 presents sequential photographs during the test.

TIME (s) **EVENT** 0.000 Right front quarter point of vehicle contacts support 0.014 First support fractures 0.038 Impact with second support Right front tire begins to climb over sand bags 0.041 0.049 Second support fractures Right front tire clear of base and sand bags 0.117 0.126 Corner of sign panel impacts rear roof area of vehicle 0.293 Vehicle loses contact with device while traveling at 60.4 mi/h

Table 10.1. Events during Test No. 469468-9-1.

10.3.5 Damage to Test Installation

Figure 10.5 shows the damage to the skid-mounted dual wood post temporary sign support system. The system fractured into several pieces. Part of the base was resting 3.5 ft downstream and another section was resting 30 ft downstream. The sign panel with sections of the support posts was resting 15 ft downstream of impact. Several smaller pieces of the base were resting 150 ft downstream and 6 ft to the left of impact and 225 ft downstream and 27 ft right of impact.

10.3.6 Damage to Test Vehicle

Figure 10.6 shows the damage sustained by the vehicle. The right side front bumper and right side hood had small dents. The rear right side of the roof sustained a 10-inch long \times 6-inch dent. Maximum exterior crush to the vehicle was 1.0 inch on the rear roof. No occupant compartment deformation or intrusion was observed. Tables I.3 and I.4 in Appendix I.1 provide exterior crush and occupant compartment measurements.

10.3.7 Occupant Risk Factors

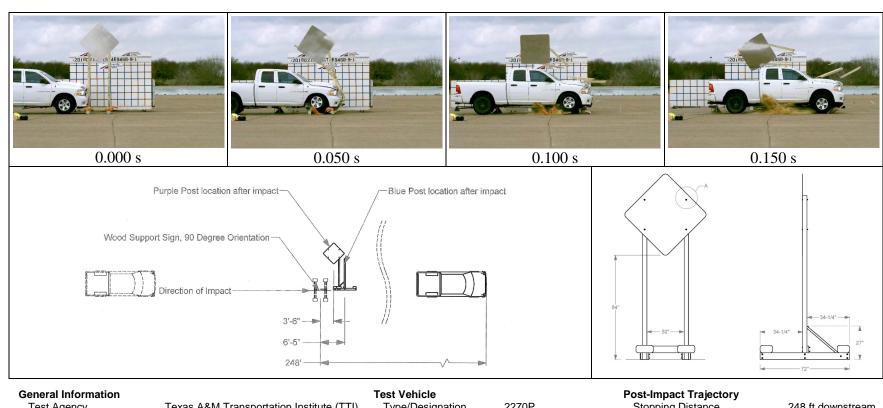

According to *MASH*, when the weight of the traffic control device is less than 220 lb, the test may be performed without vehicle instrumentation. The skid-mounted dual wood post temporary sign support system weighed 130 lb. Therefore, occupant risk factors were not obtained for this test. Figure 10.7 summarizes other pertinent information from the test.

Figure 10.5. Skid-Mounted Dual Wood Post Temporary Sign Support System after Test No. 469468-9-1.

Figure 10.6. Test Vehicle after Test No. 469468-9-1.

General Information		Test Vehicle		Post-Impact Trajectory	
Test Agency	Texas A&M Transportation Institute (TTI)	Type/Designation	. 2270P	Stopping Distance	248 ft downstream
Test Standard Test No	MASH Test 3-72 at 90°	Make and Model	. 2012 Dodge Ram 1500		
TTI Test No	469468-9-1	Curb	. 4870 lb	Test Article Debris Scatter	
Test Date	2018-02-19	Test Inertial	. 5034 lb	Longitudinal	225 ft
Test Article		Dummy	. No dummy	Lateral	27 ft
Type	Work Zone Traffic Control Device	Gross Static	. 5034 lb	Vehicle Damage	
Name	Skid-Mounted Dual Wood Post Temporary	Impact Conditions		VDS	12FR1
	Sign Support System	Speed	. 61.1 mi/h	CDC	12FREN1
Installation Height	84 inches from grade to bottom of sign.	Angle	. 90°	Max. Exterior Deformation	1.0 inch (roof)
Material or Key Elements	48-inch square × 1/8-inch thick aluminum	Location/Orientation	Right quarter point	OCDI	RF0000000
•	sign panel secured to dual 4x4 supports			Max. Occupant Compartment	
	attached to wooden skids	Kinetic Energy	. 628 kip-ft	Deformation	None
Soil Type and Condition	Placed on concrete surface, dry	Exit Conditions			
		Speed	. 60.4 mi/h		
		Angle	90°		

Figure 10.7. Summary of Results for *MASH* Test 3-72 at 90° on Skid-Mounted Dual Wood Post Temporary Sign Support System.

10.3.8 Assessment of Test Results

The skid-mounted dual wood post temporary sign support system broke apart upon impact. The detached sign panel and fractured supports did not penetrate the occupant compartment. The debris did not present undue hazard to others in the area. The windshield was cracked, but no measurable deformation was observed. No other occupant compartment deformation was observed. The sign panel and supports would not block the driver's vision enough to cause loss of control of the vehicle. The 2270P vehicle remained upright during and after the collision event. The 2270P vehicle came to rest 248 ft behind device.

10.4 CONCLUSIONS

Table 10.2 shows the skid-mounted dual wood post temporary sign support system met all applicable criteria for MASH Test 3-72 at 90° .

Table 10.2. Performance Evaluation Summary for MASH Test 3-72 at 90° on Skid-Mounted Dual Wood Post Temporary Sign Support System.

Test Agency: Texas A&M Transportation Institute Test No.: 469468-9-1 Test Date: 2018-02-19 MASH Test 3-72 Evaluation Criteria **Test Results** Assessment Structural Adequacy The test article should readily activate in a predictable The supports of the skid-mounted dual wood post manner by breaking away, fracturing, or yielding. temporary sign support system readily fractured **Pass** upon impact. Occupant Risk Detached elements, fragments, or other debris from the The detached sign panel and upright support did test article should not penetrate or show potential for not penetrate the occupant compartment. The penetrating the occupant compartment, or present an debris did not present undue hazard to others in the undue hazard to other traffic, pedestrians, or personnel area. **Pass** in a work zone. Deformations of, or intrusions into, the occupant The roof was dented 1.0 inch, but did not deform compartment should not exceed limits set forth in Section into the occupant compartment. No other occupant compartment deformation was observed. 5.3 and Appendix E of MASH. Detached elements, fragments, or other debris from the The sign panel and supports would not block the test article, of vehicular damage should not block the driver's vision enough to cause loss of control of **Pass** driver's vision or otherwise cause the driver to lose the vehicle. control of the vehicle. The vehicle should remain upright during and after The 2270P vehicle remained upright during and collision. The maximum roll and pitch angles are not to after the collision event. **Pass** exceed 75 degrees. H. Longitudinal and lateral occupant impact velocities According to MASH, when the weight of the traffic should fall below the preferred value of 10 ft/s, or at least control device is less than 220 lb, the test can be NA below the maximum allowable value of 16.4 ft/s. performed without vehicle instrumentation. The Longitudinal and lateral occupant ridedown skid-mounted dual wood post temporary sign support system weighed 130 lb. Therefore, accelerations should fall below the preferred value of NA 15.0 Gs, or at least below the maximum allowable value occupant risk factors were not obtained for this of 20.49 Gs. test. Vehicle Trajectory *Vehicle trajectory behind the test article is acceptable.* The 2270P vehicle came to rest 248 ft behind the Pass original position of the test article.

CHAPTER 11: MBGF WITH W6×8.5 STEEL POSTS IN ROCKY TERRAIN

11.1 BACKGROUND*

Guidance for installing the TxDOT MBGF in rocky terrain is found in general note 9 on metal beam guard fence standard GF(31)-14. The guidance varies depending on the depth at which rock is encountered. The most critical condition is when rock is encountered at or near the ground surface. When this occurs, the recommendation is to drill a 22-inch diameter hole (or two overlapping 12-inch diameter holes) to a depth of 24 inches into the rock. Any excess post length is cut, and the hole is backfilled with a cohesionless material.

In these tests, the MBGF with $W6\times8.5$ steel posts in rocky terrain was evaluated in accordance with MASH TL-3 requirements for longitudinal barriers. The tests consisted of MASH test designations 3-10 (small passenger car) and 3-11 (pickup truck). The rocky terrain was simulated using a cast-in-place concrete foundation beam with precast holes. A steel post configuration was considered more critical than the rectangular wood post configuration due to its potential for increased severity of post snagging and pullout potential.

11.2 SYSTEM DETAILS

11.2.1 Test Article and Installation Details

The test installation consisted of a W-beam guardrail system with the top edge of the W-beam rail mounted 31 inches above the roadway on $W6\times8.5$ steel posts spaced at 6.25 ft. Routered wood blockouts, nominally 6 inches \times 8 inches, were inserted between the W-beam rail and posts, and the W-beam rail splices were located midspan between the posts. The guardrail was anchored on each end with a TxDOT DAT terminal making the total installation length 181.25 ft.

An unreinforced concrete beam measuring 30 inches deep \times 46 inches wide \times 75 ft long was placed from post 10 to post 21 in the impact area of the length-of-need to simulate rocky terrain. Oval shaped voids measuring 12 inches wide \times 22 inches long \times 24 inches deep were cast in the beam at each post location to simulate holes cored in rock. The W6×8.5 steel posts rested on the bottom of these voids with the traffic face of the post placed 1 inch from the front edge of the void. The voids were then backfilled with ASTM C33 coarse aggregate, size no. 57, and hand-tamped with a rod in 6-inch lifts.

Figure 11.1 presents overall information on the MBGF in rocky terrain, and Figure 11.2 provides photographs of the installation. Appendix J.1 provides further details of the MBGF in rocky terrain.

11.2.2 Material Properties

Appendix J.2 provides material certification documents for the materials used to install/construct the MBGF in rocky terrain.

TR No. 0-6946-R2 175 2019-03-27

^{*} The opinions/interpretations identified/expressed in Section 11.1 are outside the scope of TTI Proving Ground's A2LA Accreditation.

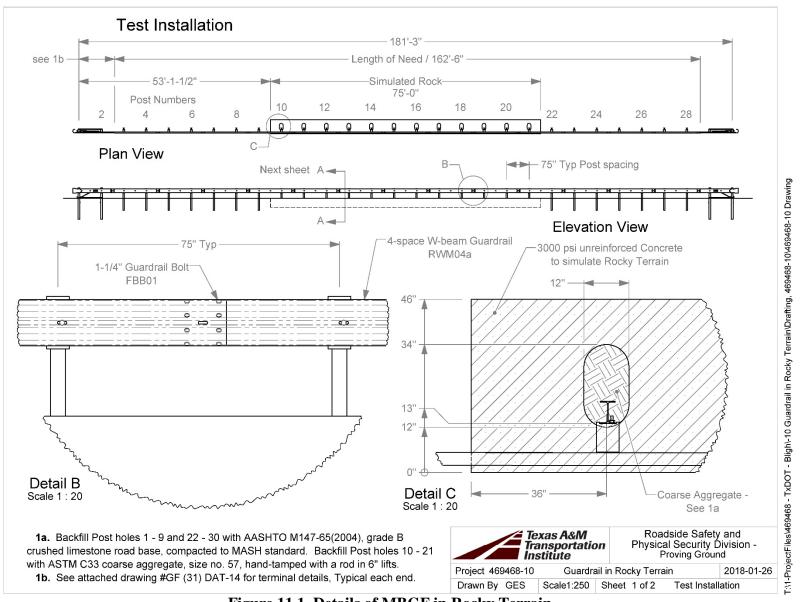


Figure 11.1. Details of MBGF in Rocky Terrain.

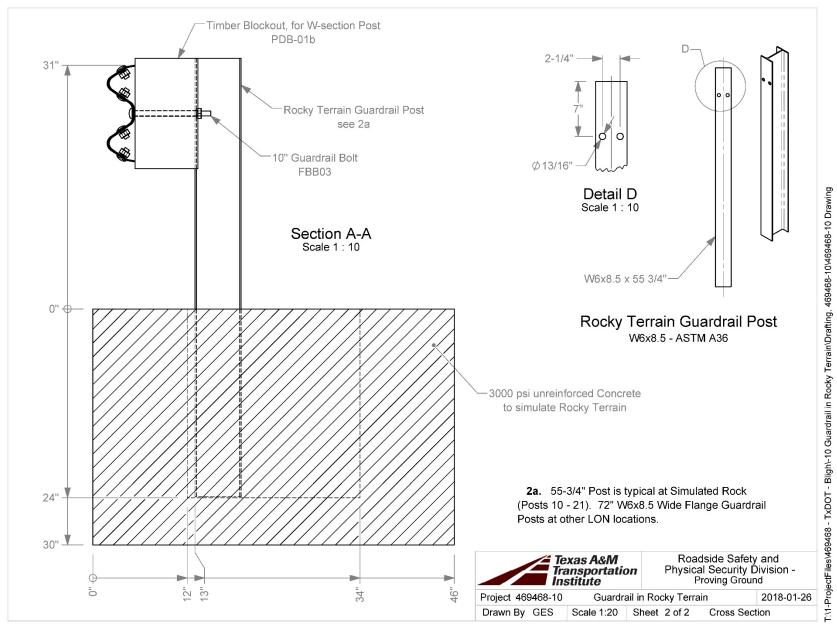


Figure 11.1. Details of MBGF in Rocky Terrain (Continued).

Figure 11.2. MBGF in Rocky Terrain prior to Testing.

11.2.3 Soil Conditions

The remainder of the posts not installed in the concrete beam were installed in soil meeting grading B of AASHTO standard specification M147-65(2004) "Materials for Aggregate and Soil Aggregate Subbase, Base and Surface Courses."

In accordance with Appendix B of MASH, soil strength was measured the day of the crash test. During installation of the guardrail for full-scale crash testing, two W6×16 posts were installed in the immediate vicinity of the MBGF in rocky terrain installation using the same fill

materials and installation procedures used in the test installation and the previous standard dynamic tests. Table J.1 in Appendix J.3 presents minimum soil strength properties established through the previous dynamic testing performed in accordance with *MASH* Appendix B.

As determined by the tests summarized in Appendix J.3, Table J.1, the minimum post loads required for deflections at 5 inches, 10 inches, and 15 inches, measured at a height of 25 inches, are 3940 lb, 5500 lb, and 6540 lb, respectively (90 percent of static load for the initial standard installation).

On April 26, 2018, the day of *MASH* 3-10 (Test No. 469468-10-2), measured loads on the post at deflections of 5 inches, 10 inches, and 15 inches were 8636 lbf, 8939 lbf, and 9090 lbf, respectively. Table J.2 in Appendix J.3 shows the strength of the backfill material in which the guardrail was installed met minimum *MASH* requirements.

On March 27, 2018, the day of *MASH* 3-11 (Test No. 469468-10-1), measured loads on the post at deflections of 5 inches, 10 inches, and 15 inches were 9141 lbf, 9898 lbf, and 10,000 lbf, respectively. Table J.3 in Appendix J.3 shows the strength of the backfill material in which the guardrail was installed met minimum *MASH* requirements.

11.3 *MASH* TEST 3-10 (CRASH TEST NO. 469468-10-2)

11.3.1 Test Designation and Actual Impact Conditions

MASH Test 3-10 involves an 1100C vehicle weighing 2420 lb ± 55 lb impacting the CIP of the guardrail at an impact speed of 62 mi/h ± 2.5 mi/h and an angle of 25° ± 1.5 °. Figure 11.3 shows the target CIP for MASH Test 3-10 on the MBGF in rocky terrain was 8 ft-6 inches ± 1 ft upstream of post 15 as determined using information in MASH section 2.3.2.

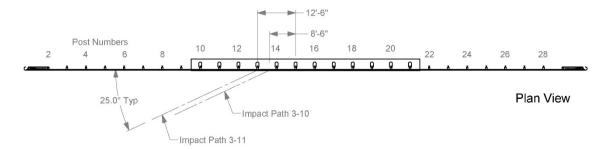


Figure 11.3. Target CIP for MASH TL-3 Tests on MBGF in Rocky Terrain.

The 2009 Kia Rio* used in the test weighed 2447 lb, and the actual impact speed and angle were 62.9 mi/h and 24.7°, respectively. The actual impact point was at 8.6 ft upstream of post 15. Minimum target IS was 51 kip-ft, and actual IS was 57 kip-ft.

TR No. 0-6946-R2 179 2019-03-27

^{*} The 2009 model vehicle used is older than the 6-year age noted in *MASH* and was selected based upon availability. An older model vehicle is permitted by AASHTO as long as it is otherwise *MASH* compliant. Other than the vehicle's year model, this 2009 model vehicle met the *MASH* requirements.

11.3.2 Weather Conditions

The test was performed on the morning of April 26, 2018. Weather conditions at the time of testing were as follows: wind speed: 9 mi/h; wind direction: 344° (vehicle was traveling in a northwesterly direction); temperature: 63°F; relative humidity: 63 percent.

11.3.3 Test Vehicle

Figures 11.4 and 11.5 show the 2009 Kia Rio used for the crash test. The vehicle's test inertia weight was 2447 lb, and its gross static weight was 2612 lb. The height to the lower edge of the vehicle bumper was 7.75 inches, and the height to the upper edge of the bumper was 21.5 inches. Table J.4 in Appendix J.4.1 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 11.4. MBGF in Rocky Terrain/Test Vehicle Geometrics for Test No. 469468-10-2.

Figure 11.5. Test Vehicle before Test No. 469468-10-2.

11.3.4 Test Description

The test vehicle contacted the MBGF with steel posts in rocky terrain 8.6 ft upstream of post 15 at a speed of 62.9 mi/h and an angle of 24.7°. Table 11.1 lists events that occurred during Test No. 469468-10-2. Figures J.1 and J.2 in Appendix J.4.2 present sequential photographs during the test.

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The 1100C vehicle exited within the exit box criteria defined in *MASH*. After loss of contact with the barrier, the vehicle came to rest 136 ft downstream of the point of impact and 17 ft toward the field side.

TIME (s)	EVENTS
0.000	Left front corner of vehicle bumper contacts guardrail
0.035	Vehicle begins to redirect
0.153	Front left tire comes off ground
0.190	Post 15 impacted by vehicle
0.211	Part of bumper extends to farthest point beyond guardrail
0.270	Vehicle contacts post 16
0.318	Vehicle becomes parallel with guardrail
0.359	Vehicle contacts post 17
0.445	Vehicle contacts post 18
0.661	Vehicle lost contact with the guardrail while traveling 30.4 mi/h at a trajectory/heading angle of 17.5°/8.5°

Table 11.1. Events during Test No. 469468-10-2.

11.3.5 Damage to Test Installation

Figure 11.6 shows damage to the MBGF with steel posts in rocky terrain. The soil around post 1 was disturbed, and no movement was observed at posts 2 through 7. The soil around posts 8 and 9 was disturbed and the blockouts were cracked. Posts 10 through 14 were leaning toward field side at 87°, 85°, 81°, 75°, and 65°, respectively. The rail separated from posts 14 through 18, and the blockouts separated from posts 14 and 18. Posts 15 through 17 were pulled from their holes. Post 17 was resting 2.5 ft toward traffic lanes, post 15 was resting 2.5 ft toward the field side, and the rest of the pulled out posts were resting near the rail. Post 18 was leaning 16° downstream and 80° toward the field side. Posts 19, 20 and 21 were leaning 83°, 86°, and 88° toward field side, respectively. Post 22 was leaning 88° upstream and toward the field side and rotated slightly clockwise. Posts 23 through 25 were leaning upstream and toward the field side 88°, and the blockouts were twisted on the post. Posts 26 through 30 were leaning upstream 88°. Working width was 75.9 inches, and height of working width was 39.5 inches. Maximum dynamic deflection during the test was 40.5 inches, and maximum permanent deformation was 21.0 inches.

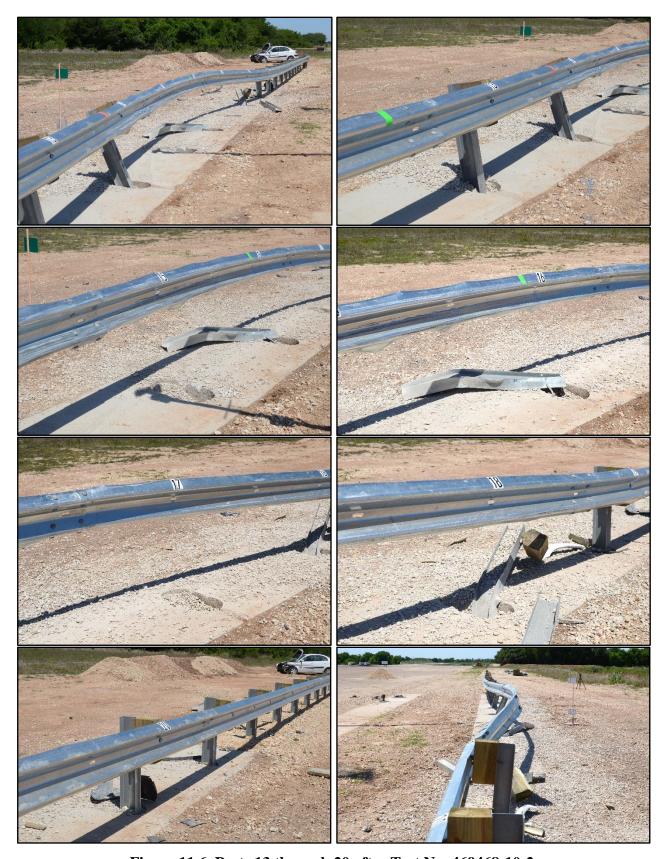


Figure 11.6. Posts 13 through 20 after Test No. 469468-10-2.

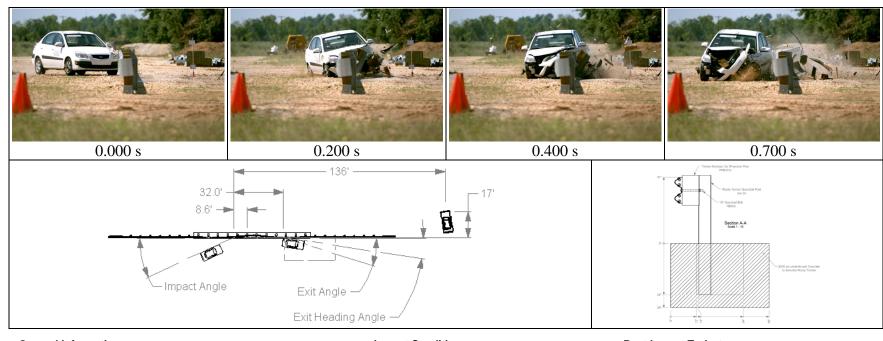
11.3.6 Damage to Test Vehicle

Figure 11.7 shows the damage sustained by the vehicle. The front bumper, hood, grill, radiator and support, left front fender, left front strut and tower, left front tire and rim, and left front door were damaged. Maximum exterior crush to the vehicle was 9.0 inches in the front and side plane at the left front corner at bumper height. No occupant compartment deformation or intrusion occurred. Figure 11.8 shows the interior of the vehicle. Tables J.5 and J.6 in Appendix J.4.1 provide exterior crush and occupant compartment measurements.

Figure 11.7. Test Vehicle after Test No. 469468-10-2.

Figure 11.8. Interior of Test Vehicle after Test No. 469468-10-2.

11.3.7 Occupant Risk Factors


Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk, and the results are shown in Table 11.2. Figure 11.9 summarizes these data and other pertinent information from the test. Figure J.3 in Appendix J.4.3 shows the vehicle angular displacements, and Figures J.4 through J.9 in Appendix J.4.4 show acceleration versus time traces.

11.3.8 Assessment of Test Results

Table 11.3 provides an assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 3-11.

Table 11.2. Occupant Risk Factors for Test No. 469468-10-2.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	17.7 ft/s	at 0.1440 s on left side of interior
Lateral	14.8 ft/s	at 0.1440 s on left side of interior
Occupant Ridedown Accelerations		
Longitudinal	7.8 g	0.4048–0.4148 s
Lateral	8.9 g	0.1535–0.1635 s
THIV	23.4 km/h 6.5 m/s	At 0.1390 s on left side of interior
PHD	9.8 g	0.1535–0.1635 s
ASI	0.64	0.0847–0.1347 s
Maximum 50-ms Moving Average		
Longitudinal	-6.2 g	0.0807–0.1307 s
Lateral	4.9 g	0.1533–0.2033 s
Vertical	3.5 g	0.2194–0.2694 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	15°	0.2360 s
Pitch	10°	1.9633 s
Yaw	45°	0.6140 s

General Information		Impact Conditions	Post-Impact Trajectory
	Texas A&M Transportation Institute (TTI)	Speed 62.9 mi/h	Stopping Distance 136 ft downstream
Test Standard Test No		Angle24.7°	17 ft twd field side
TTI Test No		Location/Orientation 8.6 ft upstream of	Vehicle Stability
Test Date	2018-04-26	post 15	Maximum Yaw Angle 45°
Test Article		Impact Severity 57 kip-ft	Maximum Pitch Angle 10°
Type	Guardrail	Exit Conditions	Maximum Roll Angle 15°
Name	TxDOT MBGF in Rocky Terrain	Speed 30.4 mi/h	Vehicle Snagging No
Installation Length	181 ft 3 inches	Trajectory/Heading Angle 17.5°/8.5°	Vehicle Pocketing No
Material or Key Elements	31-inch tall W-beam guardrail on W6x8.5	Occupant Risk Values	Test Article Deflections
	steel posts in simulated rocky terrain	Longitudinal OIV 17.7 ft/s	Dynamic 40.5 inches
Soil Type and Condition	75-ft concrete beam with 12x22x24-inch	Lateral OIV 14.8 ft/s	Permanent 21.0 inches
	deep leave-outs filled with cohesionless	Longitudinal Ridedown 7.8 g	Working Width 75.9 inches
	material, Dry	Lateral Ridedown 8.9 g	Height of Working Width 39.5 inches
Test Vehicle		THIV 23.4 km/h	Vehicle Damage
Type/Designation	1100C	PHD 9.8 g	VDS 11LFQ5
Make and Model	2009 Kia Rio	ASI 0.64	CDC 11FLEW4
Curb	2462 lb	Max. 0.050-s Average	Max. Exterior Deformation 9.0 inches
Test Inertial	2447 lb	Longitudinal −6.2 g	OCDILS0000000
Dummy	165 lb	Lateral 4.9 g	Max. Occupant Compartment
Gross Static	2612 lb	Vertical 3.5 g	Deformation None

Figure 11.9. Summary of Results for MASH Test 3-10 on MBGF in Rocky Terrain.

 $Table \ 11.3. \ Performance \ Evaluation \ Summary \ for \ \textit{MASH} \ Test \ 3-11 \ on \ MBGF \ with \ Steel \ Posts \ in \ Rocky \ Terrain.$

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 469468-10-2	est Date: 2018-03-27
	MASH Test 3-11 Evaluation Criteria	Test Results	Assessment
Stru A.	Ictural Adequacy Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The MBGF with W6×8.5 posts in rocky terrain contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 40.5 inches.	Pass
Occ D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	Post and blockout fragments were present but did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. No occupant compartment deformation or intrusion occurred.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 15° and 10°, respectively.	Pass
Н.	Longitudinal and lateral occupant impact velocities should fall below the preferred value of 30 ft/s, or at least below the maximum allowable value of 40 ft/s.	Longitudinal OIV was 17.7 ft/s, and lateral OIV was 14.8 ft/s.	Pass
I.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 gs, or at least below the maximum allowable value of 20.49 gs.	Maximum longitudinal occupant ridedown acceleration was 7.8 g, and maximum lateral occupant ridedown acceleration was 8.9 g.	Pass
Vel	nicle Trajectory		
	For redirective devices, it is preferable that the vehicle be smoothly redirected and leave the barrier within the exit box criteria (not less than 32.8 ft for the 1100C and 2270P vehicles) and should be documented.	The 1100C vehicle exited within the exit box criteria.	Documentation only

11.4 *MASH* TEST 3-11 (CRASH TEST NO. 469468-10-1)

11.4.1 Test Designation and Actual Impact Conditions

MASH Test 3-11 involves a 2270P vehicle weighing 5000 lb ± 110 lb impacting the CIP of the guardrail at an impact speed of 62 mi/h ± 2.5 mi/h and an angle of 25° ± 1.5 °. Figure 10.3 shown in Section 10.3.1 shows the target CIP for MASH Test 3-11 on the MBGF in rocky terrain was 12 ft-6 inches ± 1 ft upstream of post 15 (i.e., post 13) as determined using information in MASH section 2.3.2.

The 2012 Dodge RAM 1500 pickup truck used in the test weighed 5017 lb, and the actual impact speed and angle were 63.3 mi/h and 24.4 degrees, respectively. The actual impact point was at 12.8 ft upstream of post 15. Minimum target impact severity was 106 kip-ft, and actual IS was 115 kip-ft.

11.4.2 Weather Conditions

The test was performed on the morning of March 27, 2018. Weather conditions at the time of testing were as follows: wind speed: 15 mi/h; wind direction: 202° (vehicle was traveling in a northwesterly direction); temperature: 77°F; relative humidity: 74 percent.

11.4.3 Test Vehicle

Figures 11.10 and 11.11 show the 2012 Dodge RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 5017 lb, and its gross static weight was 5017 lb. The height to the lower edge of the vehicle bumper was 11.75 inches, and the height to the upper edge of the bumper was 27.0 inches. The height to the vehicle's center of gravity was 28.5 inches. Tables J.7 and J.8 in Appendix J.5.1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 11.10. MBGF in Rocky Terrain/Test Vehicle Geometrics for Test No. 469468-10-1.

Figure 11.11. Test Vehicle before Test No. 469468-10-1.

11.4.4 Test Description

The test vehicle contacted the MBGF with steel posts in rocky terrain 12.8 ft upstream of post 15 at a speed of 63.3 mi/h and an angle of 24.4°. Table 11.4 lists events that occurred during Test No. 469468-10-1. Figures J.10 and J.11 in Appendix J.5.2 present sequential photographs during the test.

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The 2270P vehicle exited within the exit box criteria defined in *MASH*. After loss of contact with the barrier, the vehicle came to rest 150 ft downstream of the impact and 28 ft toward the field side.

Table 11.4. Events during Test No. 469468-10-1.

TIME (s)	EVENTS
0.000	Left front corner of vehicle bumper contacts guardrail
0.060	Vehicle begins to redirect
0.085	Left front tire makes contact with post 14
0.990	Blockout at post 14 fractures
0.185	Post 15 completely out of ground
0.248	Left side of pickup bed begins to make contact with guardrail
0.292	Vehicle contacted post 16
0.305	Vehicle became parallel with the guardrail
0.390	Post 13 and 14 at maximum displacement before recovering a bit
0.425	Maximum deflection of guardrail occurs
0.614	Vehicle loses contact with guardrail while traveling at 34.2 mi/h and trajectory/heading angle of 16.3°/10.9°

11.4.5 Damage to Test Installation

Figures 11.12 and 11.13 show damage to the MBGF in rocky terrain. Post 1 was pulled upstream 1.75 inches, and post 2 was pulled upstream 0.75 inch. The W-beam rail element released from posts 3 through 10 and 14 through 20. Posts 10 and 11 were pulled slightly downstream and pushed toward the field side. Post 12 was leaning 85° downstream and 76° toward the field side. Post 13 was leaning 84° downstream and 65° toward field side. Posts 14 through 18 pulled out of their holes and released from the rail element. Post 14 was resting 10 inches downstream and 3 ft toward the field side. Post 15 was resting 11.5 ft downstream and 5 ft toward the field side. Post 16 was resting 18 ft downstream and 5 ft toward the field side. Post 17 was resting 21 ft downstream and 6.5 ft toward the field side. Post 18 dislodged from the ground but remained adjacent to the guardrail. Post 19 was leaning 34° from horizontal. Post 20 was leaning 83° downstream and 82° toward the field side. Posts 21 through 30 were intact. The soil around posts 29 and 30 was disturbed. Working width was 76.2 inches, and height of working width was 11 inches. Maximum dynamic deflection during the test was 74.8 inches, and maximum permanent deformation was 41 inches.

11.4.6 Damage to Test Vehicle

Figure 11.14 shows the damage sustained by the vehicle. The front bumper, hood, grill, left front fender, left front tire and rim, left upper and lower ball joints, left front and rear doors, left exterior bed, and rear bumper were damaged. Maximum exterior crush to the vehicle was 7.0 inches in the front and side plane at the left front corner at bumper height. No occupant compartment deformation or intrusion occurred. Figure 11.15 shows the interior of the vehicle. Tables J.9 and J.10 in Appendix J.4.2 provide exterior crush and occupant compartment measurements.

11.4.7 Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk, and the results are shown in Table 11.5. Figure 10.16 summarizes these data and other pertinent information from the test. Figure J.12 in Appendix J.5.3 shows the vehicle angular displacements, and Figures J.13 through J.18 in Appendix J.5.4 show acceleration versus time traces.

11.4.8 Assessment of Test Results

Table 11.6 provides an assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 3-11.

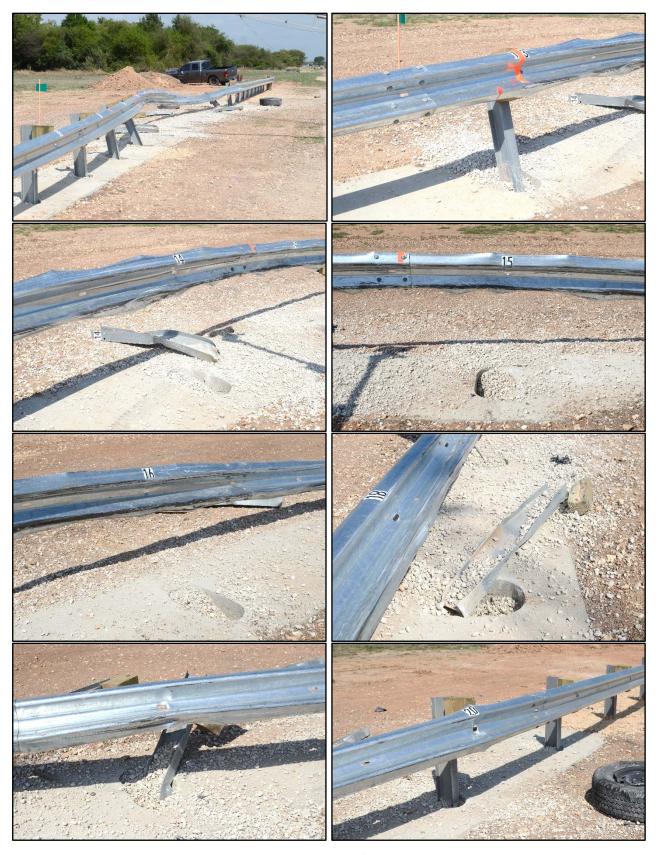


Figure 11.12. Posts 13 through 20 after Test No. 469468-10-1.

Figure 11.13. Upstream Terminal after Test No. 469468-10-1.

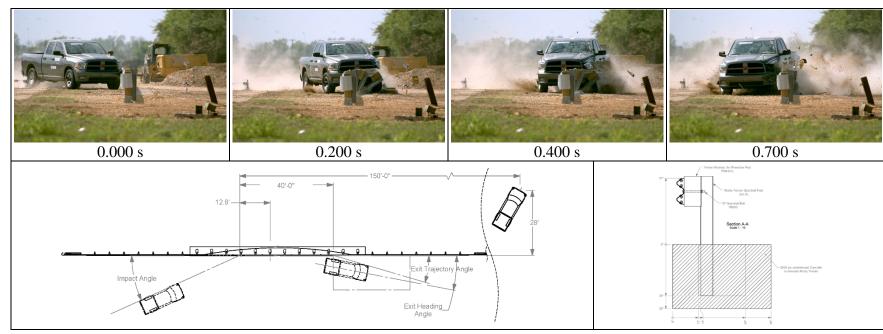

Figure 11.14. Test Vehicle after Test No. 469468-10-1.

Figure 11.15. Interior of Test Vehicle for Test No. 469468-10-1.

Table 11.5. Occupant Risk Factors for Test No. 469468-10-1.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	13.4 ft/s	at 0.1652 s on left side of interior
Lateral	13.8 ft/s	at 0.1032 8 on left side of interior
Occupant Ridedown Accelerations		
Longitudinal	7.3 g	0.5725–0.5825 s
Lateral	7.8 g	0.3945–0.4045 s
THIV	20.4 km/h 5.7 m/s	At 0.1583 s on left side of interior
PHD	7.8 g	0.5725–0.5825 s
ASI	0.63	0.3945–0.4445 s
Maximum 50-ms Moving Average		
Longitudinal	-4.0 g	0.0711–0.1211 s
Lateral	5.3 g	0.3658-0.4158 s
Vertical	−2.9 g	0.4956–0.5456 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	8 °	0.8200 s
Pitch	1 7 °	0.7821 s
Yaw	47°	0.7723 s

General Information		Impact Conditions	Post-Impact Trajectory
Test Agency	Texas A&M Transportation Institute (TTI)	Speed 63.3 mi/h	Stopping Distance 150 ft downstream
Test Standard Test No	MASH Test 3-11	Angle 24.4°	28 ft twd field
TTI Test No	469468-10-1	Location/Orientation 12.8 ft upstream of	Vehicle Stability
Test Date	2018-03-27	post 15	Maximum Yaw Angle 47°
Test Article		Impact Severity 115 kip-ft	Maximum Pitch Angle 17°
Type	Guardrail	Exit Conditions	Maximum Roll Angle 8°
Name	TxDOT MBGF in Rocky Terrain	Speed 34.2 mi/h	Vehicle Snagging No
Installation Length	181 ft 3 inches	Exit Trajectory 16.3°	Vehicle Pocketing No
Material or Key Elements	31-inch tall W-beam guardrail on W6x8.5	Heading Angle 10.9°	Test Article Deflections
•	steel posts in simulated rocky terrain	Occupant Risk Values	Dynamic 74.8 inches
Soil Type and Condition	75-ft concrete beam with 12×22×24-inch	Longitudinal OIV 13.4 ft/s	Permanent 41 inches
	deep leave-outs filled with cohesionless	Lateral OIV 13.8 ft/s	Working Width 79.0 inches
Test Vehicle	material, Dry	Longitudinal Ridedown 7.3 g	Height of Working Width 10.9 inches
Type/Designation	2270P	Lateral Ridedown 7.8 g	Vehicle Damage
Make and Model	2012 Dodge RAM 1500 pickup truck	THIV 20.4 km/h	VDS 11LFQ5
Curb	4850 lb	PHD7.8 g	CDC 11FLEW3
Test Inertial	5017 lb	ASI 0.63	Max. Exterior Deformation 7.0 inches
Dummy	No dummy	Max. 0.050-s Average	OCDILS0000000
Gross Static	5017 lb	Longitudinal4.0 g	Max. Occupant Compartment
		Lateral 5.3 g	Deformation None
		Vortical 2.0 a	

Vertical.....-2.9 g

Figure 11.16. Summary of Results for MASH Test 3-11 on MBGF with Steel Posts in Rocky Terrain.

 $Table \ 11.6. \ Performance \ Evaluation \ Summary \ for \ \textit{MASH} \ Test \ 3-11 \ on \ MBGF \ with \ Steel \ Posts \ in \ Rocky \ Terrain.$

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 469468-10-1	Test Date: 2018-03-27
	MASH Test 3-11 Evaluation Criteria	Test Results	Assessment
Stru	ctural Adequacy		
<i>A</i> .	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The MBGF with W6×8.5 steel posts in rocky terrain contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 74.8 inches.	Pass
Occ	upant Risk		
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	Post and blockout fragments were present but did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	No occupant compartment deformation or intrusion occurred.	
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 8° and 17°, respectively.	Pass
Н.	Longitudinal and lateral occupant impact velocities should fall below the preferred value of 30 ft/s, or at least below the maximum allowable value of 40 ft/s.	Longitudinal OIV was 13.4 ft/s, and lateral OIV was 13.8 ft/s.	Pass
I.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 gs, or at least below the maximum allowable value of 20.49 gs.	Maximum longitudinal occupant ridedown acceleration was 7.3 g, and maximum lateral occupant ridedown acceleration was 7.8 g.	Pass
Veh	icle Trajectory		
	For redirective devices, it is preferable that the vehicle be smoothly redirected and leave the barrier within the exit box criteria (not less than 32.8 ft for the 1100C and 2270P vehicles) and should be documented.	The 2270P vehicle exited within the exit box criteria.	Documentation only

11.5 CONCLUSIONS

The MBGF with W6×8.5 steel posts in rocky terrain contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 40.5 inches. Post and blockout fragments were present but did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. No occupant compartment deformation or intrusion occurred. The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 15° and 10°, respectively. Occupant risk factors were within the preferred limits specified in *MASH*. The 1100C vehicle exited within the exit box criteria.

The MBGF with W6×8.5 steel posts in rocky terrain contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 74.8 inches. Post and blockout fragments were present but did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. No occupant compartment deformation or intrusion occurred. The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 8° and 17°, respectively. Occupant risk factors were within the preferred limits specified in *MASH*. The 2270P vehicle exited within the exit box criteria.

Table 11.7 shows the MBGF with W6×8.5 steel posts in rocky terrain performed acceptably for MASH TL-3.

Table 11.7. Assessment Summary for *MASH* TL-3 Tests on TxDOT MBGF with W6×8.5 Steel Posts in Rocky Terrain.

Evaluation Factors	Evaluation Criteria	Test No. 469468-10-2	Test No. 469468-10-1
Structural Adequacy	A	S	S
	D	S	S
Occupant	F	S	S
Risk	Н	S	S
	I	S	S
Test No.		MASH Test 3-10	MASH Test 3-11
	Pass/Fail	Pass	Pass

S = Satisfactory U = Unsatisfactory N/A = Not Applicable

CHAPTER 12: MBGF WITH ROUND WOOD POSTS IN ROCKY TERRAIN

12.1 BACKGROUND*

Guidance for installing the TxDOT MBGF in rocky terrain is found in general note 9 on metal beam guard fence standard GF(31)-14. TxDOT standards permit the use of three types of guardrail posts: a W6 \times 8.5 steel post, a nominal 6-inch \times 8-inch rectangular wood post, and a round wood post with a minimum 7-inch diameter.

The steel post configuration in rocky terrain was successfully tested as documented in Chapter 11 of this report. *MASH* Test 3-11 of the TxDOT MBGF with round wood posts was unsuccessful as described in Chapter 6 of this report. In this test, several of the wood posts fractured and the vehicle overrode the guardrail installation. Based on this result, it was recommended that the guardrail in rocky terrain be further evaluated with round wood posts.

The primary consideration for the evaluation of the W-beam guardrail with round wood posts is structural adequacy. *MASH* Test 3-11 with the pickup truck was considered the critical test. The impact performance with the passenger car should be acceptable based on the reduced snagging severity associated with the geometry of the round post compared to the steel post that was successfully tested.

12.2 SYSTEM DETAILS

12.2.1 Test Article and Installation Details

The test installation consisted of a W-beam guardrail system with the top edge of the W-beam rail mounted 31 inches above the roadway on nominal 7-inch diameter wood posts spaced at 6.25 ft. Routered wood blockouts, nominally 6 in. \times 8 in., were inserted between the W-beam rail and posts, and the W-beam rail splices were located midspan between the posts. The guardrail was anchored on each end with a TxDOT DAT terminal making the total installation length 181.25 ft.

An unreinforced concrete beam measuring 30 inches deep \times 46 inches wide \times 75 ft long was placed from post 10 to post 21 in the impact area of the length-of-need to simulate rocky terrain. Oval shaped voids measuring 12 inches wide \times 22 inches long \times 24 inches deep were cast in the beam at each post location to simulate holes cored in rock. The 7-inch diameter wood posts rested on the bottom of these voids with the traffic face of the post placed 1 inch from the front edge of the void. The voids were then backfilled with ASTM C33 coarse aggregate, size no. 57, and hand-tamped with a rod in 6-inch lifts.

Figure 12.1 presents overall information on the MBGF with round wood posts in rocky terrain, and Figure 12.2 provides photographs of the installation. Appendix K.1 provides further details of the MBGF in rocky terrain.

TR No. 0-6946-R2 197 2019-03-27

^{*} The opinions/interpretations identified/expressed in Section 12.1 are outside the scope of TTI Proving Ground's A2LA Accreditation.

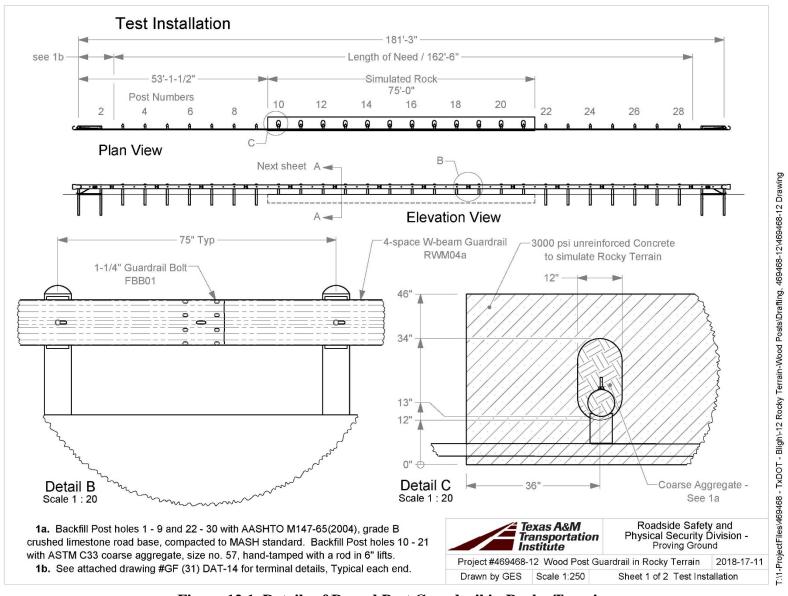


Figure 12.1. Details of Round Post Guardrail in Rocky Terrain.

Figure 12.1. Details of Round Post Guardrail in Rocky Terrain (Continued).

Figure 12.2. MBGF With Round Wood Posts in Rocky Terrain prior to Testing.

12.2.2 Material Properties

Appendix K.2 provides material certification documents for the materials used to install/construct the MBGF in rocky terrain.

12.2.3 Soil Conditions

The remainder of the posts not installed in the concrete beam were installed in soil meeting grading B of AASHTO standard specification M147-65(2004) "Materials for Aggregate

and Soil Aggregate Subbase, Base and Surface Courses." In accordance with Appendix B of *MASH*, soil strength was measured the day of the crash test. During installation of the guardrail for full-scale crash testing, two W6×16 posts were installed in the immediate vicinity of the MBGF in rocky terrain using the same fill materials and installation procedures used in the test installation and the previous standard dynamic test. Table K.1 in Appendix K.3 presents minimum soil strength properties established through the previous dynamic testing performed in accordance with *MASH* Appendix B.

As determined by the tests summarized in Appendix K.3, Table K.1, the minimum post loads required for deflections at 5 inches, 10 inches, and 15 inches, measured at a height of 25 inches, are 3940 lb, 5500 lb, and 6540 lb, respectively (90 percent of static load for the initial standard installation). On the day of the test, August 21, 2018, loads on the post at deflections of 5 inches, 10 inches, and 15 inches were 9900 lbf, 11,000 lbf, and 10,000+ lbf, respectively. Table K.2 in Appendix K.3 shows the strength of the backfill material in which the guardrail was installed met minimum *MASH* requirements.

12.3 *MASH* TEST 3-11 (CRASH TEST NO. 469468-12-1)

12.3.1 Test Designation and Actual Impact Conditions

MASH Test 3-11 involves a 2270P vehicle weighing 5000 lb ± 110 lb impacting the CIP of the guardrail at an impact speed of 62 mi/h ± 2.5 mi/h and an angle of 25° ± 1.5 °. Figure 12.3 shows the target CIP for MASH Test 3-11 on the round post guardrail in rocky terrain was 12.5 ft ± 1 ft upstream of post 15 (i.e., post 13) using information in MASH section 2.3.2.

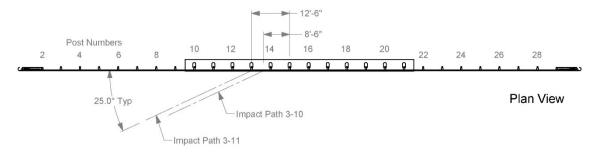


Figure 12.3. Target CIP for *MASH* TL-3 Tests on MBGF with Round Wood Posts in Rocky Terrain.

The 2013 RAM 1500 pickup truck used in the test weighed 5018 lb, and the actual impact speed and angle were 63.3 mi/h and 26.0°, respectively. The actual impact point was at 12.5 ft upstream of post 15 (i.e.at post 13). Minimum target IS was 106 kip-ft, and actual IS was 129 kip-ft.

12.3.2 Weather Conditions

The test was performed on the morning of August 21, 2018. Weather conditions at the time of testing were as follows: wind speed: 9 mi/h; wind direction: 243° (vehicle was traveling in a northwesterly direction); temperature: 88°F; relative humidity: 67 percent.

12.3.3 Test Vehicle

Figures 12.4 and 12.5 show the 2013 RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 5018 lb, and its gross static weight was 5018 lb. The height to the lower edge of the vehicle bumper was 11.75 inches, and the height to the upper edge of the bumper was 27.0 inches. The height to the vehicle's center of gravity was 28.8 inches. Tables K.3 and K.4 in Appendix K.4.1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 12.4. Round Post Guardrail/Test Vehicle Geometrics for Test No. 469468-12-1.

Figure 12.5. Test Vehicle before Test No. 469468-12-1.

12.3.4 Test Description

The test vehicle contacted the MBGF with round wood posts in rocky terrain 12.5 ft upstream of post 15 (i.e., at post 13) at a speed of 63.3 mi/h and an angle of 26.0°. Table 11.1 lists events that occurred during Test No. 469468-12-1. Figures K.1 and K.2 in Appendix K.4.2 present sequential photographs during the test.

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and

pickups). The 2270P vehicle penetrated the guardrail and did not redirect and exit within the exit box criteria defined in *MASH*. After loss of contact with the barrier, the vehicle came to rest on the left (driver) side 80 ft downstream of the impact point and 6 ft toward the field side.

Table 12.1. Events during Test No. 469468-12-1.

TIME (s)	EVENTS
0.000	Left front corner of vehicle bumper contacts guardrail
0.002	Post 13 begins to deflect toward field side
0.017	Post 12 and 14 begin to deflect toward field side
0.031	Rail element begins to rise upward at post 15
0.034	Vehicle begins to redirect
0.036	Post 15 begins to rise upward and deflect toward field side
0.063	Left front bumper contacts post 13
0.066	Post 16 begins to deflect toward field side
0.070	Left front bumper contacts post 14
0.086	Left front tire begins to ride over post 14
0.100	Post 17 begins to deflect toward field side
0.130	Left front bumper contacts post 15
0.198	Left front bumper contacts post 16
0.215	Rear of vehicle contacts guardrail
0.257	Rail element begins to rupture
0.274	Rail element completely separated
0.295	Left front bumper contacts post 17
0.387	Left front bumper and rail element contact post 18
0.429	Vehicle becomes parallel with the barrier

12.3.5 Damage to Test Installation

Figures 12.6 and 12.7 show damage to the round post guardrail in rocky terrain. Post 1 was pulled downstream 0.9 inch at ground level. The rail element ruptured at post 16 and separated from the posts and blockouts from post 1 through post 23. Posts 10, 11, and 12 were deflected toward the field side 0.5 inch, 1.2 inches, and 3.5 inches, respectively. Post 13 was split and deflected toward the field side 5.5 inches. Posts 14 and 16 through 21 were fractured at ground level, and post 15 was pulled out of the ground. Post 14 was resting 48 ft toward the field side, and post 20 was resting 11 ft toward traffic lanes, with the remainder remaining near the installation. No movement was observed from post 24 through the end of the installation. The maximum dynamic deflection of the W-beam rail was 61.3 inches prior to its rupture.

Figure 12.6. MBGF with Round Wood Posts in Rocky Terrain after Test No. 469468-12-1.

Figure 12.7. Ruptured Guardrail after Test No. 469468-12-1.

12.3.6 Damage to Test Vehicle

Figure 12.8 shows the damage sustained by the vehicle. The front bumper, hood, grill, radiator and support, left front tire and rim, left front frame rail, left upper and lower A-arms, left front and rear doors, left rear cab corner, left exterior bed, and left rear tire and rim were damaged. Maximum exterior crush to the vehicle was 16.0 inches in the side plane at the left front corner at bumper height. No occupant compartment deformation occurred. Figure 12.9 shows the interior of the vehicle. Tables K.5 and K.6 in Appendix K.4.2 provide exterior crush and occupant compartment measurements.

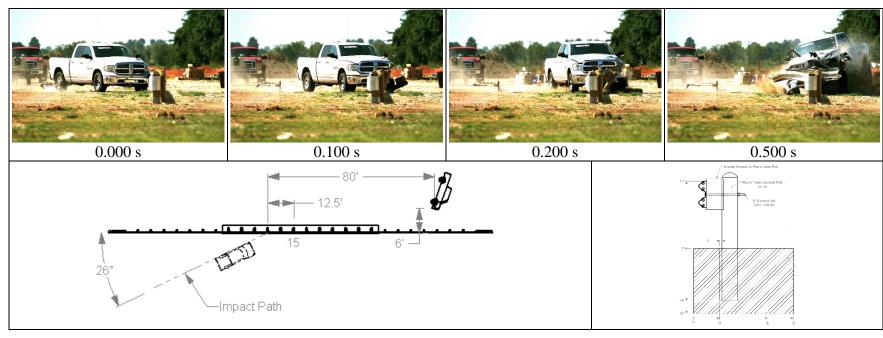
Figure 12.8. Test Vehicle after Test No. 469468-12-1.

Before Test

After Test

Figure 12.9. Interior of Test Vehicle for Test No. 469468-12-1.

12.3.7 Occupant Risk Factors


Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk, and the results are shown in Table 12.2. Figure 12.10 summarizes these data and other pertinent information from the test. Figure K.3 in Appendix J.4.3 shows the vehicle angular displacements, and Figures K.4 through K.9 in Appendix K.4.4 show acceleration versus time traces.

12.3.8 Assessment of Test Results

Table 12.3 provides an assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 3-11.

Table 12.2. Occupant Risk Factors for Test No. 469468-12-1.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	15.1 ft/s	-4.0.1625 1-6 - i.l finterior
Lateral	16.1 ft/s	at 0.1625 s on left side of interior
Occupant Ridedown Accelerations		
Longitudinal	7.2 g	0.5431–0.5531 s
Lateral	6.7 g	0.2422–0.2522 s
THIV	23.4 km/h 6.5 m/s	at 0.1564 s on left side of interior
PHD	8.0 g	0.5431–0.5531 s
ASI	0.71	0.1480–0.1980 s
Maximum 50-ms Moving Average		
Longitudinal	-4.3 g	0.1018–0.1518 s
Lateral	5.4 g	0.1336–0.1836 s
Vertical	1.8 g	3.1709–3.2209 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	98°	3.5554 s
Pitch	5°	0.7748 s
Yaw	161°	3.3417 s

General Information Test Agency Test Standard Test No TTI Test No.		Impact Conditions 63.3 mi/h Angle 26.0° Location/Orientation 12.5 ft upstream of	Post-Impact Trajectory Stopping Distance
Test Date		post 15	Maximum Yaw Angle 161°
Test Article	Cuardrail	Impact Severity129 kip-ft Exit Conditions	Maximum Pitch Angle 5° Maximum Roll Angle 98°
Type Name Installation Length	MBGF with round posts in Rocky Terrain	SpeedNA Exit TrajectoryBehind Rail	Vehicle Snagging No Vehicle Pocketing No
Material or Key Elements	31-inch tall W-beam guardrail on nominal 7-in diameter wood posts in simulated	Heading Angle Behind Rail Occupant Risk Values	Test Article Deflections Dynamic Ruptured
Soil Type and Condition	rocky terrain 75-ft concrete beam with 12×22×24-inch deep leave-outs filled with cohesionless	Longitudinal OIV	Permanent
Test Vehicle	material, Dry	Lateral Ridedown 6.7 g	Vehicle Damage
Type/Designation Make and Model Curb	2013 RAM 1500 pickup truck	THIV	VDS
Test Inertial Dummy		Max. 0.050-s Average Longitudinal4.3 g	OCDILF0020000 Max. Occupant Compartment
Gross Static		Lateral	DeformationNone

Figure 12.10. Summary of Results for MASH Test 3-11 on MBGF with Round Wood Posts in Rocky Terrain.

Table 12.3. Performance Evaluation Summary for MASH Test 3-11 on MBGF with Round Wood Posts in Rocky Terrain.

Test Agency: Texas A&M Transportation Institute Test No.: 469468-12-1 Test Date: 2018-08-21

168	t Agency: Texas A&M Transportation Institute	1est No.: 469468-12-1	est Date: 2018-08-21
	MASH Test 3-11 Evaluation Criteria	Test Results	Assessment
Stru A.	ictural Adequacy Test article should contain and redirect the vehicle or	The MBGF with round wood posts in rocky terrain	
	bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	began to redirect the 2270P vehicle; however, the rail element ruptured and allowed the vehicle to penetrate the installation.	Fail
Occ	upant Risk		
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	Post and blockout fragments were present but did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	No occupant compartment deformation occurred.	
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 2270P vehicle rolled 90° onto its left side.	Fail
Н.	Longitudinal and lateral occupant impact velocities should fall below the preferred value of 30 ft/s, or at least below the maximum allowable value of 40 ft/s.	Longitudinal OIV was 15.1 ft/s, and lateral OIV was 16.1 ft/s.	Pass
I.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 gs, or at least below the maximum allowable value of 20.49 gs.	Maximum longitudinal occupant ridedown acceleration was 7.2 g, and maximum lateral occupant ridedown acceleration was 6.7 g.	Pass
Vel	icle Trajectory		
	For redirective devices, it is preferable that the vehicle be smoothly redirected and leave the barrier within the exit box criteria (not less than 32.8 ft for the 1100C and 2270P vehicles) and should be documented.	The 2270P vehicle penetrated the guardrail and did not redirect and exit within the exit box criteria defined in <i>MASH</i> .	Documentation only

12.4 CONCLUSIONS

The MBGF with round wood posts in rocky terrain began to redirect the 2270P vehicle; however, the rail element ruptured and allowed the vehicle to penetrate the installation. Post and blockout fragments were present but did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. No occupant compartment deformation occurred. The 2270P vehicle rolled 90° onto its left (driver) side. Occupant risk factors were with the preferred limits specified in *MASH*. The 2270P vehicle penetrated the guardrail and did not redirect and exit within the exit box criteria defined in *MASH*.

Table 12.3 shows the MBGF with round wood posts in rocky terrain did not perform acceptably for *MASH* Test 3-11 due to rupture of the rail element and subsequent roll over of the vehicle.

CHAPTER 13: SUMMARY AND CONCLUSIONS

A *MASH* implementation agreement was jointly developed and adopted by FHWA and AASHTO. It establishes various implementation dates for different categories of roadside safety features. In response to the implementation requirements, TxDOT Bridge, Design, Maintenance, and Traffic Operations Divisions reviewed their standards for roadside safety devices and identified those devices that require testing and evaluation to assess *MASH* compliance. These systems are being crash tested in accordance with *MASH* criteria in three phases over a three-year period.

This report documents the Phase II testing and evaluation effort. Test results and assessment of *MASH* compliance for each device are summarized below.

13.1 TXDOT C402 BRIDGE RAIL

The 1100C vehicle was contained and redirected. The hood of the vehicle was pushed into the windshield, which shattered, but did not penetrate or create excessive deformation into the occupant compartment. Maximum occupant compartment deformation was 2.5 inches in the driver side floor pan and firewall areas. The 1100C vehicle remained upright during and after the collision event. Occupant risk factors were within allowable limits.

The TxDOT C402 bridge rail contained and redirected the 2270P vehicle. The hood of the vehicle was pushed into the windshield, which shattered, but did not penetrate or create excessive deformation into the occupant compartment. Maximum reduction of space in the occupant compartment was 1.0 inch in the driver side floor pan and kick panel areas. The 2270P vehicle remained upright during and after the test. Occupant risk factors were within the preferred limits.

The single-unit truck was successfully contained and redirected. The vehicle remained stable and upright as it came to a stop. Some cracking was observed in the deck and parapet upstream of the expansion joint.

The TxDOT C402 bridge rail performed acceptably according to MASH TL-4 evaluation criteria.

13.2 TXDOT C412 BRIDGE RAIL

The tractor-trailer was contained and redirected. The trailer rolled on top of the bridge rail and rode along the top until it exited the end of the installation. The trailer disconnected from the tractor and the trailer rolled onto its side after exiting the installation. The trailer roll began to recover from its maximum prior to exiting the system.

The TxDOT C412 bridge rail performed acceptably according to *MASH* Test 5-12 evaluation criteria.

13.3 TXDOT C411 BRIDGE RAIL

The TxDOT C411 bridge rail contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. No dynamic deflection or permanent deformation was observed. No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. Maximum occupant compartment deformation was 4.0 inches in the right firewall area. The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 26° and 13°, respectively. Occupant risk factors were within the allowable limits specified in *MASH*. The 1100C vehicle exited within the exit box criteria.

The TxDOT C411 contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. No measurable dynamic deflection or permanent deformation was observed. No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. Maximum occupant compartment deformation was 4.0 inches in the right firewall area. The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 7° and 3°, respectively. Occupant risk factors were within the preferred limits specified in *MASH*. The 2270P vehicle exited within the exit box criteria.

The TxDOT C411 bridge rail performed acceptably according to MASH TL-2 evaluation criteria.

13.4 TXDOT T1W BRIDGE RAIL

The TxDOT T1W bridge rail contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 1.1 inches. No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. Maximum occupant compartment deformation was 3.5 inches in the left firewall area. The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 12° and 4°, respectively. Occupant risk factors were within the allowable limits specified in *MASH*. The 1100C vehicle exited within the exit box criteria.

The TxDOT T1W contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 13.0 inches, and maximum deformation was 3.0 inches. No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. Maximum occupant compartment deformation was 3.0 inches in the left firewall area. The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 15° and 4°, respectively. Occupant risk factors were within the preferred limits specified in *MASH*. The 2270P vehicle exited within the exit box criteria.

The TxDOT T1W bridge rail performed acceptably according to MASH TL-3 evaluation criteria.

13.5 ROUND WOOD POST W-BEAM GUARDRAIL

The round wood post w-beam guardrail did not contain or redirect the 2270P vehicle. The vehicle overrode the installation. Maximum dynamic deflection prior to override of the installation was 57.4 inches. Post and blockout fragments were present but did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. Maximum occupant compartment deformation as 5.0 inches in the right front floor pan area. The 2270P vehicle rolled 3.5 revolutions after overriding the installation. Occupant risk factors were within the allowable limits specified in *MASH*. The 2270P vehicle did not redirect and exit within the exit box criteria.

Due to override of the installation and subsequent rollover of the 2270P vehicle, the round wood post w-beam guardrail did not perform acceptably for *MASH* Test 3-11.

13.6 TXDOT 42-INCH SINGLE SLOPE CONCRETE MEDIAN BARRIER WITH LIGHT POLE

The TxDOT 42-inch single slope concrete median barrier with light pole contained and redirected the 10000S vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was not obtainable due to vehicle obstruction of view. No detached elements, fragments, or other debris from the test article were present to penetrate or show potential for penetrating the occupant compartment or to present hazard to others in the area. The 10000S vehicle remained upright during and after the collision event. Maximum roll was 30°. The 10000S vehicle exited within the exit box criteria.

The TxDOT 42-inch single slope concrete median barrier with light pole performed acceptably for *MASH* Test 4-12.

13.7 SKID-MOUNTED SINGLE-POST PERFORATED STEEL TUBE TEMPORARY SIGN SUPPORT

During *MASH* Test 3-72 at 0°, the sleeve of the skid-mounted single perforated steel tube temporary sign support system readily released from its skid upon impact upon impact by the 2270P vehicle. The released sign panel and support post did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. The windshield was cracked, but no hole, tear, or measurable deformation was observed. No other occupant compartment deformation was observed. The sign panel and support post briefly slapped the windshield but would not block the driver's vision enough to cause loss of control of the vehicle. The 2270P vehicle remained upright during and after the collision event. The 2270P vehicle came to rest 272 ft behind the point of impact with the device.

During *MASH* Test 3-72 at 90°, the sleeve and support post of the skid-mounted single perforated steel tube temporary sign support system yielded to the 2270P vehicle upon impact. The detached sign panel and upright support did not penetrate the occupant compartment. The debris did not present undue hazard to others in the area. The windshield was cracked, but no hole, tear, or measurable deformation was observed. No other occupant compartment deformation was observed. The sign panel and support would not block the driver's vision enough to cause loss of control of the vehicle. The 2270P vehicle remained upright during and

after the collision event. The 2270P vehicle came to rest 220 ft behind the point of impact with the device.

The skid-mounted single perforated steel tube temporary sign support system performed acceptably for *MASH* Test 3-72 criteria.

13.8 MAILBOXES

13.8.1 Single Mailbox – Recycled Rubber Support Post – Type 4 Foundation

The single mailbox with recycled rubber support post in Type 4 foundation readily released from the socket upon impact by the 1100C vehicle. The mailbox and support did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. The windshield was cracked, but no hole, tear, or measurable deformation was observed. No other occupant compartment deformation was observed. The 1100C vehicle remained upright during and after the collision event. No occupant contact occurred in either the longitudinal or lateral directions. The 1100C vehicle came to rest 366 ft behind the original location of the test article. The single mailbox with recycled rubber support post in Type 4 foundation performed acceptably for *MASH* Test 3-61.

13.8.2 Double Mailbox – Thin-Wall Galvanized Pipe Support – Type 4 Foundation

The double mailbox with thin-wall galvanized support pipe in Type 4 foundation deformed around the front of the vehicle and released out of the socket. The mailbox and support did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. No windshield contact or occupant compartment deformation was observed. The 1100C vehicle remained upright during and after the collision event. Occupant risk factors were within the preferred limits specified in *MASH*. The 1100C vehicle came to rest 306 ft behind the original location of the test article. The double mailbox with thinwall galvanized pipe support in Type 4 foundation performed acceptably for *MASH* Test 3-61.

13.8.3 Multiple Mailboxes – Multi-Mount Support – Type 4 Foundation

The multiple mailboxes with multi-mount support in Type 4 foundation readily released out of the socket upon impact by the 1100C vehicle. The mailboxes and support did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. The windshield was cracked, and there was 1.8 inches of deformation inward toward the occupant compartment. No tear or hole was observed in the windshield. No other occupant compartment deformation was observed. The 1100C vehicle remained upright during and after the collision event. Occupant risk factors were within the preferred limits specified in *MASH*. The 1100C vehicle came to rest 302 ft behind and 10 ft to the left of the original location of the test article. The multiple mailboxes with multi-mount support in Type 4 foundation performed acceptably for *MASH* Test 3-61.

13.8.4 Single Molded Plastic Mailmaster® Mailbox – Wood Support Post– Type 5 Foundation

The single molded plastic Mailmaster[®] mailbox with wood support post in Type 5 foundation fractured slightly below ground upon impact by the 1100C vehicle. The mailbox and support did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. The windshield was cracked, and maximum deformation was 1.9 inches. No tear or hole was observed in the windshield. Occupant risk factors were within the preferred limits specified in *MASH*. The 1100C vehicle remained upright during and after the collision event. The 1100C vehicle came to rest 288 ft behind the original location of the test article. The single molded plastic Mailmaster® mailbox with wood support post (Type 5 foundation) performed acceptably for *MASH* Test 3-61.

13.9 Skid-Mounted Dual Wood Post Temporary Sign Support System

The supports of the skid-mounted dual wood post temporary sign support system fractured upon impact by the 2270P vehicle. The detached sign panel and support segments did not penetrate the occupant compartment. The debris did not present undue hazard to others in the area. The windshield was cracked, but no hole, tear, or measurable deformation was observed. No other occupant compartment deformation was observed. The sign panel and supports would not block the driver's vision enough to cause loss of control of the vehicle. The 2270P vehicle remained upright during and after the collision event. The 2270P vehicle came to rest 248 ft behind the original location of the test article. The skid-mounted dual wood post temporary sign support system met all applicable criteria for *MASH* Test 3-72 at 90°.

13.10 MBGF WITH W6×8.5 STEEL POSTS IN ROCKY TERRAIN

The MBGF with W6×8.5 steel posts in rocky terrain contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 40.5 inches. Post and blockout fragments were present but did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. No occupant compartment deformation or intrusion occurred. The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 15° and 10°, respectively. Occupant risk factors were within the preferred limits specified in *MASH*. The 1100C vehicle exited within the exit box criteria.

The MBGF with W6×8.5 steel posts in rocky terrain contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 74.8 inches. Post and blockout fragments were present but did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. No occupant compartment deformation or intrusion occurred. The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 8° and 16°, respectively. Occupant risk factors were within the preferred limits specified in *MASH*. The 2270P vehicle exited within the exit box criteria.

The MBGF with W6×8.5 steel posts in rocky terrain performed acceptably for MASH TL-3 criteria.

13.11 MBGF WITH ROUND WOOD POSTS IN ROCKY TERRAIN

The MBGF with round wood posts in rocky terrain began to redirect the 2270P vehicle; however, the rail element ruptured and allowed the vehicle to penetrate the installation. Post and blockout fragments were present but did not penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. No occupant compartment deformation or intrusion occurred. The 2270P vehicle rolled 90° onto its left side. Occupant risk factors were within the preferred limits specified in *MASH*. The 2270P vehicle exited within the exit box criteria.

The MBGF with round posts in rocky terrain did not perform acceptably for *MASH* Test 3-11 due to rupture of the rail element and subsequent roll over of the vehicle.

CHAPTER 14: IMPLEMENTATION*

A total of 19 full-scale crash tests were performed under Phase II of this project to evaluate 14 different roadside safety devices or configurations. These tests represent the critical tests considered necessary to demonstrate *MASH* compliance of each device. Therefore, systems that met *MASH* requirements for the critical test conditions are considered *MASH* compliant and suitable for continued implementation beyond the *MASH* implementation deadline.

TxDOT standards include multiple configurations or variations for many of these devices to accommodate different design considerations. In such instances, the critical or worst-case configuration was selected and tested. If the critical configuration met *MASH* requirements, other less critical configurations of the device are also considered *MASH* compliant. The implementation recommendations for each system tested and evaluated in accordance with *MASH* are described in the sections below.

14.1 TXDOT C402 BRIDGE RAIL

The T402 bridge rail consists of a tubular steel rail attached to fabricated steel posts mounted to a 24-inch tall concrete parapet. The only difference between the T402 and C402 rail is that the C402 incorporates a nominal 2-inch diameter steel pipe attached to the traffic face of the steel posts between the concrete parapet and tubular rail element to meet pedestrian code requirements.

TTI researchers consider the C402 bridge rail a more critical configuration than the T402 bridge rail. The 24-inch height of the concrete parapet is above the bumper height of a passenger car and captures most of the pickup truck bumper. Therefore, although some sheet metal contact will occur, substantial snagging of vehicle components on the steel posts was not a significant concern. Testing the C402 bridge rail evaluated the attachment of the pedestrian pipe rail to the posts and the splices between the pipe sections to determine if there is any separation and interaction with the impacting vehicle. If this more critical configuration meets *MASH* requirements, the less critical T402 bridge rail would also be considered *MASH* compliant.

The C402 bridge rail was crash tested with the elliptical tubular steel rail option. The elliptical tubular steel rail is considered more critical than the rectangular tube option because of its narrower contact surface area.

The full *MASH* test matrix was successfully performed on the C402 bridge rail system. The full-scale crash tests consisted of test designations 4-10 (small passenger car), 4-11 (pickup truck), and 4-12 (single unit truck). Therefore, the C402 and T402 bridge rail systems with both elliptical and rectangular tube rail options are considered *MASH* TL-4 compliant. Implementation of these bridge rail systems can be achieved by the Bridge Division through revision of their respective standard sheets as necessary to reflect the details presented in Appendix A.1.

_

^{*} The opinions/interpretations identified/expressed in this chapter are outside the scope of TTI Proving Ground's A2LA Accreditation.

14.2 TXDOT C412 BRIDGE RAIL

The TxDOT C412 bridge rail is an aesthetic concrete combination rail with cast-in-place windows designed to accommodate both vehicle and pedestrian traffic. Previously, it was successfully tested to *NCHRP Report 350* TL-4 under the name F411 (2). TxDOT made changes to the reinforcement in the C412 rail to provide structural adequacy for *MASH* TL-5.

When tested in accordance with *MASH* Test 5-12 with an 80,000-lb tractor-van trailer, the C412 bridge rail met all required *MASH* criteria. Because a variation of the C412 bridge rail with similar geometry was successfully tested to *MASH* TL-4 (*3*), test designations 5-10 and 5-11 were deemed unnecessary.

Consequently, the C412 bridge rail is considered *MASH* TL-5 compliant. Implementation of the C412 bridge rail can be achieved by the Bridge Division through development of a revised standard sheet based on details presented in Appendix B.1.

14.3 TXDOT C411 BRIDGE RAIL

The T411 bridge rail, also known as the Texas Classic Rail, is an aesthetic concrete rail with cast-in-place windows and pilasters. It has an overall height of 32 inches with 18-inch tall windows. The C411 bridge rail is a 42-inch tall version of the T411 rail that meets pedestrian code requirements and accommodates both vehicle and pedestrian traffic. The windows in the C411 bridge rail are 24 inches tall, thus making it the more critical of the two bridge rail systems. The taller 24-inch windows are more critical from a vehicle interaction and snagging standpoint, and the overall 42-inch rail height is more critical from an occupant interaction standpoint.

The full *MASH* test matrix was successfully performed on the C411 bridge rail system. The full-scale crash tests included *MASH* test designations 2-10 (small passenger car) and 2-11 (pickup truck). Therefore, both the C411 and the less critical T411 are considered *MASH* TL-2 compliant. Continued implementation of these bridge rail systems can be achieved by the Bridge Division through revision of their respective standard sheets as necessary to reflect the details presented in Appendix C.1.

14.4 TXDOT T1W BRIDGE RAIL

The TxDOT T1W bridge rail is a variation of a rail initially developed by the Wyoming Department of Transportation (WYDOT). The bridge rail is a 32-inch tall rail that consists of two rectangular tubular steel rail elements attached to fabricated steel posts mounted on a 9-inch tall concrete curb.

The full *MASH* TL-3 test matrix was successfully performed on the T1W rail system. The full-scale crash tests included *MASH* test designations 3-10 (small passenger car) and 3-11 (pickup truck). Therefore, the T1W bridge rail is considered *MASH* TL-3 compliant. Continued implementation of this bridge rail system can be achieved by the Bridge Division through revision of their respective standard sheets as necessary to reflect the details presented in Appendix D.1.

14.5 ROUND WOOD POST W-BEAM GUARDRAIL

Details of TxDOT W-beam guardrail or MBGF is provided on standard GF(31)-14. TxDOT uses a Midwest guardrail system (MGS) with 8-inch deep offset blocks between the posts and W-beam rail. The MGS system has a mounting height of 31 inches to the top of the W-beam and rail splices located midspan between support posts. Three different post types can be used in the TxDOT W-beam guardrail system: a W6×8.5 steel post, a nominal 6-inch × 8-inch rectangular wood post, and a round wood post with a minimum 7-inch diameter.

The steel and rectangular wood post variations of the MGS have been successfully tested to *MASH* criteria in a variety of configurations (4, 5, 6). The primary consideration for the evaluation of the W-beam guardrail with round wood posts is structural adequacy. The rectangular wood post that has been successfully tested has a greater section modulus than the nominal 7-inch diameter round wood post used by TxDOT. Thus, *MASH* Test 3-11 with the pickup truck was considered the critical test.

Due to override of the installation and subsequent rollover of the 2270P vehicle, the W-beam guardrail with round wood posts did not perform acceptably for *MASH* Test 3-11. Thus, the current TxDOT W-beam guardrail with round wood post does not meet *MASH* criteria. Further research is required to develop a modification to this system that will comply with *MASH* requirements. Options for future consideration include decreasing the post embedment depth and/or increasing the size (diameter) of the post to delay post fracture and permit more energy of the vehicle to be dissipated through post deflection.

14.6 TXDOT 42-INCH SINGLE SLOPE CONCRETE MEDIAN BARRIER WITH LIGHT POLE

Light poles are sometimes attached to concrete median barrier to provide desired roadway illumination. TxDOT has a standard detail sheet for this practice for both a 32-inch concrete F-shape median barrier (CSB(4)-10) and a 42-inch single slope median barrier (SSCB(4)-10).

The 32-inch F-shape barrier does not meet the minimum 36-inch height requirement for a *MASH* TL-4 barrier; therefore, it would only be suitable to test this system to *MASH* TL-3. The 42-inch single slope barrier accommodates *MASH* TL-4 when proper anchorage or lateral support is provided to the barrier.

MASH Test 4-12 on a 42-inch single slope concrete median barrier with light pole was considered more critical configuration for evaluating the structural adequacy of the median barrier mounted light pole. It is desirable for the tall light pole to maintain structural integrity and not collapse, bend, or otherwise release from the barrier and fall across oncoming traffic. MASH Tests 4-11 and 4-10 were not considered necessary because the single slope profile is considered a crashworthy shape and the test vehicles should not engage the barrier-mounted light pole on the 42-inch tall barrier.

The TxDOT 42-inch single slope concrete median barrier with light pole performed acceptably for *MASH* Test 4-12. Therefore, the TxDOT 42-inch single slope concrete median barrier with light pole is considered *MASH* TL-4 compliant. Continued implementation of light poles on the 42-inch single slope concrete median barrier can be achieved by the Design

Division and Traffic Operations Division through revision of their respective standard sheets as necessary to reflect the details presented in Appendix F.1.

14.7 SKID-MOUNTED SINGLE-POST PERFORATED STEEL TUBE TEMPORARY SIGN SUPPORT

The skid-mounted single perforated steel tube temporary sign support system is designed for use with a 9 sq. ft lightweight, extruded, hollow-core plastic sign substrate. Details can be found on TxDOT Barricade and Construction sheet BC(5)-14. The single support system was considered acceptable based on the original development and testing of a similar dual post system under *NCHRP Report 350* at both 0° and 90°, which is a requirement of a free-standing work zone traffic control device (10).

Although the small passenger car has changed under MASH, its performance in frontal impacts with large, skid-mounted, breakaway sign support systems is not expected to differ appreciably. Therefore, only test designation 3-72 with the 2270P pickup truck in both the 0° and 90° impact orientations was considered necessary to assess MASH compliance.

The skid-mounted single perforated steel tube temporary sign support system successfully met criteria for *MASH* Test 3-72 at 0° and 90°. Therefore, the skid-mounted single perforated steel tube temporary sign support system is considered *MASH* compliant when configured with a lightweight, hollow-core plastic sign substrate. Continued implementation of skid-mounted single perforated steel tube temporary sign support system can be achieved by the Traffic Operations Division through revision of their respective standard sheets as necessary to reflect the details presented in Figure 8.1.

14.8 MAILBOXES

The small passenger car is considered the critical design vehicle for evaluation of mailbox support systems based on the mounting height regulated for mailboxes by the United States Postal Service. At the required mounting height, any interaction between the mailbox and the windshield of the pickup truck design vehicle is improbable. The taller hood height and longer wrap-around distance (i.e., the distance from the ground, around the front end, and across the hood to the base of the windshield) of the 2270P pickup truck significantly decreases the probability of windshield impact and occupant compartment intrusion. Therefore, Test 3-62 with the pickup truck was considered unnecessary for the *MASH* evaluation of the TxDOT mailbox systems.

The *MASH* test matrix for breakaway supports includes two tests with the 1100C small passenger car: a low-speed test at 19 mi/h (Test 3-60) and a high-speed test at 62 mi/h (Test 3-61). In the low speed small car test, *MASH* testing has shown that the mailbox support assembly will be pushed forward by the impacting vehicle (*12*). Under the lower impact severity, it is unlikely that the mailbox will separate from the support or that the support assembly will interact with the vehicle windshield.

The most critical test for evaluation of mailbox systems is *MASH* test designation 3-61. This test evaluates both the structural adequacy of the mailbox connection hardware and the

interaction of the mailbox support assembly with the vehicle windshield. If the mailbox remains attached during this high-speed test, it is not expected to detach in the low-speed test.

Four different mailbox support systems were selected for *MASH* testing and evaluation during Phase II of the project. Separate tests were successfully performed for each system. These include: a single mailbox system on a recycled rubber post with Type 4 foundation, a double mailbox system on a thin-walled galvanized tube support with Type 4 foundation, a multiple mailbox system on semi-circular, thin-walled galvanized tube support with Type 4 foundation, and a two-piece molded plastic mailbox assembly attached to a nominal 4×4 wood support (Type 5 foundation).

Each of these systems are considered *MASH* compliant and suitable for continued implementation. Systems that were tested with a single mailbox should be implemented with a single mailbox only. Systems that were tested with a double mailbox are considered *MASH* compliant for both single and dual mailbox configurations.

TxDOT standard MB-15(1) does not permit the use of large mailboxes on the outside positions of the multiple mailbox mount. Therefore, the multiple mailbox mount in Type 4 foundation system was tested with two medium mailboxes in the outer mounting positions and two large mailboxes in the inner mounting positions. This is considered the most critical permissible configuration. Other less critical combinations of small and medium mailboxes are considered less critical and, therefore, *MASH* compliant based on the successful testing of the critical configuration. Implementation of the mailbox systems can be achieved by the Maintenance Division through updating of mailbox standard MB-15(1) (as necessary) to reflect the details presented in Chapter 9.

14.9 SKID-MOUNTED DUAL WOOD POST TEMPORARY SIGN SUPPORT SYSTEM

The skid-mounted dual wood post temporary sign support system uses dual 4-inch \times 4-inch posts and is designed for use with a maximum 21 sq. ft sign panel. Details can be found on TxDOT Barricade and Construction sheet BC(5)-14.

The *MASH* test matrix for work zone traffic control devices includes a high-speed test with a passenger car (Test 3-71) and pickup truck (Test 3-72) at both 0° and 90° impact orientations. The skid-mounted dual wood post temporary sign support system was previously tested with a small passenger car at high speed under NCHRP Report 350 (*13*). Although the small passenger car design test vehicle has changed under *MASH*, its performance in frontal impacts with large skid-mounted sign support systems is not expected to differ appreciably.

A pickup truck test was performed on the skid-mounted dual wood post temporary sign support system with 5-ft mounting height at 0° under NCHRP Report 350 (14). TxDOT currently specifies a 7-ft mounting height, which is considered less critical for the pickup truck impact. Although the pickup truck design test vehicle has changed under *MASH*, review of the previous pickup truck test at the lower mounting height indicates that the impact performance of the skid-mounted dual wood post temporary sign support system at 7-ft mounting height with the *MASH* 2270P pickup truck at 0° should be acceptable. Therefore, only *MASH* Test 3-72 at 90° was considered necessary to assess *MASH* compliance.

The skid-mounted dual wood post temporary sign support system successfully met criteria for *MASH* Test 3-72 at 90°. Therefore, the skid-mounted dual wood post temporary sign support system is considered *MASH* compliant. Continued implementation of skid-mounted single perforated steel tube temporary sign support system can be achieved by the Traffic Operations Division through revision of their respective standard sheets as necessary to reflect the details presented in Figure 10.1.

14.10 MBGF WITH STEEL POSTS IN ROCKY TERRAIN

Guidance for installing the TxDOT MBGF in rocky terrain is found in general note 9 on metal beam guard fence standard GF(31)-14. The guidance varies depending on the depth at which rock is encountered. The most critical condition is when rock is encountered at or near the ground surface. When this occurs, the recommendation is to drill a 22-inch diameter hole (or two overlapping 12-inch diameter holes) to a depth of 24 inches into the rock. Any excess post length is cut, and the hole is backfilled with a cohesionless material.

The configuration evaluated incorporated W6×8.5 steel posts in the rocky terrain. The rocky terrain was simulated using an at-grade, cast-in-place, concrete foundation beam with precast voids. The full *MASH* TL-3 test matrix for longitudinal barriers was successfully performed on the MBGF with W6×8.5 steel posts in the rocky terrain. The full-scale crash tests included *MASH* test designations 3-10 (small passenger car) and 3-11 (pickup truck). Therefore, the MBGF with W6×8.5 steel posts in the rocky terrain is considered *MASH* TL-3 compliant.

14.11 MBGF WITH ROUND WOOD POSTS IN ROCKY TERRAIN

The MBGF with W6×8.5 steel posts in the rocky terrain was successfully tested as described in Chapter 11 and summarized above. *MASH* Test 3-11 of the TxDOT MBGF with round wood posts was unsuccessful as detailed in Chapter 6 of this report. In this test, several of the wood posts fractured and the vehicle overrode the guardrail installation. Based on this result, it was recommended that the guardrail in rocky terrain be further evaluated with round wood posts.

The primary consideration for the evaluation of the W-beam guardrail with round wood posts is structural adequacy. Therefore, *MASH* Test 3-11 with the pickup truck was considered the critical test. The impact performance with the passenger car should be acceptable based on the reduced snagging severity associated with the geometry of the round post compared to the steel post that was successfully tested.

The MBGF with round wood posts in the rocky terrain did not perform acceptably for *MASH* Test 3-11 due to rupture of the rail element and subsequent roll over of the vehicle. Thus, the current TxDOT MBGF with round wood posts in the rocky terrain does not meet *MASH* criteria. Further research is required to develop a modification to this system that will comply with *MASH* requirements.

Several of the round wood posts that fractured during the impact did so against the side of the oval-shaped void. A larger diameter hole would permit more longitudinal movement of the post prior to contact with the rock, and that additional movement could reduce the probability of

post fracture. Reducing the number of fractured posts would help reduce rail pocketing and decrease the probability of rail rupture.

The current standard allows two types of treatment when rock is encountered: an oval void (constructed from two overlapping 12-inch diameter holes), and a single, larger 22-inch diameter hole. Initial inquiries with local contractors indicated that coring a single larger diameter hole is more cost effective than drilling two overlapping smaller diameter holes to create an oval-shaped void. Thus, if this modification is pursued in future research, it appears it would not adversely affect the cost of installing guardrail in rocky terrain. In fact, a single, larger diameter hole would apparently be the preferred option of contractors.

REFERENCES

- AASHTO. Manual for Assessing Roadside Safety Hardware. Second Edition, 2016, American Association of State Highway and Transportation Officials: Washington, D.C.
- 2. D.L. Bullard, Jr., W.F. Williams, W. L. Menges, and R.R. Haug, *Design and Evaluation of the TxDOT F411 and T77 Aesthetic Bridge Rails*, Report No. 4288-1, Texas A&M Transportation Institute, College Station, TX, October 2002.
- 3. W.F. Williams, W.L. Menges, and D.L. Kuhn, *MASH* TL-4 Evaluation of the Pulaski Skyway Bridge Parapet, Report No. 607451-1-3, Texas A&M Transportation Institute, College Station, TX, March 2017.
- 4. K.D. Schrum, K.A. Lechtenberg, R.W. Bielenberg, S.K. Rosenbaugh, R.K. Faller, J.D. Reid, and D.L. Sicking, *Safety Performance Evaluation of the Non-Blocked Midwest Guardrail System (MGS)*, Report No. TRP-03-262-12, Midwest Roadside Safety Facility, Lincoln, NE, January 2013.
- 5. R.P. Bligh, A.Y. Abu-Odeh, and W.L. Menges, *MASH Test 3-10 on the 31-inch W-Beam Guardrail with Standard Offset Blocks*, Report No. 9-1002-4, Texas A&M Transportation Institute, College Station, TX, March 2011.
- D.A. Gutierrez, K.A. Lechtenberg, R.W. Bielenberg, R.K. Faller, J.D., Reid, and D.L. Sicking, *Midwest Guardrail System (MGS) with Southern Yellow Pine Posts*, Report No. TRP-03-272-13. Midwest Roadside Safety Facility, Lincoln, NE, September 2013.
- 7. R.P. Bligh and D.L. Bullard, *Crash Testing and Evaluation of Round, Wood Post, W-Beam Guardrail System*, Report No. 405391, Texas A&M Transportation Institute, College Station, TX, October 1995.
- 8. Nicol, D.A., Midwest Guardrail System (MGS) with Round Posts: Douglas Fir, Ponderosa Pine, and Southern Yellow Pine, Federal Highway Administration (FHWA), Washington, D.C., B-175, June 25, 2008.
- 9. R.P. Bligh, W.L. Menges, and D.L. Kuhn, *MASH Evaluation of TxDOT Roadside Safety Features Phase I*, Report No. 0-6946-1, Texas A&M Transportation Institute, College Station, TX, January 2018.
- R.P. Bligh, W.L. Menges, and R.R. Haug, NCHRP Report 350 Test 3-71 on the Allied Tube & Conduit Dual Leg Perforated Square Steel Tube Temporary Sign Support, Report No. 400001-ATC1, Texas A&M Transportation Institute, College Station, TX, December 2004.
- C. Dobrovolny, R.P. Bligh, and W.L. Menges, Crash Testing and Evaluation of Multiple Mailbox Supports for Use with Locking Architectural Mailboxes, Report No. 9-1002-15-7, Texas A&M Transportation Institute, College Station, TX, February 2017.
- 12. R.P. Bligh, W.L. Menges, and D.L. Kuhn, *Crash Test and Evaluation of Locking Architectural Mailboxes*, Report No. 9-1002-12-9, Texas A&M Transportation Institute, College Station, TX, September 2014.

TR No. 0-6946-R2 225 2019-03-27

- 13. K.K. Mak, R.P. Bligh, and W.L. Menges, *Evaluation of Work Zone Barricades*, Report No. 3910-S, Texas A&M Transportation Institute, College Station, TX, November 1997.
- 14. K.K. Mak, R.P. Bligh, and W.L. Menges, *Evaluation of Work Zone Barricades and Temporary Sign Supports*, Report No. 5388-1F, Texas A&M Transportation Institute, College Station, TX, February 1996.

TR No. 0-6946-R2 226 2019-03-27

Transportation Institute

TxDOT C402

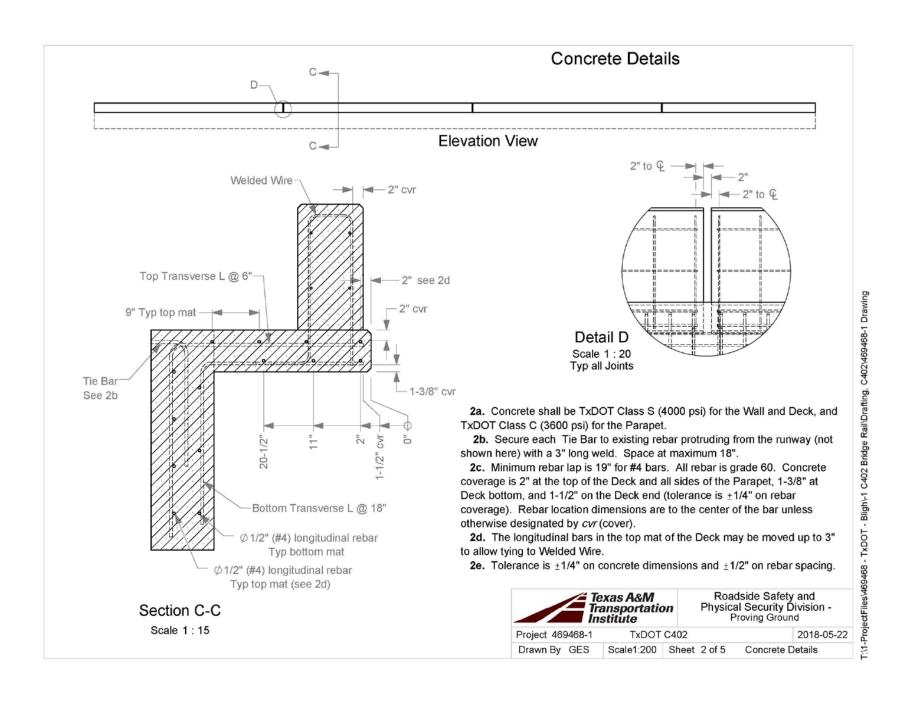
Scale1:200 Sheet 1 of 5

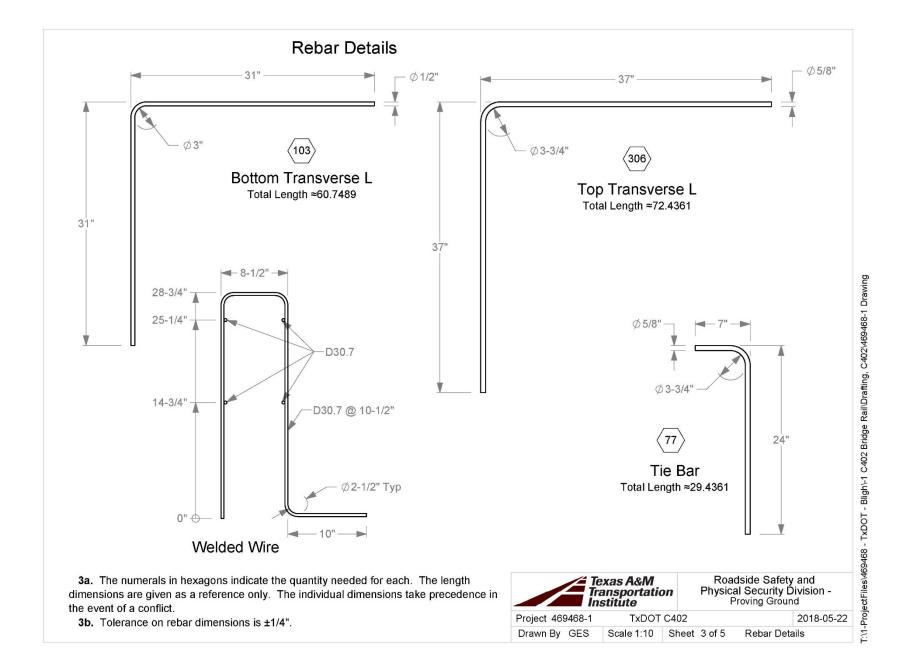
Project 469468-1

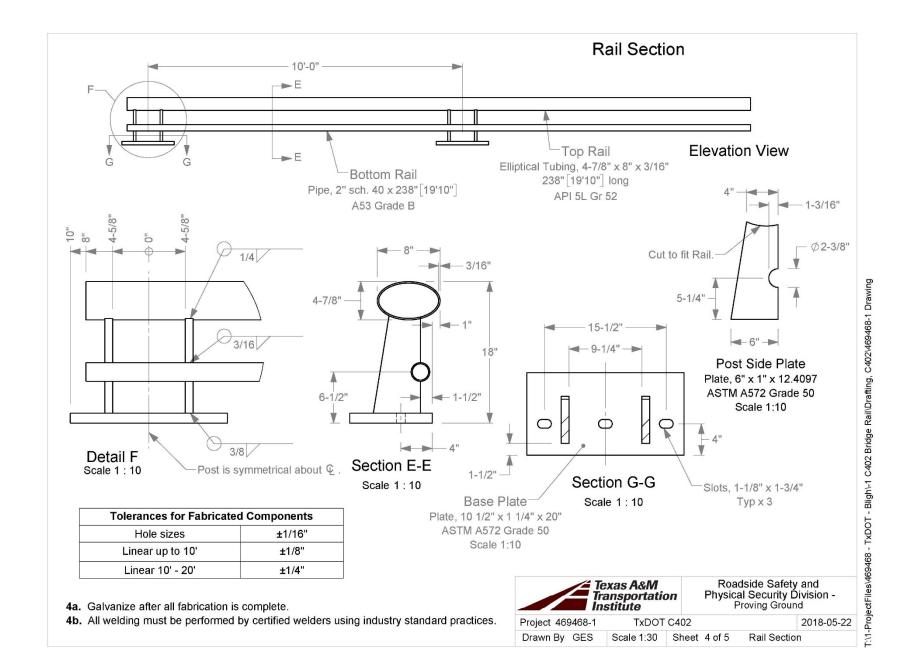
Drawn By GES

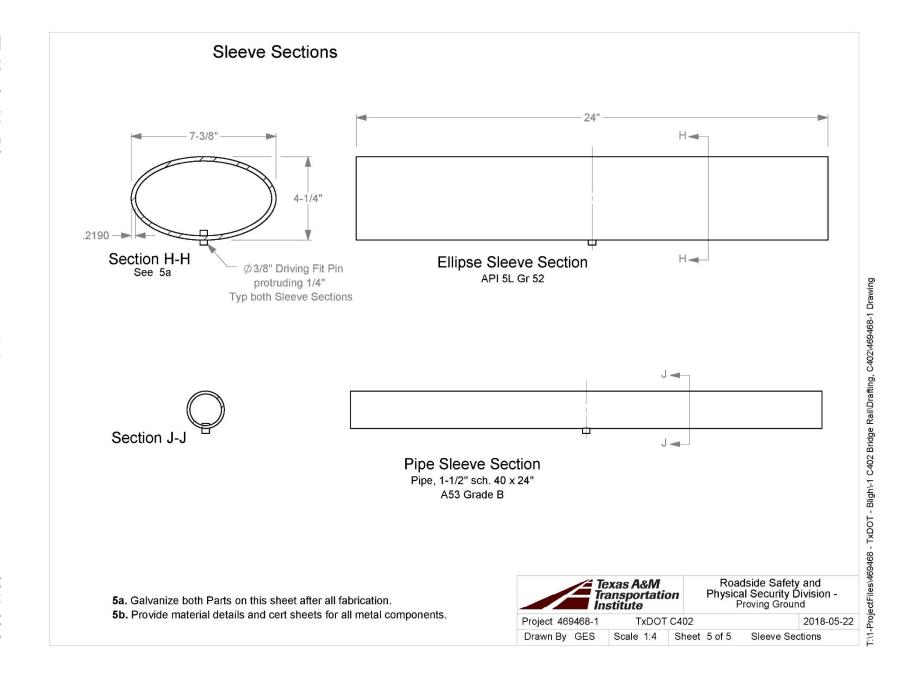
Proving Ground

Test Installation


2018-05-22


153'-0"


Test Installation


Existing working slab

APPENDIX A. TXDOT C402 BRIDGE RAIL

ADDRESS:

RAILING MATERIAL

MATERIAL STATEMENT

SUPPLIER: Texas Corrugators-Austin Division, Inc.

105 Tradesman Park Dr.

Hutto, TX 78634 CONTRACT NUMBER: 512,388,0588

-Austin Division, Inc. COUNTY: BRAZOS

PROJECT: TEXAS A&M TRAFFIC INSTITUTE

CONTROL:

CONTRACTOR: ENVIRONMENTAL SAFETY SERVICES INC.

APPENDIX A.2.

SUPPORTING CERTIFICATION DOCUMENTS

ONTRACTIA	UMBER: 51Z-	300-U300	CONTRACTOR	GIAATKOMA	TENTAL SA	reix Serv	ICES INC	
Purchase Order#	Quantity (Amt/Units)	MATERIAL DESCRIPTION	Mill Name	Heat #	Material Use	Required Specification	Documen HTR	ntation Cert
R-0421	150,3 L. F.	4 7/8" X 8" X 1,88" PIPE	TEX-TUBE	A603568	C402 RAIL	API 5L GR 52	Х	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SIN # R-0421-1	150.3 L, F,	2" SCH. 40 PIPE	EXLTUBE	A709879	C402 RAIL	A500-13	X	
	3 L. F.	1 %" SCH, 40 PIPE	SOUTHLAND TUBE	SH0939	C402 RAIL	A500-13	x	
******	12 L. F.	4 ¼" X 7 3/8" X .219" PIPE	TEX-TUBE	A507206	C402 RAIL	API 5L GR 52	x	
	23.3 SQ. FT.	1 W" PLATE	SSAB	E6F044	C402 RAIL	A572-50	Х	
	15,6 SQ, FT.	1" PLATE WEIGHT THIS MTR = 4,407 LBS.	SSAB	M8B086	C402 RAIL	A572-50	X	

This is to certify that the materials listed above and on the attached supplement (if attached) are in conformance with the governing specification(s). This is also to certify that all manufacturing processes for steel and iron materials or for the application of coatings (epoxy, galvanizing, painting or any other coating that protects or enhances the value of the steel or iron material) to these materials occurred in the United States of America.

Manufacturing processes are defined as all processes required to change the raw ore or scrap metal into the finished in-place steel or iron product. The attached mill test reports (MTRs) and Certifications (Cert.) are offered as proof of domestic origin.

Subscribed	and	swom	to	before me	
1.465			÷		

this Ith day of May 20 18

My Commission Expires: 10 4

KAREN DUBOSE

Notary Public. State of Texas

Comm. Expires 10-04-2021

Notary ID 11033605

ر ڪ

I declare under penalty of perjury under the laws of the United States of America and the State of Texas, that the foregoing is true and correct and that I am authorized to sign for the firm listed above.

Authorized Corporate Official Signature Date

Ryan Coce - Vice President

Texas Corrugators-Austin Division, Inc.

(Firm Name)

Tex-Tube Company 1503 N. Post Oak Houston, Texas 77255

Purchase Order: 31889

Sales Order: SO40459

Heat Number Vendor Name

Description

Mfg Date: 04/26/16

a603568 SDI BILIPTICAL TOBENG, STIPLE MG.USA X 8" X :188"WALL X 40-4" الأسابية والموالية والموالية

12.94 lb/ft

CHEMICAL ANALYSIS

C Mn P S N1 Cr Cu Mo Si Ti V Nb B Ca Ladle-0.060 0.770 0.008 0.001 0.050 0.070 0.150 0.010 0.210 0.014 0.004 0.027 0.0003 0.0025 Al: 0.019 SN: 0.008 N:

Chem -0.067 0.780 0.008 0.002 0.051 0.068 0.146 0.011 0.210 0.014 0.003 0.030 0.0003 0.0019 .13 Al: 0.019 SN: 0.008 N:

Chem -0.063 0.780 0.008 0.002 0.051 0.068 0.146 0.011 0.208 0.014 0.003 0.029 0.0002 0.0017 .12 Al: 0.019 SN: 0.008 N:

MECHANICAL PROPERTIES -

YS(ksi): 65.8 TS(ksi): 73.3 EL(%): 26% HRB: 84 V/T(%): 0.90 COMMENTS -----

THIS MATERIAL WAS NOT HYDROSTATICALLY TESTED

1 INCH STRIP SPECIMEN.

MELTED AND MANUFACTURED IN THE U.S.A.

MATERIAL IS ERW PIPE.

nation of a calculation

MATERIAL MEETS CHEMICAL AND MECHANICAL PROPERTIES PSL2 - API 51 GR.X52. MATERIAL PASSED EDDY CURRENT TESTENG.

STEEL SUPPLIER SDI-COLUMBUS, MS, U.S.A. COIL MANUFACTURER: SDI-COLUMBUS; MS, U.S.A

The above analyses and tensile properties are correct to the best of my knowledge. and belief.

على بن يوسيان من من من من من المناسخ من المن Orginals to Follow

TR No. 0-6946-R2 A-7 2019-03-26 02-09-2018 10:24

Load - 2982299

BL - 3837350

BLR466

Texas Corrugators, inc

Heat - A709879

Cust. PO - M-8759

Order-Line - 15759269 / 1

EXLTUBE

1000 BURLINGTON STREET, NORTH KANSAS CITY, MO 64116 1-816-474-5210 TOLL FREE 1-800-892-TUBE

STEEL VENTURES, LLC dba EXLTUBE

Certified Test Report

Coppere. Kloccknor Melals Corp-Robwell mic mir	02.375	Cummer Order Inc. 7238723	0 see: 01/31/2018
overnie 500 Celenial Center Parkway #500 ROSWELL GA 20078-8853	Gauge: .154	Сын-ү Ка.83107651 шан ма:3982978	
	ASTM A500-13	Gr.B/C, ASTM A53-12 Gr.B ENT', ASN	IE SASS Gr.B BNT'

Heat No	Yick	Tensile	Elongation
A709879	KS1	63.4	% 2 Inch
	55.B	K5I	35.50

Heat No A709579	3:	C 0.0500	MN 0.8300	p 0.0100	S 0.0030	SI 0.0260	CU 0.0800	NI 0.0300	CR 0.0500	MO 0.0100	٧
						0.0400	0.0000	0.6200	ひしこいり	el citiiti	G DOJO

This material was mailted a manufactured in the U.S.A. Coll Producing Mill: STEEL DYNAMICS COLUMBUS, COLUMBUS, MS

We hareby cartify that all test results shown in this report are correct as contained in the records of our company. All testing and manufacturing is in accordance to A.S.T.M. parameters encompassed within the scope of the specifications denoted in the specification and grade tiles above. This product was entired in accordance with your purchase order requirements.

ENT-Code 8 not pressure tested - meets tendic 8 chemical properties ONLY.

This material has not come into direct contact with mercury, any of its compounds, or any moreury boaring devices during our manufacturing process, testing, or inspections

This material is in nemplanice with EN 10204 Section 4.1 Inspection Genilicate Type 3.1

This material has passed NDE (eddy current, A009) testing. This material has passed flattening testis.

Tensão tost completed using test specimen with 3/4" reduced area.

STEEL VENTURES, LLC dba EXLTUBE

Jonathan Wolfo Quality Assurance Manager 03-19-2018 01:05

Load - 3009755

BL - 3839632

BLR466

Texas Corrugators, Inc

Heat - SH0939

Cust. PO - A-7212

Order-Line - 15898772 / 1

3525 Richard Arrington, Jr., Blvd. N. Birmingham, Alabama 35234 Phone: (205) 251-1884 Lab Fax (205) 421-4561 Lab@SouthlandTube.com

		TEST RE	PORT		
Customer Name:		PRATION			
Customer PO No.:	7251157		hi in	Customer Part No: PI1	1240A5000252
Spec/Grade: A500	-13 Grade B/	c		Heat No.:	SH0939
Description: CAR	BON STEEL	TUBING		Print Date:	3/7/2018
Size/Length: 1-1/2	" SCH 40 Pil	PE (.145") 21'		Nominal Thickness:	0.145
Carbon (C):	0.0500	Tin (Sn):	0.0040	Vanadium (V):	0.0030
Manganese (Mn):	0.3900	Nickel (Ni):	0.0400	Columbium (Cb):	0.0010
Phosphorus (P):	0.0100	Chromium (Cr):	0.0600	Titanium (Ti):	0.0010
Sulphur (S):	0.0030	Malybdenum (Ma):	0.0100	Boron (B):	0.0000
Silicon (Si):	0.0150	Aluminum (AI);	0.0240	Calcium (Ca):	0.0020
Copper (Cu):	0.1300	Nitrogen (N):	0.0060	Carbon Equiv. (CE):	0.1409

Sample	Sample	Tensile	Yuld	Flongation
Number	Date	(psi)	(PSQ)	(%)
SL61027	2/21/2018	64,500	59,700	24.00

We hereby certify that the above figures are correct as contained in the records of this company. Testing, where it is performed, is performed according to applicable standards (Yield Strength determined using 0.2% offset method and Elongation is measured over a 2" gauge length). Finished goods that require destructive testing by either flattening or flaring to meet the requirements of the standard to which they are certified have been destructively tested in accordance with the pertinent standard. Further, this certification is compliant with the EN10204:2004 Standard for Type 3.1 Inspection Documents.

Ron Lowery

Laboratory Manager Southland Tube Incorporated

Melted & Manufactured in the U.S.A.

STI Pickup No.: 03LB087

STI Order No.: 00460563

STI Item No.: 1.9RS4021

P.O. BOX 55710 • HOUSTON, TEXAS 77255-5710 (713) 686-4351 x 219 PHONE Page: 2 (713) 685-3247 FAX

Purchase Order: 30028

Sales Order: SO39919

meat Number Vendor Name

Description

Mfg Date: 07/29/15

a507206 SDI

Ĺ

ELLIPTICAL TUBING, 4-1/4

Columbus, MS, USA

X 7-3/8" X .219" WALL 13.52 lb/ft

CHEMICAL ANALYSIS

Ni Cr Cu Mo Si Ti V Nb B Mn P S Ca Ladle-0.060 0.760 0.008 0.001 0.040 0.050 0.110 0.010 0.240 0.016 0.004 0.029 0.0001 0.0029 Al: 0.016 SN: 0.007 N:

Chem -0.055 0.780 0.012 0.003 0.044 0.053 0.118 0.011 0.238 0.015 0.003 0.032 0.0002 0.0017 .11 Al: 0.017 SN: 0.007 N:

Chem -0.062 0.770 0.012 0.003 0.044 0.051 0.118 0.011 0.236 0.015 0.003 0.031 0.0003 0.0015 .12 Al: 0.016 SN: 0.007 N:

MECHANICAL PROPERTIES:

YS(ksi): 73.1 TS(ksi): 78.0 EL(%): 25% HRB: 85 Y/T(%): 0.94 ----- COMMENTS -----

THIS MATERIAL WAS NOT HYDROSTATICALLY TESTED

1 INCH STRIP SPECIMEN.

MELTED AND MELTED AND MANUFACTURED IN THE U.S.A.

MATERIAL IS ERW PIPE.

MATERIAL MEETS CHEMICAL AND MECHANICAL PROPERTIES PSL2 - API 5L GR.X52.

MATERIAL PASSED EDDY CURRENT TESTING.

The above analyses and tensile properties are correct to the best of my knowledge and belief.

Quality @fatrol Dept

SFI SPASSIBE Date:3/5/	/2018 - Customer:TEXAS CORRUGATORS, AUSTIN DIV, (EMAIL INV) - PO#:R-0287 - PIN:	
	Lest Certificate	***

13609 Industrial Road, Houston, TX 77015, US

Form TC1: Revision 2: Date 23 Apr 2014

1 / 5 / 2017	SFI-GRAY S	TEEL	Customer P.0		701536				7	Mill	Order l	Yo.: 41	-480V	21,01	gliin	ing 84.	!r	. 710	107894	_
Customer Rame. Customer FO 4. Thickness.	Customa FO 4.				ASTM A	572-5	0/M345(15)/A	709-50/M3	45(16	A)		Ship	Dates	05 Jar 05 Jar	17	Cert		31191330	_
Phase 1:	57684		Circ. 7 25	0 1/ 0	G 00	w -	140.0	/ 500.50								70.00			*	
	Tested Pi	eces	Size: 1.25	. A. S	Tensil		40.0	(IN)	,										
Heat	Plece	Tested	Tst	YS		1000	ini a	100			Dan Herrichen	700000		Impact						_
Id	Id	Thickness	Loc		(KSI)	MA	Elong % 2in 8in	Dir	Hardness	Abs.	Euerg 2 3	y(FTLE Avg) 1	% She	ar 3 Av	Tst Tmp	Tst	Tst	BDWTT	
E6F044 E6F049 E6F049	B23 C10 C11	1,252 (DISCR 3,002 (DISCR 0,999 (DISCR	T) L T) L T) L	60 51 61	83 78 83		30 24 21									5 131117	Un	(mm)	Tmp %Sh	<u></u>
Heat Id	C M			Ա Ըս	Ni	Che Cr	mical An		h V	TI							<u> </u>	<u> </u>		
E6F044 E6F049	:17 1:	23 .009 <.00 19 .008 <.00		9 :23	:15 :12	:02	2 .05	0. 0.	02 .091	.009				***					OR: USA	537
MTR EN 10	IS NOT A MET PRODUCT. 0204:2004 IN FED AND MANU	SPECTION CER FACTURED IN	TIFICATE: THE USA. CES: 1,			T		ERCU			C13	ALLY 1		O DUR		LBS:		8168		
(b) C	Cust Part # :								HIS MATERI FH, AND ME ROPRIATE SI				Justi	n Ward		ALCURGI	i - Pitc	опет		-

SFI GRAYAGTED Date: 3/5/2018	- Customer TEVAS CORRUGATORS AND THE
The state of the s	- Customer. TEXAS CORRUGATORS-AUSTIN DIV, (EMAIL INV) - PO#:R-0287 - P/N:
	- Customer:TEXAS CORRUGATORS-AUSTIN DIV, (EMAIL INV) - PO#:R-0287 - P/N:

Test Certificate

12400 Highway 43 North, Axis, Alabama 36505, US Form TC1: Revision 2: Date 23 Apr 2014

2 / 19 / 2018 SFI-GRAY STEEL	Customer P.O. No.: 702094	Marc		1: Revision 2:	963 23	· C · CONTRACTO
Customer (4) 4.	Product Description: ASIM A572-50/M345(15)/A709-50/M	Mill Order No.:	41-528068-01	Shipping M	anifest :	AT259583
Inchesc 1° 51703 - 702094		345(1/)	Ship Date:			
heat 4 Mais M80086-007	The state of the s		Cert Date:	12 Feb 18	Cert No:	081648518
Plate 4. 55202-8				1.07.00.000	venge .	. or 1)
Tested Pieces	Size: 1.000 X 96.00 X 240.0 (IN)		-1			
Hand 70	Tensiles					
10 lested	13 UIS PARA Flore & Pres		Charpy Impact	Tests	7.00	T
Menore	(KSI) (KSI) Zin Rin Die Unwilling	Abs. Energy(FTL		ar Tst	Tst Tst	BDWTT
M8B086 D09 0.999 (E	DISCRT) L 58 79 23 T	1 2 3 Av	g 1 2 3	Avg Tmp	Dir Siz	Tmp %Shr
1222 12	<u> </u>				(mm)	- III
Heat						<u> </u>
tomono mana la la pina P	S SI Tot Al Cu Ni Cr Mo Ch					
48B086-D09 17 1.04 .009	< 001 19 026 22 12 1 12 1 15 We CB V	Ti				
VIII ED CERT	5.000 .19 .020 .23 .13 .11 .06 .000 .042	.001		24	- 1 ma es	ORG
KILLED STEEL			Discourse - Harris - Land			USA
OF THE PROPERTY A METALLURGIC	AL COMPONENT OF THE COURT AND					
MTR EN 10204:2004 INSPECTION 100% MELTED AND MANUFACTURED PRODUCTS SHIPPED: M8B086 D09	AL COMPONENT OF THE STEEL AND NO MERCURY WAS I CERTIFICATE 3.1 COMPLIANT IN THE USA. PCES: 7, LBS: 45738					ACE.
PRODUCTS SHIPPED:	IN THE USA.					ACE
PRODUCTS SHIPPED:	IN THE USA.		¢.			ACE
PRODUCTS SHIPPED:	IN THE USA.		Ģ			ALE
PRODUCTS SHIPPED:	IN THE USA.					ALE
PRODUCTS SHIPPED:	IN THE USA.					J.C.
PRODUCTS SHIPPED:	IN THE USA.			882 687		
PRODUCTS SHIPPED:	IN THE USA.		٠	999 999		
PRODUCTS SHIPPED:	IN THE USA.			999		
PRODUCTS SHIPPED:	IN THE USA.					
PRODUCTS SHIPPED:	IN THE USA.					
PRODUCTS SHIPPED:	IN THE USA.					
PRODUCTS SHIPPED:	IN THE USA.					
PRODUCTS SHIPPED:	IN THE USA.		٠			
PRODUCTS SHIPPED:	IN THE USA.		¥			
PRODUCTS SHIPPED: MSB086 D09	IN THE USA.		¥			
PRODUCTS SHIPPED:	IN THE USA. PCES: 7, LBS: 45738		ç			
PRODUCTS SHIPPED: D09	IN THE USA. PCES: 7, LBS: 45738					
PRODUCTS SHIPPED: D09	IN THE USA.		Justin Ward	W EMETALLINIGIST		

STRAIGHT BILL OF LADING-SHORT FORM ORIGINAL-NON NEGOTIABLE

72421556-01

SHIPMENT NO.(BOL): 72421556 DATE AND TIME: 04/02/2018 12:53:46 SHIP FROM :

CMC Sterling Steel Truck 2001 Brittmoore Road

Houston, TX 77043-2208 LISA

Contact Phone No. :713-690-0347

Fax No.

CARRIER'S NAME: Imber Ventura

TRUCK/UNIT No:

CMC INCO TERMS: CPT Bryan

SHIP TO: 3101939

Tx A & M University Transporation 3100 State Hwy 47, Bldg. 7091

Bryan, TX 77807-0000 USA Contact Phone No. :(254)859-5494

Fax No. :(254)859-5497 SEAL NUMBER :

TRAILER/RAILCAR No: #55550/

SOLD TO: 3007327

Ellis Mc Ginnis Construction 2895 Eddy Gatesville Pkwy Eddy, TX 76524-3911

USA

Contact Phone No.

:2548595494

Fax No. :2548595497

Subject to Section 7: Subject to Section 7 of Conditions of applicable bill of lading. If this shipment is to be delivered to the consignee without recourse on the consignor, the consignor shall sign the following statement. The carrier shall not make delivery of this shipment without payment of freight and all other lawful charges.

Consignor's Signature : BOL INSTRUCTIONS:

NOTES/SPECIAL INSTRUCTIONS: Additional Instructions:

Jim (254)277-2815

- "				Material Details				-
Delivery	Cust PO	Ctrl Cd	Rel No.	Release Description	Dwg #	Material Description	PCS	Walahi I D
	R/1823300796 U	JP				, and a second priori	1 103	Weight LB
3137044	2802	ONKQ	1	C402 BRIDGE RAIL		Dahas Blank Southa		
3137048	2802	ONKR	100	C411 BRIDGE RAIL		Rebar Black 60/420		4,230
3137050	2802	ONKW				Rebar Black 60/420		3,931
		TOTALLA	10	C412 BRIDGE RAIL		Rebar Black 60/420		8,533
						Total Weight		40.004

MTR'S INCLUDED

DRIVER'S SIGNATURE/AGENT : __

NOTICE TO RECEIVERS : Please check each item on this shipping bill carefully. CMC will not be responsible for any exceptions to goods unless notified within twenty four hours and noted on this document.

RECEIVED BY :

DELIVERED BY: Jane

Page 1 of 2

469468

STRAIGHT BILL OF LADING-SHORT FORM ORIGINAL-NON NEGOTIABLE

72421556-01

SHIPMENT NO.(BOL): 72421556 DATE AND TIME: 04/02/2018 12:53:46

SHIP FROM:

CMC Sterling Steel Truck 2001 Brittmoore Road Houston, TX 77043-2208

USA

Contact Phone No. :713-690-0347 :

Fax No.

CARRIER'S NAME: Imber Ventura

TRUCK/UNIT No:

CMC INCO TERMS: CPT Bryan

SHIP TO: 3101939

Tx A & M University Transporation 3100 State Hwy 47, Bldg. 7091 Bryan, TX 77807-0000 USA

Contact Phone No. :(254)859-5494

Fax No. :(254)859-5497

SEAL NUMBER : TRAILER/RAILCAR No: SOLD TO: 3007327 Ellis Mc Ginnis Construction 2895 Eddy Gatesville Pkwy

Eddy, TX 76524-3911

USA

Contact Phone No. :2548595494

:2548595497

Subject to Section 7: Subject to Section 7 of Conditions of applicable bill of lading, if this shipment is to be delivered to the consignee without recourse on the consignor, the consignor shall sign the following statement. The carrier shall not make delivery of this shipment without payment of freight and all other lawful charges.

Consignor's Signature : BOL INSTRUCTIONS:

NOTES/SPECIAL INSTRUCTIONS: Additional Instructions:

	7	1		Material Details		1		
Delivery	Cust PO	Ctrl Cd	Rel No.	Release Description	Dwg#	Material Description	PCS	Weight LB
PROJECT:	R/1823300796	JP				T Material Description	1	1 Weight Lb
3137044	2802	ONKQ	1	C402 BRIDGE RAIL		Rebar Black 60/420		4.000
3137048	2802	ONKR	2	C411 BRIDGE RAIL		Rebar Black 60/420		4,230
3137050	2802 -	ONKW	3	C412 BRIDGE RAIL	<u> </u>	Rebar Black 60/420		3,931
								8,533
						Total Weight		16,694

MTR'S INCLUDED

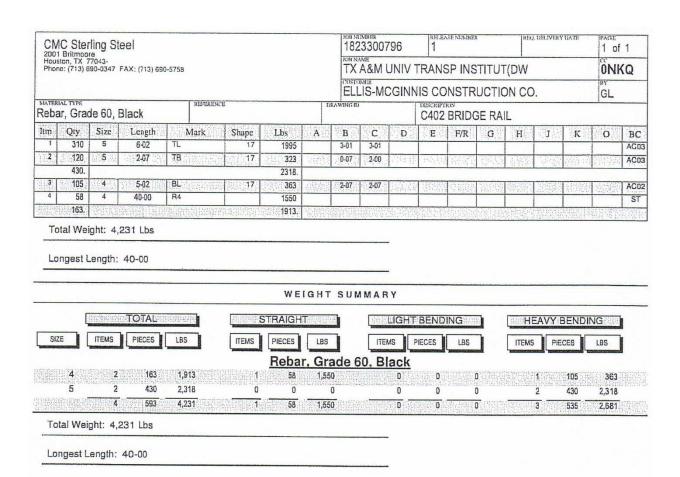
RECEIVED, subject to the classifications in effect on the date of the issue of the Bill of Lading, the property described above. In apparent good order, except as noted (contents of backages unknown), marked, consigned, and destined as indicated below, which said carrier (the word carrier being understood throughout his contract a meaning any person or the route to said ossession of the property under the contract) agrees to carry to its usual piace of delivery at said destination. In the property of the property of the carrier of all of any said property over all or any said or any said or any said or property over all or any said or any said

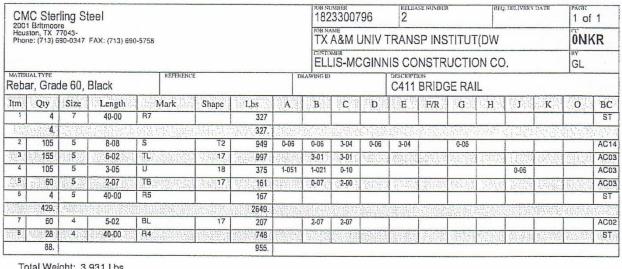
DRIVER'S SIGNATURE/AGENT : _

DELIVERED BY:

NOTICE TO RECEIVERS : Please check each item on this shipping bill carefully. CMC will not be responsible for any exceptions to goods unless notified within twenty four hours and noted on this document.

RECEIVED BY :

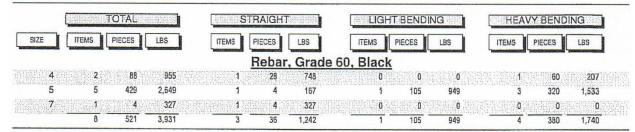

DATE:


TIME:

DATE:

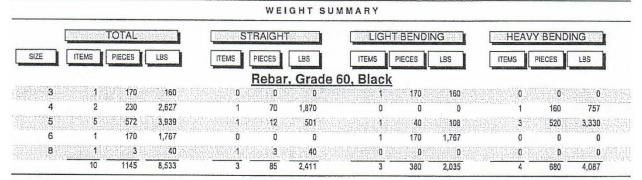
TIME IN:

Page 1 of 2



Total Weight: 3,931 Lbs

Longest Length: 40-00


Total Weight: 3,931 Lbs

Longest Length: 40-00

CN 200	AC Ster	ling S	teel					182	233007	796	3	ASE NUMBE	K	HE	, DELIVER	DATE	PAGE 1 of	1
Hou Pho	ston, TX 7 ne: (713) 6	7043- 90-0347	FAX: (713) 690	0-5758				D. Carrie	A&M I	VINL	TRAN	SP INS	TITU	r(DW			ONI	KW
			OL vote the constant					ELL	LIS-MO	CGINN	VIS CC	NSTR	UCTIO	ON CC).		GL	
	ar, Grac	de 60,	Black	REPERENCE				DRAWING ID			C412	BRID(GE RA	IL				
ltm	Qty	Size	Length	Mark	Shape	Lbs	Α	В	С	D	Е	F/R	G	Н	J	К	0	BC
1	3	8	5-00	R3		40	200000				1							0
	3.	4414	400,000,000	Maria Again	11140	40.	al is		NAME.		White:	ie di di		11,000	1,557	100	11111	12.5
2	170	6	6-11	U	S11	1767		6-112				Ť		3-042		I	0-063	TB
	170.				illerkij.	1767.	1883		Status	9413.131	A SECTION	Section 1	MARKEY.	14.5			A-1,175-1	
3	340	5	7-01	TL-5	17	2511		4-00	3-012									AC0
4	85	5	6-03	BL	17	554	il district	3-042	2-102		125	13531532	AGUA	A.W.A.S		2000	- AMERICA	ACO
5	95	5	2-08	TB	17	265		0-07	2-01									AC0
6	40	5	2-07	UB	S11	108	445363	2-07		Barrio,				1-03		[Anna	0-033	AC
7	12	5	40-00	R5		501												ST
	572.					3939.						lana.					invatite.	
В	160	4	7-01	TL-4	17	757		4-00	3-012									AC02
9	70	4	40-00	R4		1870			Walley	Peleville		gradit.			C. C	99148	36550	ST
	230.					2627.												-
10	170	3	2-06	Parameter	S11	160	17174	2-06		3000				1-022	The same		0-023	AC
	170.					160.					************			Av.,		·	Access Manager	-

Total Weight: 8,533 Lbs

Longest Length: 40-00

Total Weight: 8,533 Lbs

Longest Length: 40-00

H	Mary .		L TEST REPORT nted: 03/14/2018		PAGE 1
Customer PO N Shi Order N	No: 0000000060 umber: 4501198093 p Date: 03/14/2018 umber: 91943 umber: 116288		2	OREBAR	
Heat N 3076	umber C M 185 0.3700 0.80		CAL ANALYSIS <u>Cu Ni Cr Mo</u> .2800 0.2200 0.2100 0.0910	Sn V A	<u>AI N Nb</u> 010 0.0000 0.0000
	TAXABLE PARTICIPATION OF THE PROPERTY OF THE P				
		MECHANIC	AL PROPERTIES		
	Heat Number	MECHANIC Yield (Psi/Mpa)	CAL PROPERTIES Tensile (Psi/Mpa)	Elongation (% 8" guage)	Bend Test Pass/Fail
	Heat Number 3076185	Yield	Tensile	- T	

			L TEST REPOR nted: 03/29/2018	T	PAGE 1
Mid American Steel &	d Here	CMC REBAR P O BOX 139094		CMC REBAR 2001 BRITTMOOF	RE :
Customer No: PO Number: Ship Date:	000000006015 4501201423			HOUSTON, TX 7	7043
Order Number: Load Number:	92181	Item Number 4REBAR	Description # 4 GRADE 60 CO	ILED REBAR	
		CHEMIC	STILL TOTAL TOTAL		
Heat Number 1820636	C Mn 0.4400 0.9100	P S Si 0 0.0160 0.0240 0.2400 0.	Cu Ni Cr	Mo Sn V .0600 0.0110 0.0020 0	Al N Nb
C C C C C C C C C C C C C C C C C C C	Control of the State of the Sta	P S Si 0 0.0160 0.0240 0.2400 0.	Cu Ni Cr		Al N Nb
1820636	Control of the State of the Sta	P S Si 0 0.0160 0.0240 0.2400 0.	<u>Cu Ni Cr</u> 2300 0.1700 0.2400 0.		Al N Nb 0.0040 0.0077 0.0000 Bend Test Pass/Fail
1820636 Heat N	0.4400 0.910	P S Si 0 0.0160 0.0240 0.2400 0. MECHANIC Yield	Cu Ni Cr 2300 0.1700 0.2400 0. AL PROPERTIES Tensile	.0600 0.0110 0.0020 0 Elongation (% 8" guage)	.0040 0.0077 0.000 Bend Test
1820636 Heat N	0.4400 0.9100	P S Si 0 0.0160 0.0240 0.2400 0. MECHANIC Yield (Psi/Mpa)	Cu Ni Cr 2300 0.1700 0.2400 0. AL PROPERTIES Tensile (Psi/Mpa)	.0600 0.0110 0.0020 0 Elongation (% 8" guage)	Bend Test Pass/Fail

CERTIFIED MILL TEST REPORT

For additional copies call 830-372-8771 We hereby certify that the test results presented here are accurate and conform to the reported grade specification

OMMY HEWITT

HEAT NO.:3078175 SECTION: REBAR 13MM (#4) :10'0" (GRADE: ASTM A615-16 Gr 420/60 ROLL DATE: 03/03/2018 MELT DATE: 02/27/2018 Cert. No.: 02/27/2018 / 078175A3		S O L D			5 H I P		Delivery#: Dol#: CUST PO#: CUST P/M: DLVRY LBS / HEAT: DLVRY PCS / HEAT:
Characteristic	Value			Characteristic		Value	
c	0.43%						Characteristic Value
Mn	0.73%						
p	0.009%						76
s	0.046%		ļ				70
. Si	0.19%						ž'
Cu	0.33%		1				
Cr	0.10%						
Ni	0.21%		1				
Mo	0.079%		es				
v	0.000%						
Cb	0.002%						
Sn	0.014%						
· Al	0.001%						The Following is true of the material represented by this MTR:
Yield Strength test 1	62.Oksi			8			*Material is fully killed
Tensila Strength test 1	99.2ksi		1	2		•	*100% melted and rolled in the USA
Elongation test 1	17%						*EN10204:200-1 3.1 compliant
Elongation Gage Lgth test 1	NIB						*Contains no weld repair
Bend Test Diameter	1.750IN						"Contains no Mercury contamination"
Bend Test 1	Passed						"Manufactured in accordance with the latest version
							of the plant quality menual
MARKS:							*Maets the "Buy America" requirements of 23 CFR635.410

04/02/2018 20:57:52

Page 1 OF 1

		L TEST REPORT nled: 03/28/2018		PAGE 1
Mid American Steel & Wire	CMC REBAR P O BOX 139094		CMC REBAR 2001 BRITTMOOR	RE.
Customer No: 000000000001. PO Number: 4501201440		B13	OUSTON, TX 7	7043
Ship Date: 03/28/2018 Order Number: 92187 Load Number: 116527	Item Number 5REBAR	Description # 5 GRADE 60 COILE	D REBAR	
Heat Number C Mn 1723630 0.4600 0.870	P S Si	CAL ANALYSIS Cr Mo	Sn V	AI N Nb
To make design (-) and		.2100 0.1100 0.1900 0.030	0.0110 0.0030 U.	.0010 0.0067 0.000
	MECHANIC	AL PROPERTIES		
Heat Number	MECHANIC Yield (Psi/Mpa)	AL PROPERTIES Tensile (Psi/Mpa)	Elongation (% 8" guage)	Bend Test
Heat Number 1723630	Yield	Tensile	Elongation (% 8" guage) 11.71	Bend Test Pass/Fail Pass

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Tommy HEWITT

OLL DATE: 03/ MELT DATE: 03/	R 16MM (#5) 40 4615-16 Gr 420 07/2018	/60	L BRIT D HOU US 7	Rebar Houston-West TMOORE RD. STON TX 7043-2208 690-0347	S H I P	CMC Sterling Steel 2001 Brittmoore Rd Houston TX US 77043-2208 7136900347 7136905758	Guanty Assi	Delivery#: 82333189 BOL#: 72398632 CUST PO#: CUST P/N: DLVRY LBS / HEAT: 24030.000 LB
	Characteristic	Value		Characteris	tic Valu		, 	
	C						Chara	cteristic Value
	Mn							
	P	0.008%						
	j	0.045%						
	Si Cu	0.18%		Ţ.			1	
	*	0.33%					1	
*	i Cr Ni	0.10%					1	
	2	0.17%						
•	! Mo	0.088%		1				
	Cb	0.000%						
	Sn	0.002%						
	. Al	0.002%		1			71	
		0.002%				¥	the Londwing is in	ue of the material represented by this MTR:
Yield S	trength test 7	64.9ksi						s fully killed
Tensile S	trength test 1	102.5ksi					FAVORO C	ited and rolled in the USA
Elo	ngation test 1	14%		1		187	EN 10204:	2004 3.1 compliant
Elongation Gag	De Loth test 1	8IN					Contains	to weld repair
Bend 7	Test Diameter	2.188IN					*Many f	a Mercury contamination
	Bend Test 1	Passed		1		¥	of the size	red in accordance with the latest version
		n doog n					I Ulie plan	t quality manual "Buy America" requirements of 23 CFR535.410

03/12/2018 15:39:47 Page 1 OF 1

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

TOMMY HEWITT

SECTION: REBAR GRADE: ASTM AG ROLL DATE: 02/2 MELT DATE: 02/1 Cert. No.: 823265	515-16 Gr 420/ 1/2018 1/2018	/60	D	BRITTMOORE HOUSTON T US 77043-22 713-690-034	X 208	S H I P	1 THE PROPERTY OF GROOM		Delivery#: 82326504 BOL#: 72388853 CUST PO#: CUST P/N: DLVRY LBS / HEAT: 43526.000 LB DLVRY PCS / HEAT: 483 EA
	Characteristic	Value			Characte	ristic Value			
	C	0.44%				- V BIO		Chara	cteristic Value
	Mn	0.87%			*				
	P	0.009%							
	S	0.049%		1					
	Si Si	0.17%						1	
	Cu	0.28%		1					*
	- Cr	0.12%		1					
	Ni	0.16%		1					
	Mo	0.048%		1					
	V	0.001%							
	Cb	0.002%							
	Sn	0.011%							
	AI	0.001%						The Following is to	ue of the material represented by this MTH:
Viola Cr		10001100-0-1001		1				"Material I	s fully killed
Tanaila Ca	rength test 1 rength test 1	62.7ksi						*100% me	ited and colled in the USA
Elant Si	rengin lest 7	103.1ksi			*			*EN10204	:2004 3.1 compliant
Elongation Gagi	gation test 1	16%						*Contains	no weld repair
Bend T	est Diameter	8IN		1				*Contains	no Mercury contamination
		3.750IN		1				Manufacti	ared in accordance with the latest version
	Denu 18SI 1	Passad						of the plan	If quality manual
ARKS: I	,							Meets the	"Buy America" requirements of 23 CFR635.410
ARKS:								*Meets the	*Buy America * requirements of 23 CFR635.410

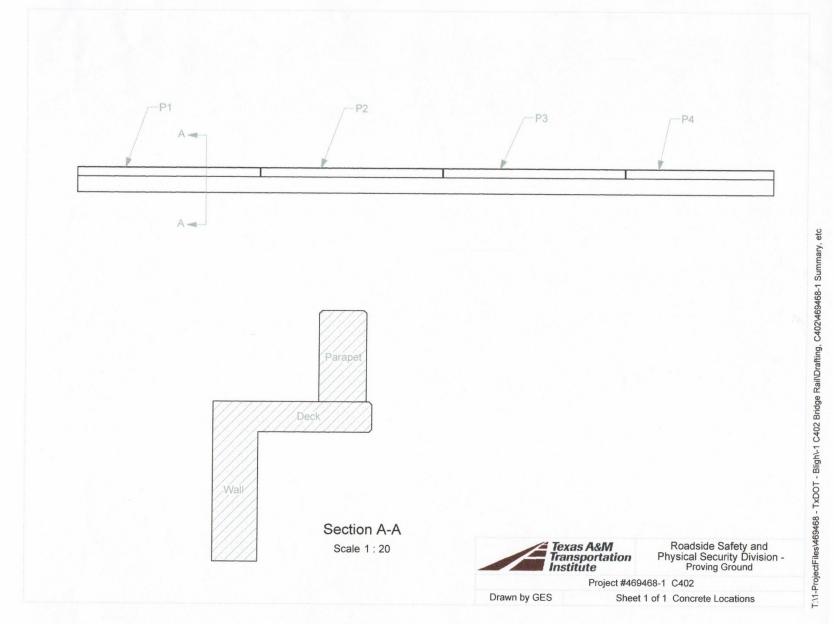
03/01/2018 18:08:26 Page 1 OF 1

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

EAT NO.:3078084 CCTION: REBAR 22MM (#7) 6: RADE: ASTM A6 15-16 Gr 420 DLL DATE: 02/24/2018 ELT DATE: 02/24/2018 II. No.: 82346478 / 078084/	0/60	S CMC Rebar Houston-West O L BRITTMOORE RD. HOUSTON TX US 77043-2208 T 713-690-0347 O		CMC Sterling Steel 2001 Brittmoore Rd Houston TX US 77043-2208 7136900347 7136905758	Clubility Assur	Delivery#: 82346478 BOL#: 72417710 CUST PO#: CUST P/N: DLVRY LBS / HEAT: 38020.000 LB DLVRY PCS / HEAT: 310 EA
Characteristic	Value	Characteristic	o Value			
	0.12.70	Onaractoristic	value		Charac	teristic Value
g Mn						
P	0.015,0					
Si	0.056%					
Cu	0.15%					
Cr	0.34%					
Ni Ni	0.19%			1		
Mo	0.081%					
e v	0.001%					
Cb	0.003%					
i Sn	0.014%					
Al	0.002%				The Following is true	e of the meterial represented by this MTR:
1					*Material is	fully killed
Yield Strength test 1	67.9ksi					ed and rolled in the USA
Tensile Strength test 1	106.5ksi					2004 3.1 compliant
Elongation test 1	13%				*Contains no	
Elongation Gage Lgth test 1	BIN				*Contains no	Mercury contamination
Bend Test Diameter	4.375IN				*Manufactur	ed in accordance with the latest version
		,			0/161	quality manual
Bend Test 7	Passed					

03/27/2018 00:13:07 Page 1 OF 1


CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

TOMMY HEWITT

AT NO.:3078559		SCMCR	bar Houston-West	10	Taura -	Quality Assurance Manager
CTION: REBAR 25MM (#8) 50 ADE: ASTM A615-16 Gr 420 LL DATE: 03/17/2018 LT DATE: 03/14/2018 t. No.: 82343437 / 078559A	160	0	OORE RD. ON TX 43-2208	S H I P T O	CMC Sterling Steal 2001 Brittmoore Rd Houston TX US 77043-2208 7136900347 7136905758	Delivory#: 82343437 BOL#: 72412704 CUST PO#: CUST P/N: DLVRY LBS / HEAT: 21360.000 LI
Characteristic	Value	-	Cheracteri	stic Value		
C	0.43%				·	Characteristic Value
Mn	0.93%				4	
[P	0.011%					1
s	0.045%					
; Si	0.21%					1
Cu	0.29%					
[Cr	0.20%				ž.	
) Ni	0.23%					
Mo	0.082%					
V	0.001%				×	*.
. Сь	0.002%					
Sn	0.011%					
AI	0.002%					The Following is true of the meterial represented by this MTR:
						*Material is fully killed
Yield Strength test 1	70.3ksi		,			100% melted and rolled in the USA
Tensile Strength test 1	109,8ksi					*EN10204:2004 3.1 compliant
Elongation test 1	14%					*Contains no weld repair
Elongation Gage Lgth test 1	NIB	1				*Contains no Mercury contamination
Bend Test Diameter	5.000IN					*Manufactured in accordance with the latest version
Bend Test 1	Passed	- 1				of the plant quality manual "Meets the "Buy America" requirements of 23 CFR635, 410

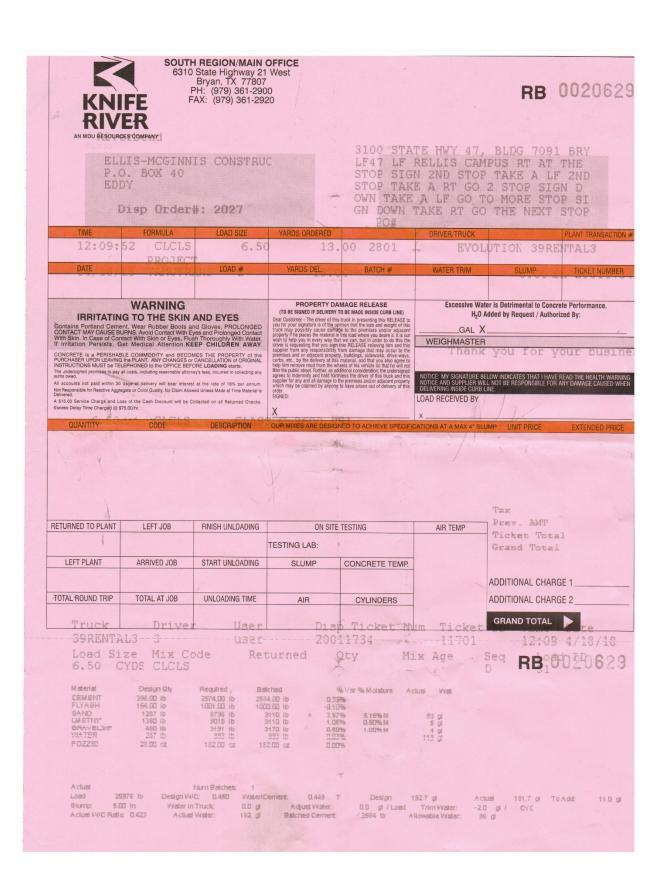
03/20/2018 18:55:38 Page 1 OF 1

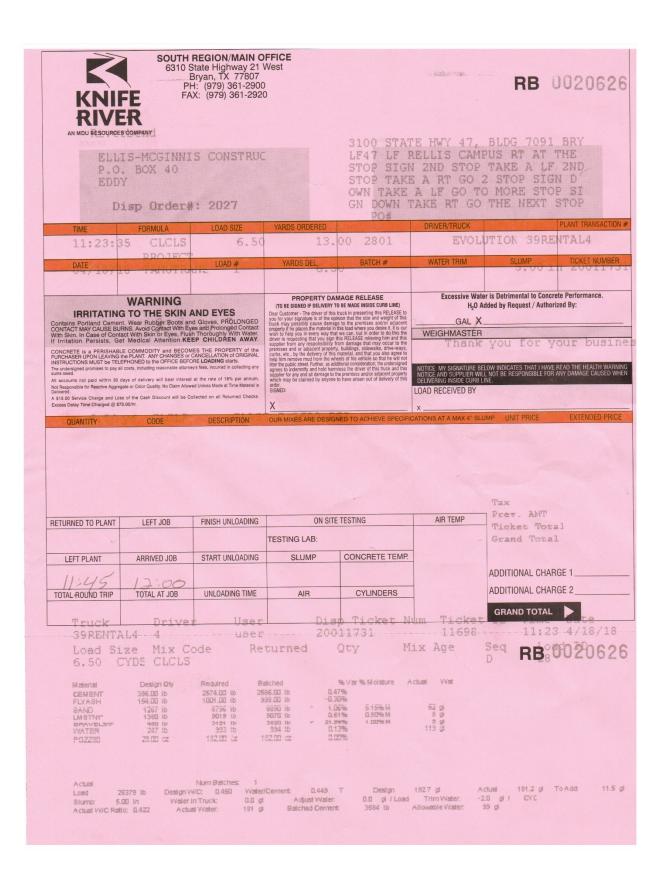
Proving Ground 3100 SH 47, Bldg 7091 College Station, TX 77843 Phone 979-845-6375 Quality Policy Form	Revised by: G. E. Schroeder Approved by: C. E. But	Revision:	2012-09-17 Page:
Texas A&M Transportation Institute	5.7.2 Concrete Break	Doc. No. QPF 5.7.2	Revision Date:

Project No.: 469468-1 Casting Date: 4-18

Mix Design P.S.I.: CLASS 5 4000

Placement: PARAPET


Truck No.	Batch Ticket	Yards


Printed name of Technician taking sample: Signature of Technician taking sample:

Printed name of Technician breaking sample:

Signature of Technician breaking sample:

Break Date	Cylinder Age Truc		Total Load (Pounds)	PSI Break	Average
2018-5-10	22 0435	1	154,000	5450	
		1	152,500	5360 -	5370
		1	150,000	5305	
		Z	149,500	5290 -	
		2	150,000	5305 -	5375
*		2	156,500	55351	

	Policy Form	Revised by: (Approved by:	G. E. Schroeder C. E. But	Revision:	Page:
Proving Ground 3100 SH 47, Bldg 7091 Bryan, TX 77807	Institute Texas A&M University College Station, TX 77843 Phone 979-845-6375	5.7.2	Concrete Break	QPF 5.7.2	2012-09-17
	Texas A&M Transportation			Doc. No.	Revision Date:

Project No.: 469468- |
Placement: T1 WALL TZ + T3 DECK Casting Date: 4-11 Mix Design P.S.I.: 6455 5 4000

Truck

No.

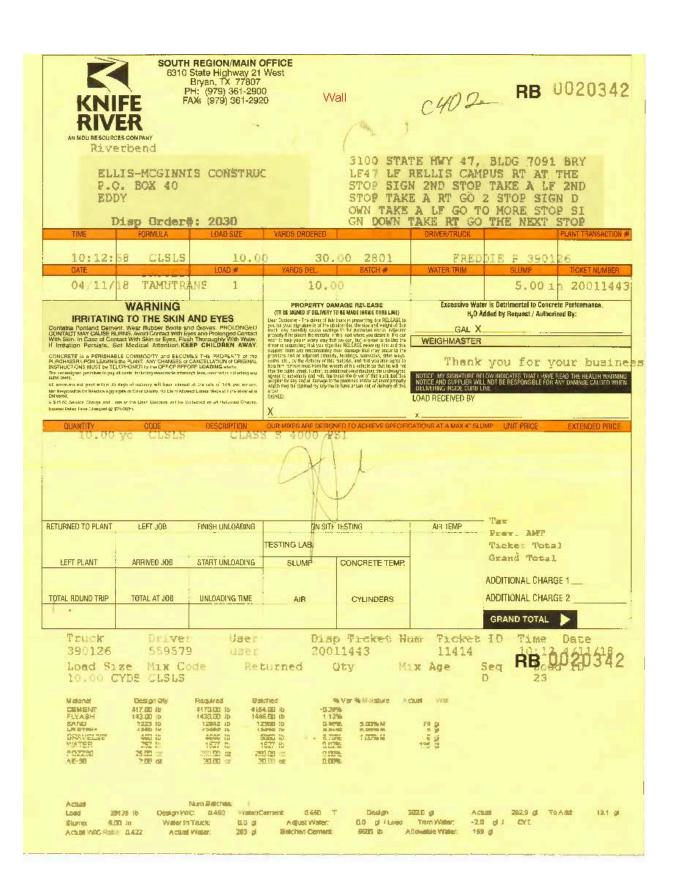
Yards

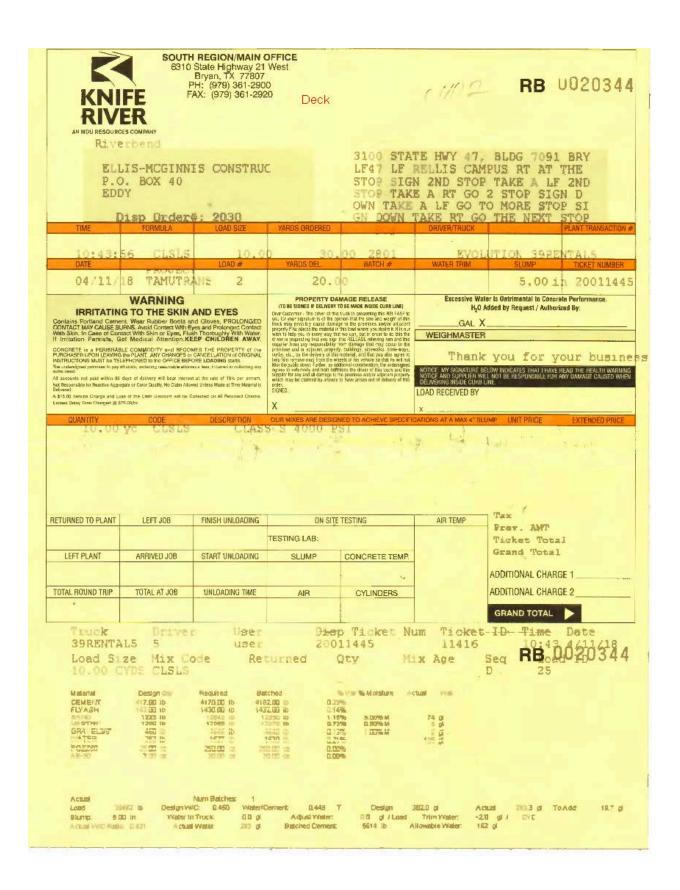
Batch Ticket

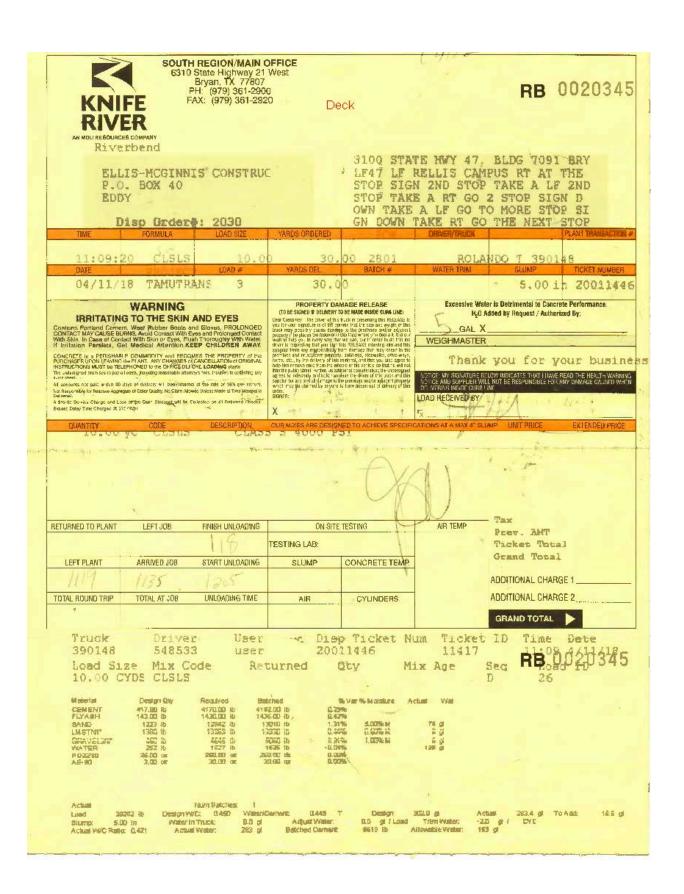
Truck No.

Break Date

2018-5-10


Cylinder Age


29 bays


Printed name of Technician taking sample: Signature of

Technician taking sample: Printed name of

Signature of Technician breaking sample:							
Total Load (Pounds)	PSI Break	Average					
152,000	5375						
154,000	5520 -	5460					
155,000	5480 1						
171,000	6050						
172,000	6080 -	6085					
173,000	6120 1						
130,000	6365 -						
182,000 CF.	6190 -	6250					
175,000	6190						

A.3 MASH TEST 4-10 (CRASH TEST NO. 469468-1-1)

A.3.1 Vehicle Properties and Information

Table A.1. Vehicle Properties for Test No. 469468-1-1.

Date:20	018-05-17	_ Test No.:	469468	3-1-1	VIN No.:	KNADI	H4A36A6	6635391
Year:	2010	_ Make:	Kl	۹	_ Model:		RIO	
Tire Inflation	Pressure: 3	2 PSI	Odometer:	105807	7	Tire Size:	185/65F	R14
Describe any	damage to th	e vehicle prior	to test: N	lone				
• Denotes ad NOTES: NOTES: NOTES	ccelerometer l	ocation.	A M —			◆ • -		N .
Engine Type: Engine CID: Transmission	1.6 L Type: or <u>[</u> RWD	er 4WD	P		R	• • • •		B B V
Dummy Data Type: Mass: Seat Positio	50th per 165 lb	centile male	y y	F	H_8	E		K
B 51 C 165 D 34 E 98	inches .38 F .50 G .75 H .00 I .75 J nter Ht Front	33.00 35.75 7.75 21.50 11.00	K L M N O Wheel	12.25 25.25 57.75 57.70 28.25 Center Ht	P Q R S T Rear	4.12 22.50 15.50 8.25 66.20 11.00	U V W X	14.75 19.50 35.75 107.00
RANGE LIMIT:	A = 65 ±3 inches; C	= 169±8 inches; E = 98 M+N/2 = 56 ±2	±5 inches: F = 35 ± inches: W-H < 2 inch				SUPPORT (24 :	±4-inchos);
GVWR Rati Front Back Total Mass Distrib	1718 1874 3638	Mass: Ib M _{front} M _{rear} M _{Total}		1567 884 2451		Inertial 1547 878 2425 owable GSM = 2585		958 2590
lb	LF:	771	RF:	776	LR:	422	RR:	456

Table A.2. Exterior Crush Measurements of Vehicle for Test No. 469468-1-1.

Date:	2018-05-17	_ Test No.: _	469468-1-1	VIN No.:	KNADH4A36A6635391
Year:	2010	_ Make: _	KIA	Model:	RIO

VEHICLE CRUSH MEASUREMENT SHEET1

Complete Wh	en Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2 _
< 4 inches	2 =
≥ 4 inches	

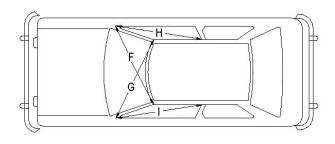
Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

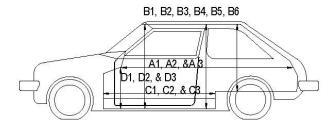
Specific Impact Number		Direct Damage									
	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C ₁	C ₂	C3	C4	C5	C6	±D
1	AT FT BUMPER	24	6	26	6	5	4	2.5	1	0	-8
2	ABOVE FT BUMPER	24	8	40	1	3	5	6	6.5	8	+60
						-					
		2.0						3			:
	Units in inches	7,				5					
3											

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.


Note: Use as many lines/columns as necessary to describe each damage profile.


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

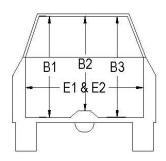

^{***}Measure and document on the vehicle diagram the location of the maximum crush.

Table A.3. Occupant Compartment Measurements of Vehicle for Test No. 469468-1-1.

Date:	2018-05-17	_ Test No.:	469468-1-1	VIN No.:	KNADH4A36A6635391
Year:	2010	Make:	KIA	Model:	RIO

^{*}Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

	DEFORMATION MEASUREMENT						
	Before	After inches	Differ.				
A1	67.50	67.50	0.00				
A2	67.25	67.25	0.00				
А3	67.75	67.75	0.00				
B1	40.50	38.00	-2.50				
B2	39.00	39.00	0.00				
В3	40.50	40.50	0.00				
B4	36.25	36.25	0.00				
B5	36.00	36.00	0.00				
B6	36.25	36.25	0.00				
C1	26.00	25.00	-1.00				
C2	0.00	0.00	0.00				
СЗ	26.00	26.00	0.00				
D1	9.50	7.00	-2.50				
D2	0.00	0.00	0.00				
D3	9.50	9.50	0.00				
E1	51.50	53.50	2.00				
E2	51.00	53.50	2.50				
F	51.00	51.00	0.00				
G	51.00	51.00	0.00				
H	37.50	37.50	0.00				
I	37.50	37.50	0.00				
J*	51.00	49.75	-1.25				

A.3.2 Sequential Photographs

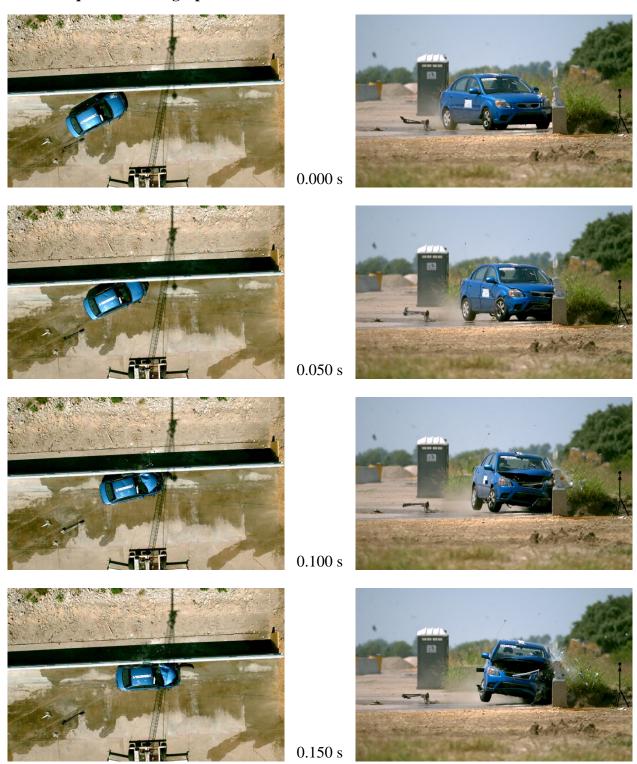


Figure A.1. Sequential Photographs for Test No. 469468-1-1 (Overhead and Frontal Views).

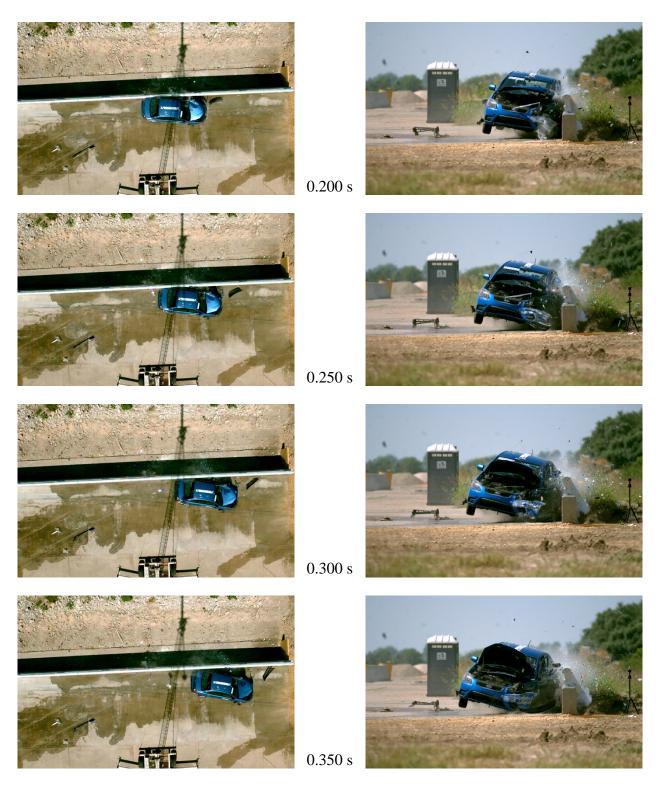


Figure A.1. Sequential Photographs for Test No. 469468-1-1 (Overhead and Frontal Views) (Continued).

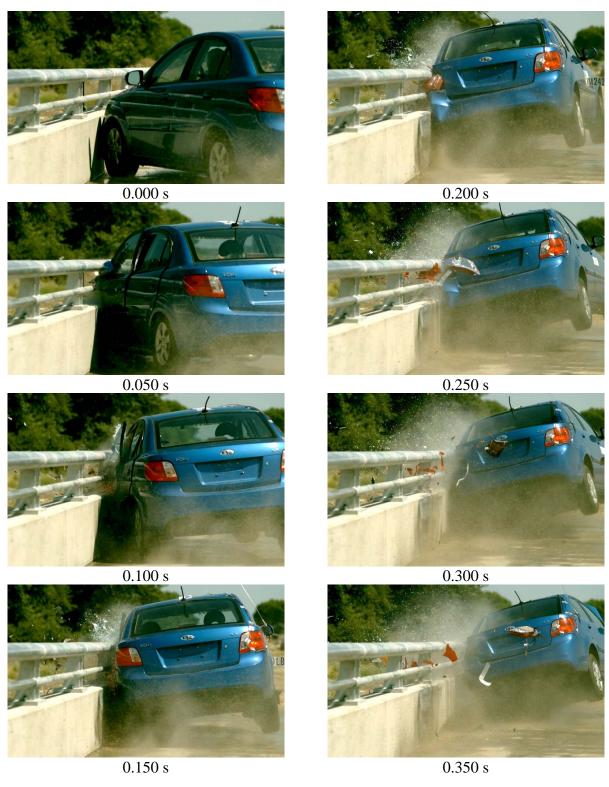


Figure A.2. Sequential Photographs for Test No. 469468-1-1 (Rear View).

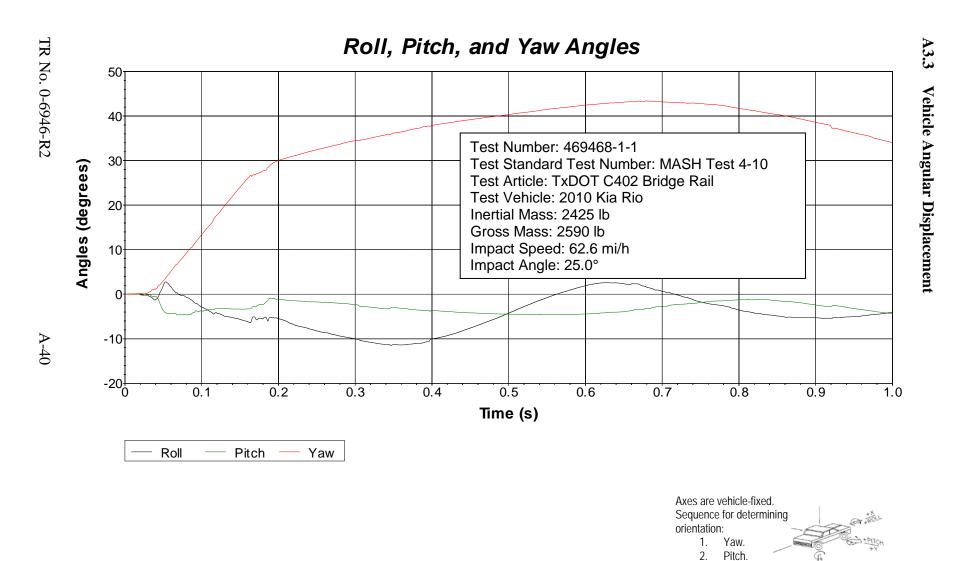


Figure A.3. Vehicle Angular Displacements for Test No. 469468-1-1.

Roll.

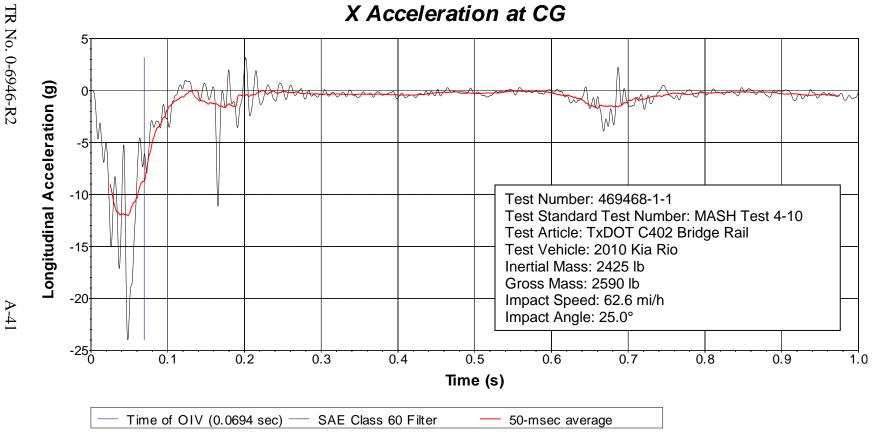


Figure A.4. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-1-1 (Accelerometer Located at Center of Gravity).

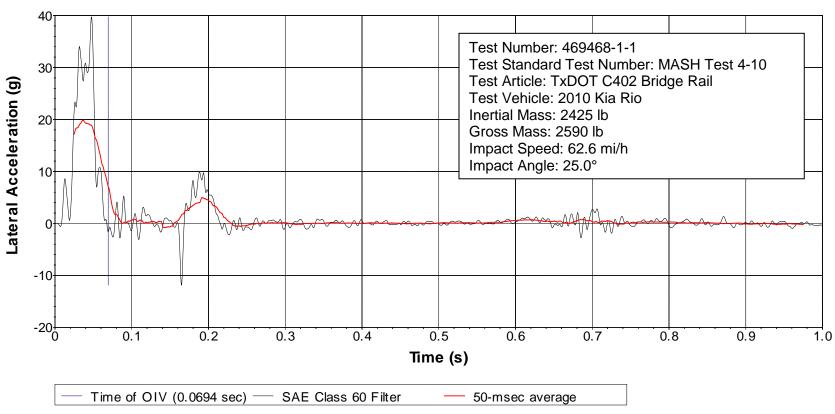


Figure A.5. Vehicle Lateral Accelerometer Trace for Test No. 469468-1-1 (Accelerometer Located at Center of Gravity).

Z Acceleration at CG

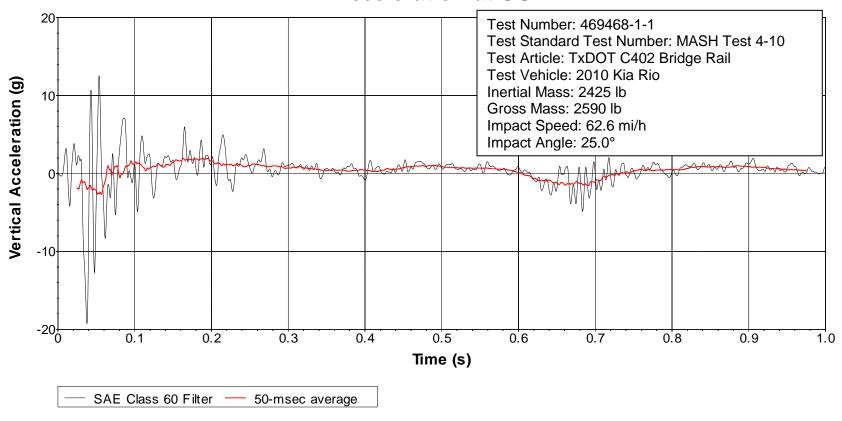


Figure A.6. Vehicle Vertical Accelerometer Trace for Test No. 469468-1-1 (Accelerometer Located at Center of Gravity).

X Acceleration Rear of CG

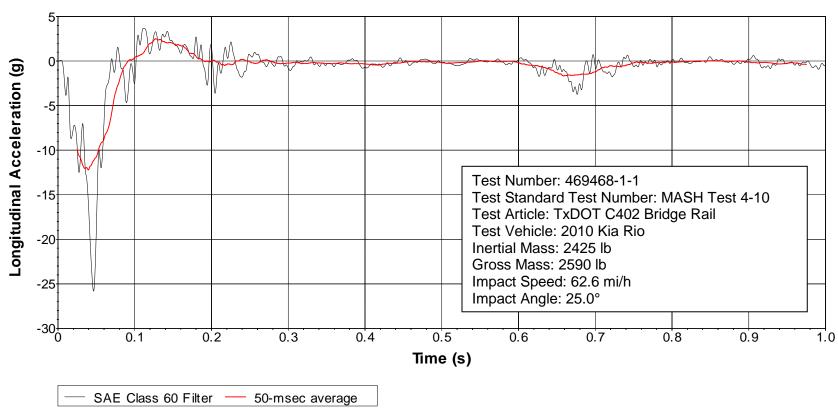


Figure A.7. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-1-1 (Accelerometer Located Rear of Center of Gravity).

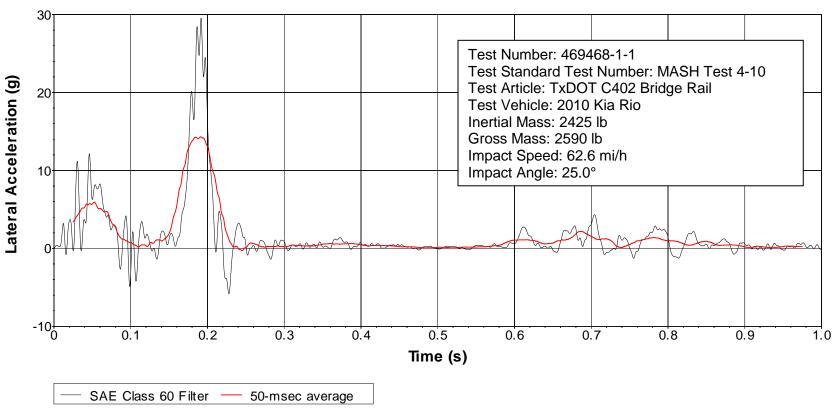


Figure A.8. Vehicle Lateral Accelerometer Trace for Test No. 469468-1-1 (Accelerometer Located Rear of Center of Gravity).

SAE Class 60 Filter —

50-msec average

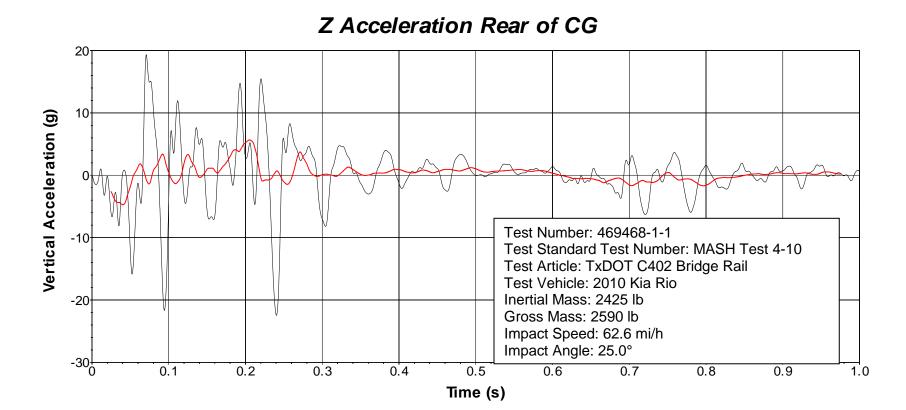


Figure A.9. Vehicle Vertical Accelerometer Trace for Test No. 469468-1-1 (Accelerometer Located Rear of Center of Gravity).

A.4 *MASH* TEST 4-11 (CRASH TEST NO. 469468-1-2)

A.4.1 Vehicle Properties and Information

Table A.4. Vehicle Properties for Test No. 469468-1-2.

Date:	2018-	-5-15	Test No.:	469468		VIN No.:	1C6RI	D6FT5CS	237129
Year:	20 ⁻	12	_ Make:	DOD	GE	Model:		RAM 150	10
Tire Size	_{e:} 265	5/70 R 1	17		Tire In	flation Pres	sure: <u>3</u> 5	5 PSI	
Tread Ty	ype: HIC	3HWAY	•				neter: 16		
Note any	y damage	to the ∨e	hicle prior to te	st: None	е				
• Denot	es acceler	ometer l	ocation.			 ∑	-		
NOTES:	None			† †		7/			
Engine T Engine C		/-8 1.7 L		A M	r C	1			MHEST.
A	ssion Type Auto o FWD <u>[</u>]	r	L Manual L□L 4WD	P.	R ———			—Техті пзекті А. С. V	.
Optional <u>None</u>	Equipmer	nt:		1					
Dummy Type: Mass: Seat Po	5	60th perc 165 lb Oriver/Imp	entile male	1 J-1 1-	F	H H		▼ M	FK L
Geomet	-		40.00		-4	PRONT	- c	REAR	
A	78.50 74.00	F ₋	40.00 28.00	K	20.00 30.00	P _	3.0 30.5		27.00 30.25
В	227.50	Н	61.20	 М	68.50	Q _ R	18.0		61.20
D —	44.00	 I	11.75		68.00	s —	13.0		77.50
E	140.50	J	27.00	0	46.00	т	77.0	0	
	el Center ght Front		14.75 Clear	Wheel Well rance (Front)		6.00	Bottom F Height -		12.00
Whe	el Center ight Rear		14.75 Clea	Wheel Well rance (Rear)		9.25	Bottom F Height -	rame Rear	25.50
		nches; C=237	±13 inches; E=148 ±12 i	_	_				
Front	Ratings:	3700	Mass: Ib M _{front}	<u>Cui</u>	<u>0</u> 2824	162	<u>Inertial</u> 2819	GIC	ess Static 2904
Back		900	M _{rear}		1964		2180		2260
Total	6	700	M _{Total}		4788		4999		5164
Mass Di	stribution	n:				Range for TIM and	GSM = 5000 lb	±110 lb)	
lb		LF:	1401	RF:	1418	LR:	1077	RR:	1103

Table A.5. Measurements of Vehicle Vertical CG for Test No. 469468-1-2.

Date: 2018-	5-15 T	est No.: _	469468	3-1-2	VIN:1	C6RD6F15C	S237129)
Year:201	12	Make: _	DOD	GE	Model:	RAN	1 1500	
Body Style: Q	UAD CAI	3				166403		
Engine: 4.7L	V-8			Tran	smission:	AUTO		
Fuel Level: <u>E</u>	MPTY	Ball	ast: _190	LBS		25	(42	10 lb max)
Tire Pressure:	Front:	35 ps	i Rea	ar: <u>35</u>	_psi 5	Size: 265/70	R 17	
Measured Ve	hicle Wei	ghts: (l	b)					
LF:	1401		RF:	1418		Front Axle:	2819	
LR:	1077		RR:	1103		Rear Axle:	2180	
Left:	2478		Right:	2521		Total:	4999	
						5000 ±11	0 lb allow ed	
Wh	eel Base:	140.50	inches	Track: F:	68.50	inches R:	68.00	inches
	148 ±12 inch	nes allow ed			Track = (F+R)/2 = 67 ±1.5 inches	allow ed	
Center of Gra	avity, SAE	J874 Sus	spension N	/lethod				
X:	61.27	inches	Rear of F	ront Axle	(63 ±4 inches	s allow ed)		
Y:	0.29	inches	Left -	Right +	of Vehicle	: Centerline		
Z:	28.00	inches	Above Gr	ound	(minumum 28	3.0 inches allow ed)		
			5) E					80 80
Hood Heig	10.000 00.000	46.00 nches allowed	= 13 2	Front	Bumper F	leight:	27.00	inches
Front Overhar	\$100 at	40.00	50	Rear	Bumper H	leight:	30.00	inches
Overall Leng		227.50 3 inches allow						

Table A.6. Exterior Crush Measurements of Vehicle for Test No. 469468-1-2.

Date: _	2018-5-15	_ Test No.: _	469468-1-2	_ VIN No.:	1C6RD6FT5CS237129
Year:	2012	Make:	DODGE	Model:	RAM 1500

VEHICLE CRUSH MEASUREMENT SHEET1

Complete W	hen Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2
< 4 inches	=
≥ 4 inches	

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

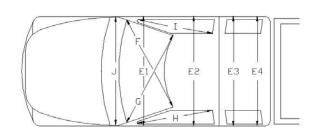
G		Direct Damage				01.03					
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆	±D
1	AT FT BUMPER	22	8	16	8	4	2				-17
2	ABOVE FT BUNPER	22	10	44	2	4	6	7	9.5	10	+80
								02			
	inches										

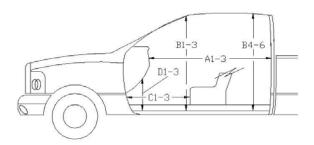
Table taken from National Accident Sampling System (NASS).

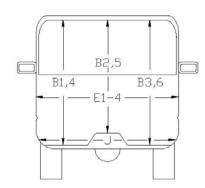
Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).


^{***}Measure and document on the vehicle diagram the location of the maximum crush.


Table A.7. Occupant Compartment Measurements of Vehicle for Test No. 469468-1-2.

 Date:
 2018-5-15
 Test No.:
 469468-1-2
 VIN No.:
 1C6RD6FT5CS237129

 Year:
 2012
 Make:
 DODGE
 Model:
 RAM 1500

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

	Before	After inches	Differ.
A1	65.00	64.50	-0.50
A2	63.00	63.00	0.00
А3	65.50	65.50	0.00
B1	45.00	45.00	0.00
B2	38.00	38.00	0.00
В3	45.00	45.00	0.00
B4	39.50	39.50	0.00
B5	43.00	43.00	0.00
B6	39.50	39.50	0.00
C1	26.00	25.00	-1.00
C2	0.00	0.00	0.00
C3	26.00	26.00	0.00
D1	11.00	10.75	-0.25
D2	0.00	0.00	0.00
D3	11.50	11.50	0.00
E1	58.50	60.50	2.00
E2	63.50	67.00	3.50
E3	63.50	63.50	0.00
E4	63.50	63.50	0.00
F	59.00	59.00	0.00
G	59.00	59.00	0.00
Н	37.50	37.50	0.00
I	37.50	37.50	0.00
J*	25.00	24.00	-1.00

A.4.2 Sequential Photographs

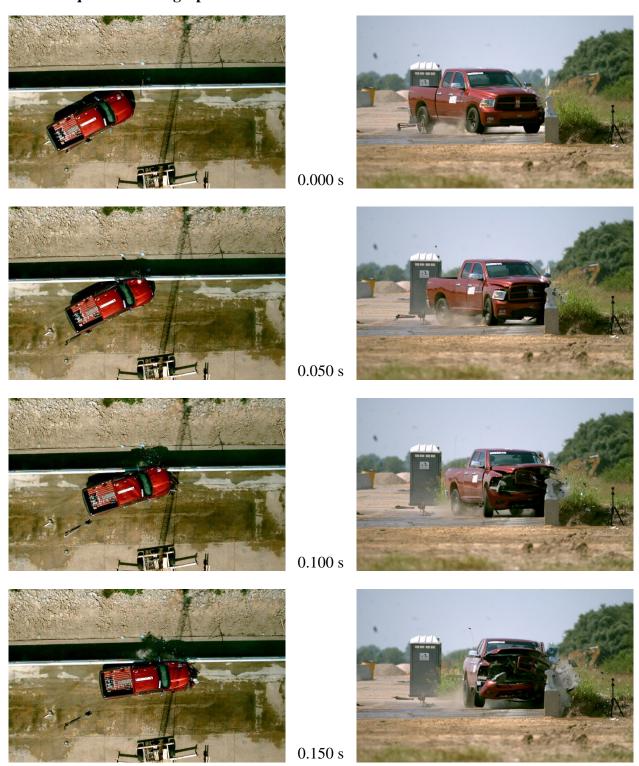


Figure A.10. Sequential Photographs for Test No. 469468-1-2 (Overhead and Frontal Views).

Figure A.10. Sequential Photographs for Test No. 469468-1-2 (Overhead and Frontal Views) (Continued).

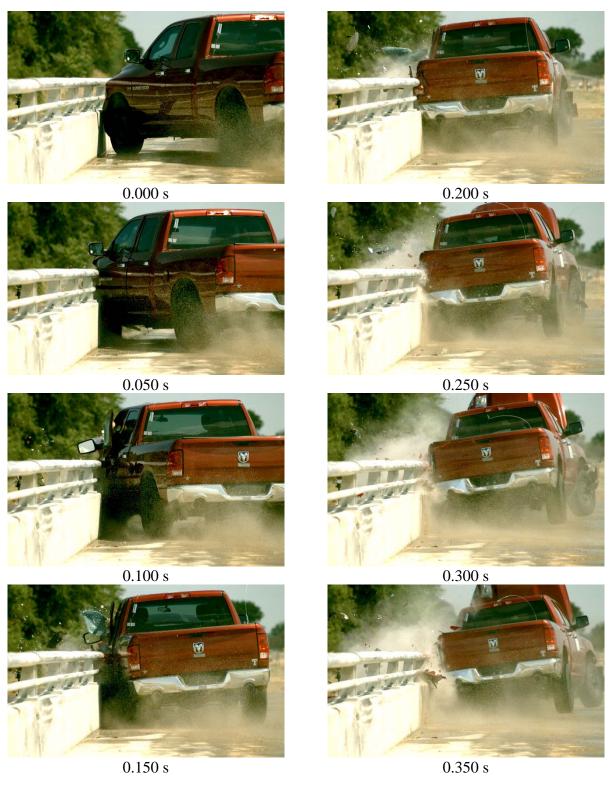
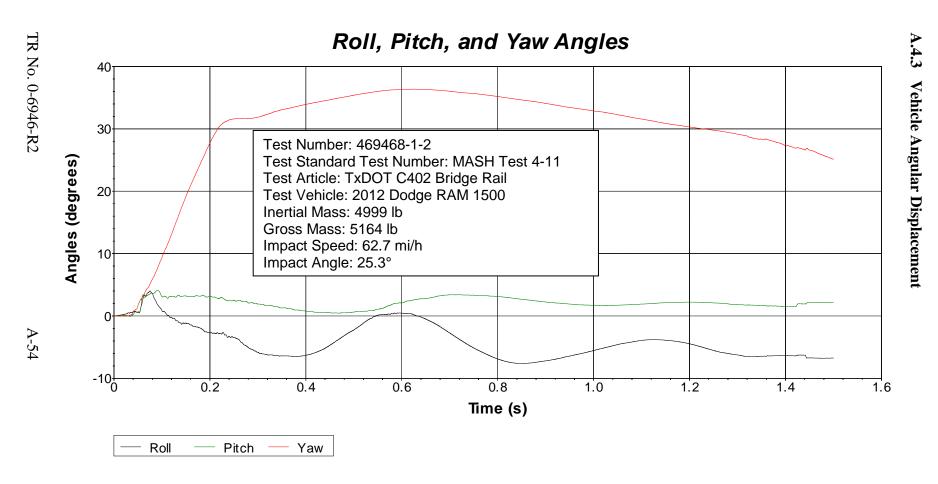



Figure A.11. Sequential Photographs for Test No. 469468-1-2 (Rear View).

Axes are vehicle-fixed. Sequence for determining orientation:

- 1. Yaw.
- 2. Pitch.
- 3. Roll.

Figure A.12. Vehicle Angular Displacements for Test No. 469468-1-2.

Figure A.13. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-1-2 (Accelerometer Located at Center of Gravity).

Y Acceleration at CG

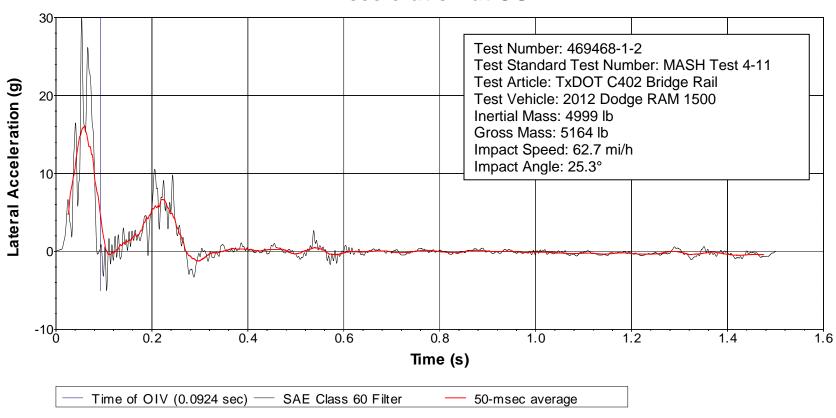


Figure A.14. Vehicle Lateral Accelerometer Trace for Test No. 469468-1-2 (Accelerometer Located at Center of Gravity).

Z Acceleration at CG

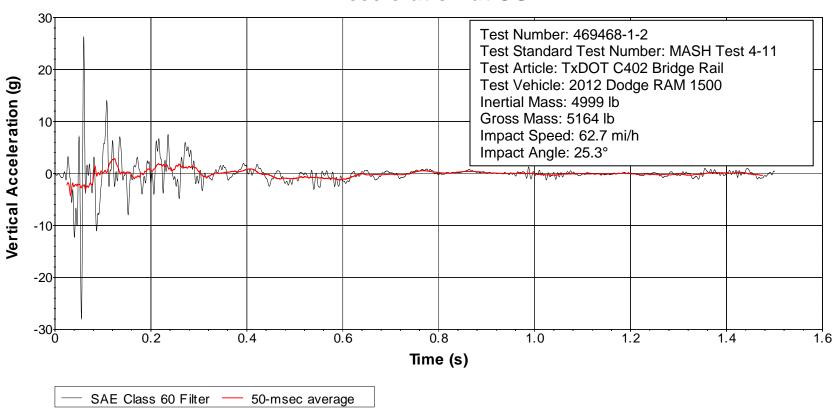


Figure A.15. Vehicle Vertical Accelerometer Trace for Test No. 469468-1-2 (Accelerometer Located at Center of Gravity).

X Acceleration Rear of CG

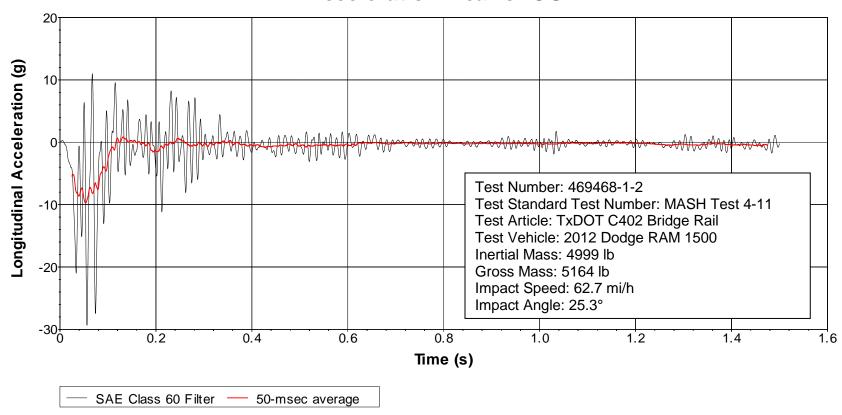


Figure A.16. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-1-2 (Accelerometer Located Rear of Center of Gravity).

Y Acceleration Rear of CG

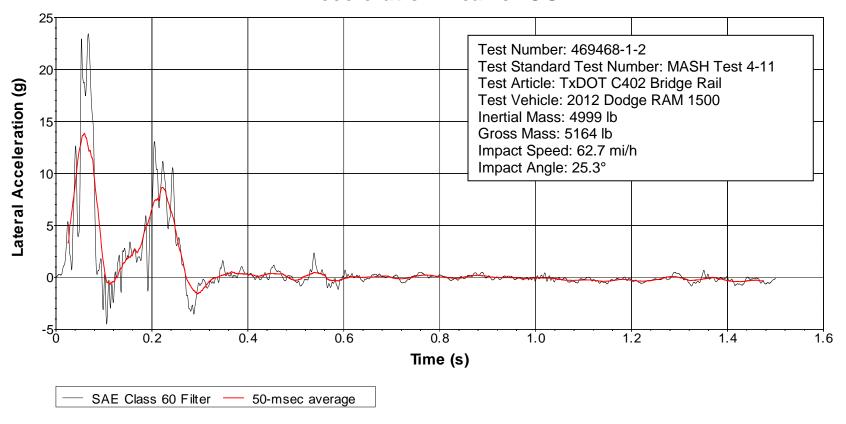


Figure A.17. Vehicle Lateral Accelerometer Trace for Test No. 469468-1-2 (Accelerometer Located Rear of Center of Gravity).

Z Acceleration Rear of CG

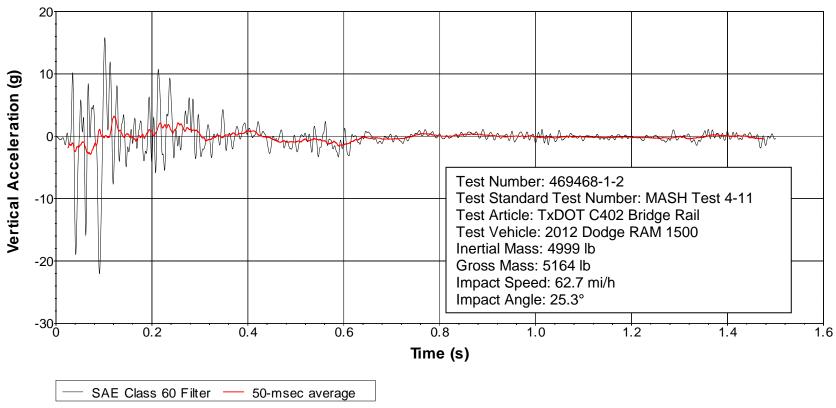


Figure A.18. Vehicle Vertical Accelerometer Trace for Test No. 469468-1-2 (Accelerometer Located Rear of Center of Gravity).

A.5 *MASH* TEST 4-12 (CRASH TEST NO. 469468-1-3)

A.5.1 Vehicle Properties and Information

Table A.8. Vehicle Properties for Test No. 469468-1-3.

Dat	e: 2018-5-11	Test N	No.:	469468-1-3	VIN No	o.: <u>11</u>	HTMNAAL1CH6	19992
Yea	ır: 2012			International	Mode	el: 43	300 Single-Unit Tı	ruck
Odd	ometer: 189887	Tire S	ize F	Front: 11R22.5	Tire	Size	Rear: 11R22.5	
×	T N N A A A A	В	P - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U Z Z R R R R S		G B	B	- - - - - - - - - - - - - - - - - - -
Α	icle Geometry: Front Bumper Width: Overall Height:	91.00 144.50	K L	Rear Bumper Bottom: Rear Frame Top:	33.50	U V	Cab Length: Trailer/Box Length:	103.50
С	Overall Length:	342.00	M	Front Track Width:	79.50	W	Gap Width:	4.50
D	Rear Overhang:	94.00	Ν	Roof Width:	72.00	Х	Overall Front Height:	97.00
Ε	Wheel Base:	205.00	0	Hood Height:	58.50	Υ _	Roof-Hood Distance:	27.00
F	Front Overhang:	43.00	P	Bumper Extension:	5.00	Z	Roof-Box Height Difference:	47.00
G H	C.G. Height: C.G. Horizontal Dist. w/Ballast:	133.60	Q R	Front Tire Width: Front Wheel Width:	23.25	AA BB	Rear Track Width: Ballast Center of Mass:	73.00
] J	Front Bumper Bottom: Front Bumper	21.00	S	Bottom Door Height:	36.00 95.00	CC	Cargo Bed Height:	49.00
	Top:	7	T nax.: I	Overall Width: E = 240 inches max.: CC		BB = 63	±2 inches above ground;	30
	Vheel Center Height Front Vheel Center	19.00	,	Wheel Well Clearance (Front) _ Wheel Well	7.50	— :	Bottom Frame Height (Front) Bottom Frame	24.50
v	Height Rear	19.00		Clearance (Rear) _	6.00	_ 74	Height (Rear)	27.00

Table A.8. Vehicle Properties for Test No. 469468-1-3 (Continued).

Date:	2018-5-11 Test No.: 4		4694	68-1-3	VIN No.:	1HTMNAAL1CH619992			
Year:	2012	Make: International		_ Model:	4300 Single-Unit Truck				
	WEIGHTS Ib W _{front axle}			CURB 6,680	т - <u>-</u> -	EST INER			
		W _{rear axle}	<u> </u>	3,581			380		
		W _{TOTAL}	- 42.000	10,261		***************************************	060		
	Ballast:	owable Range for CURE	i = 13,200 lb	(as-nee	ded)		ecommended	ballasting)	
lb	Distribution	LF:3890	RF	:3790	LR:	7380	RR: _	7000	
Engine Engine			<u> </u>	Acc Fron	elerometer x ¹ t:	Locations	inches y	z²	
A A STATE OF THE S	Auto or	☐ Manual		Cente	r: 133.	60	0.00	47.00	
Ħ	FWD R			Rea	r: 223.	60	0.00	47.00	
Descrit	oe any damage	to the vehicle pric	or to tes	t:					
attachi	ment:	de ballast type, d s, Height 30 in						hod of	
Plac	ced centered	in middle of be	d						
Fou	r 5/16 cables	per block							
-									

¹ Referenced to the front axle ² Above ground

A.5.2 Sequential Photographs

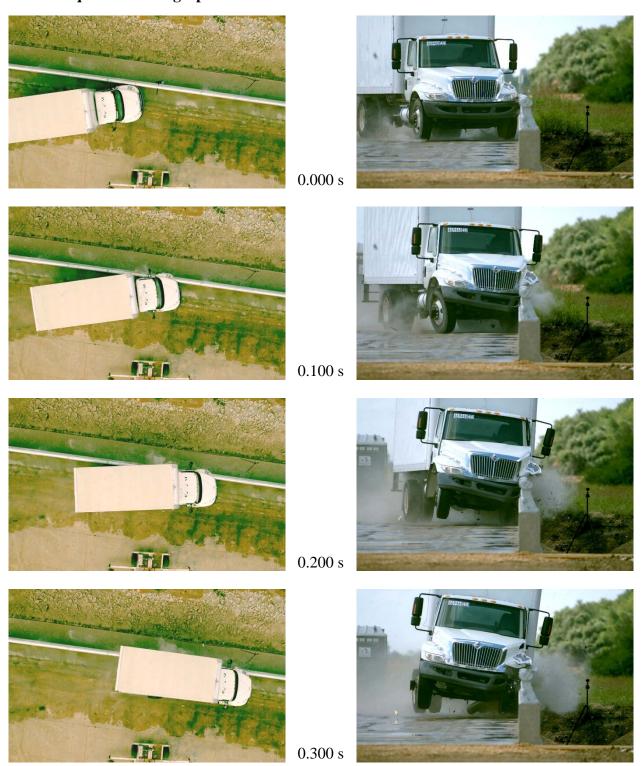


Figure A.19. Sequential Photographs for Test No. 469468-1-3 (Overhead and Frontal Views).

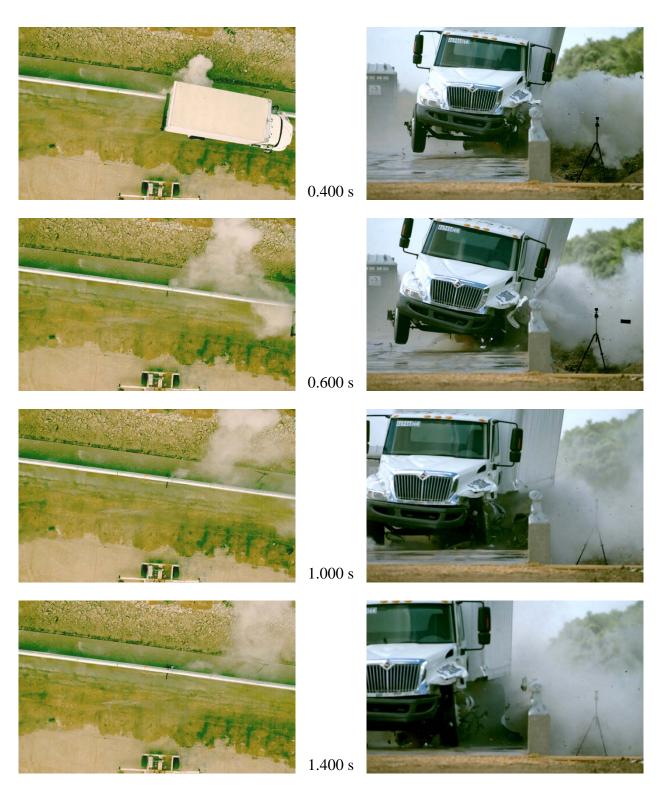


Figure A.19. Sequential Photographs for Test No. 469468-1-3 (Overhead and [View] Views) (Continued).

Figure A.20. Sequential Photographs for Test No. 469468-1-3 (Rear View).

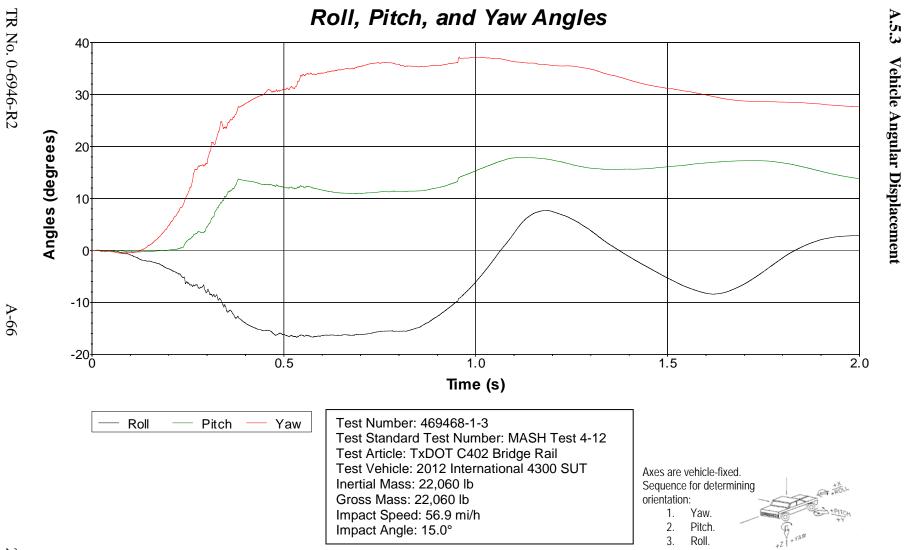


Figure A.21. Vehicle Angular Displacements for Test No. 469468-1-3.

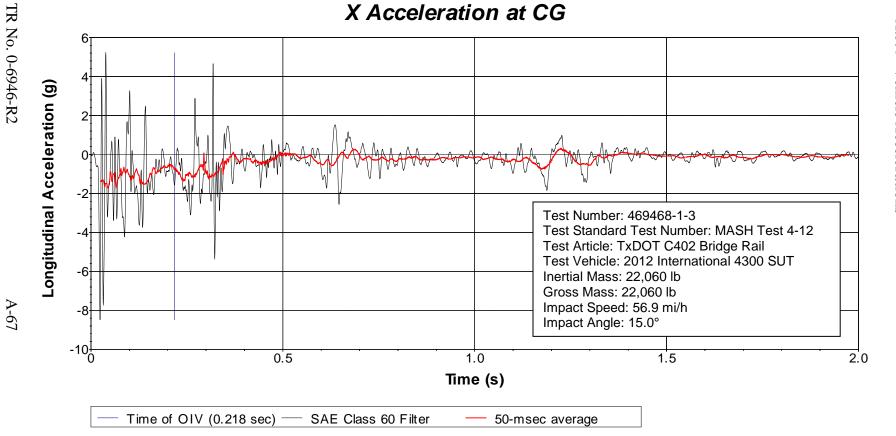


Figure A.22. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-1-3 (Accelerometer Located at Center of Gravity).

Y Acceleration at CG

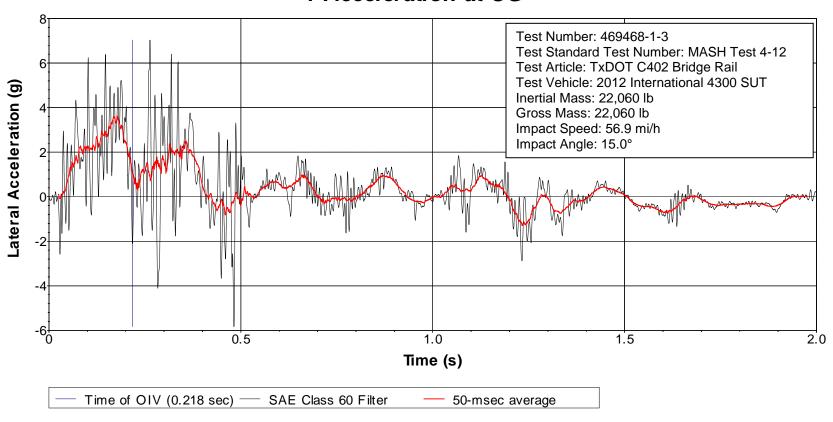


Figure A.23. Vehicle Lateral Accelerometer Trace for Test No. 469468-1-3 (Accelerometer Located at Center of Gravity).

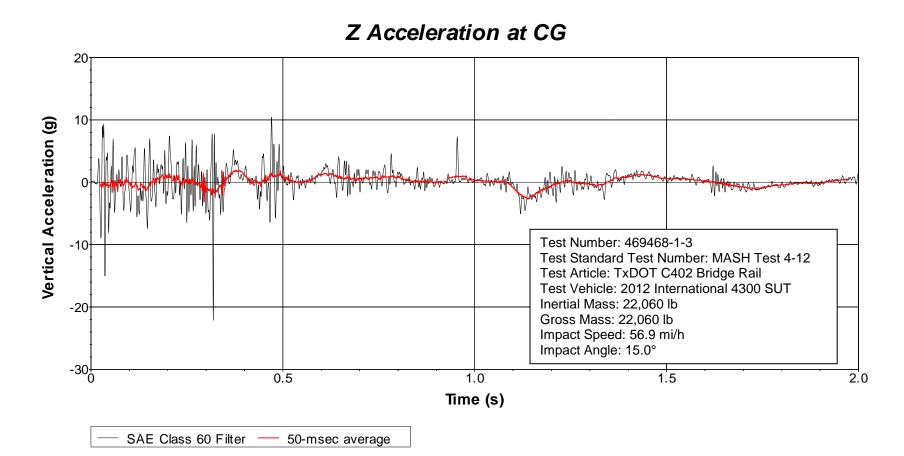


Figure A.24. Vehicle Vertical Accelerometer Trace for Test No. 469468-1-3 (Accelerometer Located at Center of Gravity).

X Acceleration Rear of CG

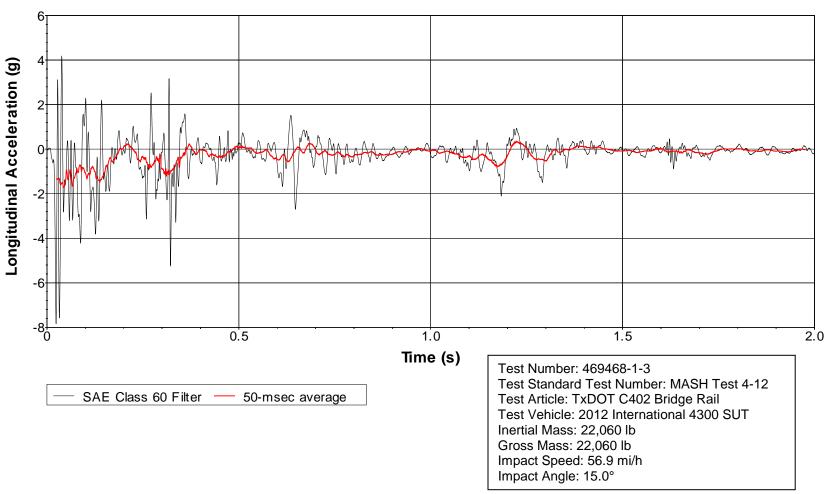


Figure A.25. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-1-3 (Accelerometer Located Rear of Center of Gravity).

Y Acceleration Rear of CG

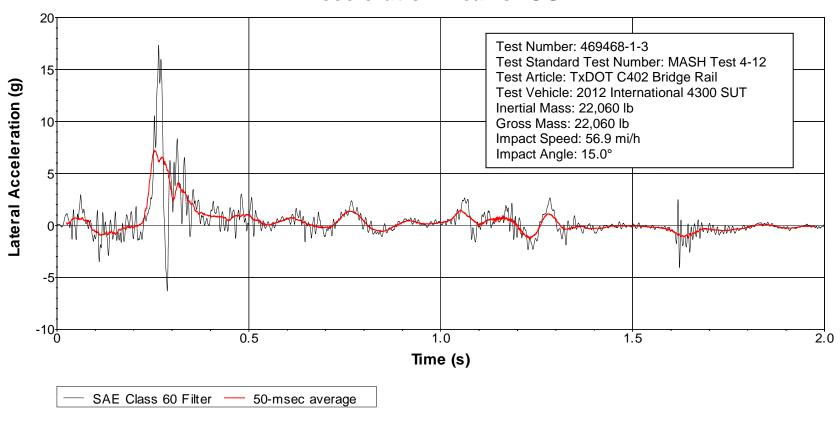


Figure A.26. Vehicle Lateral Accelerometer Trace for Test No. 469468-1-3 (Accelerometer Located Rear of Center of Gravity).

Z Acceleration Rear of CG

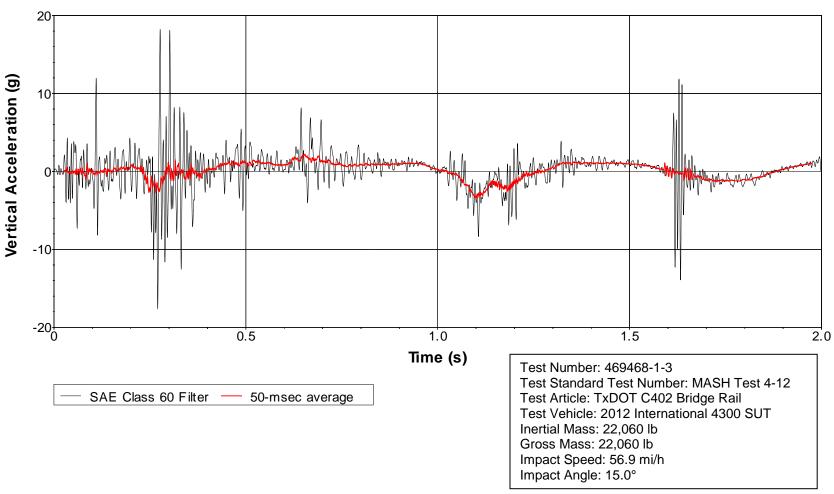
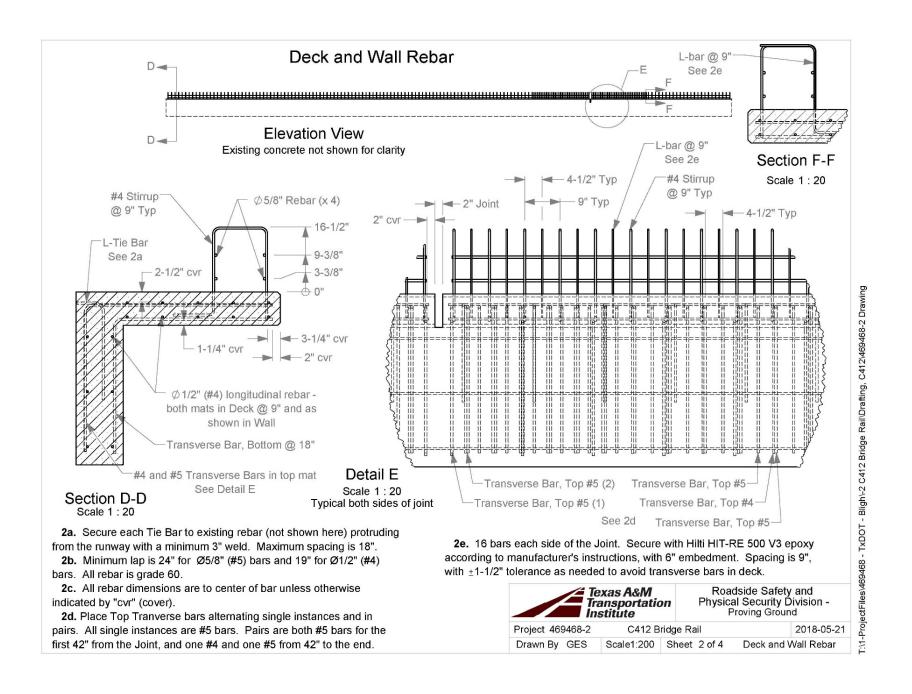
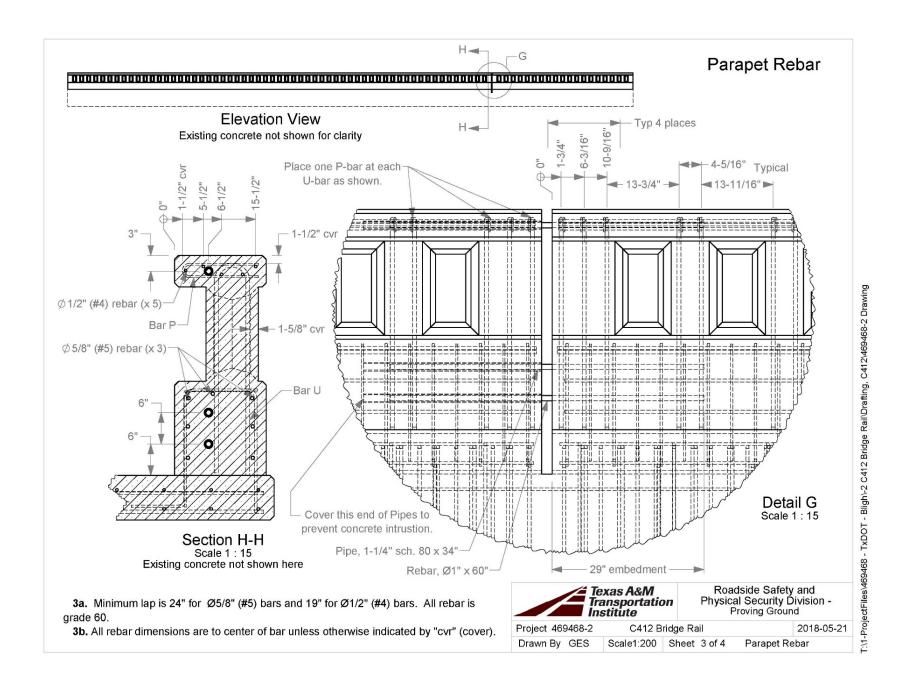
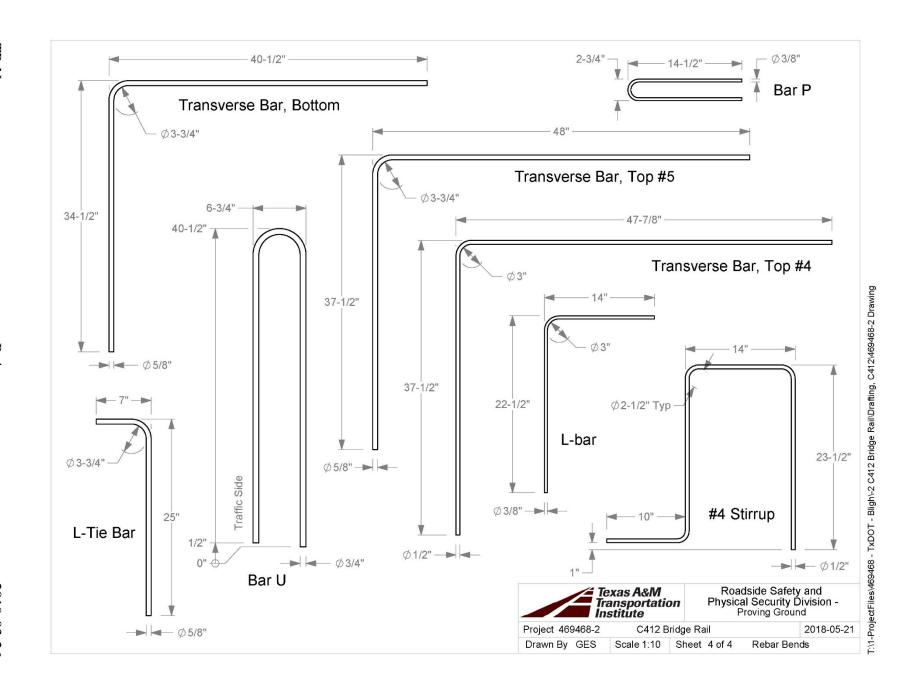





Figure A.27. Vehicle Vertical Accelerometer Trace for Test No. 469468-1-3 (Accelerometer Located Rear of Center of Gravity).

APPENDIX B. TXDOT C412 BRIDGE RAIL

Proving Ground 3100 SH 47, Bldg 7091 Bryan, TX 77807	Texas A&M Transportation Institute Texas A&M University College Statlon, TX 77843 Phone 979-845-6375	5.4.24.1 Test Item/ Material Received Worksheet	Doc. No. QPF 5.4.24.1	Revision Date: 2012-09-17
Quality 1	Policy Form	Revised by: G. E. Schroeder Approved by: R. A. Zimmer	Revision:	Page:

B.2

SUPPORTING CERTIFICATION DOCUMENTS

□ covered with tarp □ covered with tarp □ covered with tarp □ covered with tarp □ in secure indoor facility □ in secure indoor facility □ in secure indoor facility	Item No.	Description	For PO#	Supp	olier	Location	Notes
Store Item No. 1: in secure outdoor facility covered with tarp in secure indoor facility	1)	#5 Rebar ASTM A615-16 Fr 4	469688-2	Che		Shop	
Store Item No. 1: In secure outdoor facility In secure indoor facility	2)	Hy Rebar ASTM AG15-11 Fr 4	20/60 465688-2+	che		560	
Store Item No. 1: Store Item No. 2: Store Item No. 3: Store Item No. 3: Store Item No. 4: in secure outdoor facility covered with tarp in secure indoor facility	3)						
in secure outdoor facility	4)						
other (please specify): other (please specify): other (please specify): other (please specify)	in co	secure outdoor facility overed with tarp secure indoor facility	in secure outdoor covered with tarp in secure indoor fa	cility	in sec	ure outdoor facility ed with tarp ure indoor facility	in secure outdoor facility

CMC STEEL OKLAHOMA 584 Old Highway 70 Durant OK 74701-0000

CERTIFIED MILL TEST REPORT For additional copies call

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Jacob Selzer – CMC Steel

Quality	Assurance	Manager
---------	-----------	---------

HEAT NO.:6000309 SECTION: REBAR 13MM (#4) 20'0" GRADE: ASTM A615-16 Gr 420/60 ROLL DATE: 03/20/2018 MELT DATE: Cert. No.: 82344800 / 000309J130	420/60 C L E	10650 Sta College S US 77845 979 774 5		S H I P T O	CMC Construction Svcs 10650 State Hwy 30 College Station TX US 77845-7950 979 774 5900	College Stati	Delivery#: 8234480 BOL#: 72415067 CUST PO#: 777141 CUST P/N: DLVRY LBS / HEA' DLVRY PCS / HEA'	T: 17528.000 LB
Characteristic	Value		Characteristic		Value		Characteristic	Value
C Mn P S Si Cu Cr Ni Mo V Sn	0.29% 0.82% 0.021% 0.030% 0.15% 0.22% 0.10% 0.07% 0.015% 0.005% 0.009%		Elongation Gage Lgth to Bend Test Diam Bend Te Rebar Deformation Avg. S Rebar Deformation Avg. H Rebar Deformation Max. Uniform Elonga	eter est 1 paci eigh Gap	1.750IN Passed 0.335IN 0.029IN 0.110IN			
Al N Carbon Eq A6 Yield Strength test 1 Yield Strength test 1 (metri Tensile Strength test 1	0.000% 0.0000% 0.47% 100.0ksi 690MPa 117.0ksi					*Material is *100% me *EN10204 *Contains *Contains	true of the material repres s fully killed alted and rolled in the USA :2004 3.1 compliant no weld repair no Mercury contamination ured in accordance with the	
	807MPa 12%		1.0			of the pla	ured in accordance with the ant quality manual e "Buy America" requiremen	

REMARKS :

for ylord Rul

03/22/2018 15:09:51 Page 1 OF 1

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

TOMMY HEWITT

Quality Assurance Manager

HEAT NO.:3078309 SECTION: REBAR 16MM (#5) 20'0" 420 SECTION: REBAR 16MM (#5) 20'0" 420 GRADE: ASTM A615-16 Gr 420/60 ROLL DATE: 03/06/2018 MELT DATE: 03/04/2018 Cert. No.: 82336909 / 078309A371	0/60 S O L D T O	10650 Sta	Station TX -7950	S H I P T O	CMC Construction Svcs 10650 State Hwy 30 College Station TX US 77845-7950 979 774 5900	College Stati	Delivery#: 82336909 BOL#: 72403407 CUST PO#: 776230 CUST P/N: DLVRY LBS / HEAT: 24090.000 LB DLVRY PCS / HEAT: 1155 EA
Characteristic Va	alue		Characteristic		Value		Characteristic Value
C 0.4	43%						
Mn 0.9	98%						
P 0.0	011%						
	045%						
	20%						
	28%						
	10%						
	13%						
	042%						
	000%						
	003%						
	010% 002%						true of the material represented by this MTR:
AI 0.0	002%						s fully killed
Yield Strength test 1 63	3.9ksi						Ited and rolled in the USA
)4.1ksi						:2004 3.1 compliant no weld repair
Elongation test 1 13							no wera repair no Mercury contamination
Elongation Gage Lgth test 1 8II							ured in accordance with the latest version
	188IN				(ent quality manual
	assed				7.10		Buy America" requirements of 23 CFR635.410

03/14/2018 22:19:16 Page 1 OF 1

STRAIGHT BILL OF LADING-SHORT FORM ORIGINAL-NON NEGOTIABLE

72421556-01

SHIPMENT NO.(BOL): 72421556 DATE AND TIME: 04/02/2018 12:53:46

SHIP FROM : CMC Sterling Steel Truck

2001 Brittmoore Road Houston, TX 77043-2208

USA

Contact Phone No. :713-690-0347 Fax No.

CARRIER'S NAME: Imber Ventura

TRUCK/UNIT No:

CMC INCO TERMS: CPT Bryan

SHIP TO: 3101939

Tx A & M University Transporation 3100 State Hwy 47, Bldg. 7091 Bryan, TX 77807-0000 USA

Contact Phone No. :(254)859-5494

:(254)859-5497

SEAL NUMBER :

TRAILER/RAILCAR No: #5550/ SOLD TO: 3007327

Ellis Mc Ginnis Construction

2895 Eddy Gatesville Pkwy Eddy, TX 76524-3911

USA

Contact Phone No. :2548595494

Fax No. :2548595497

Subject to Section 7: Subject to Section 7 of Conditions of applicable bill of lading, if this shipment is to be delivered to the consignee without recourse on the consignor, the consignor shall sign the following statement. The carrier shall not make delivery of this shipment without payment of freight and all other lawful charges.

Consignor's Signature : BOL INSTRUCTIONS:

NOTES/SPECIAL INSTRUCTIONS: Additional instructions :

Jim (254)277-2815

	T			Material Details				
Delivery	Cust PO	Ctrl Cd	Rel No.	Release Description	Dwg#	Material Description	200	
PROJECT:	: R/1823300796	UP .				Material Description	PCS	Weight LB
3137044	2802	ONKQ	1	C402 BRIDGE RAIL	T	1		
3137048	2802	ONKR	The state of the s	C411 BRIDGE RAIL		Rebar Black 60/420		4,230
3137050	2802	ONKW				Rebar Black 60/420		3,931
	1000	TOTALLAN	3	C412 BRIDGE RAIL		Rebar Black 60/420		8,533
						Total Weight		16 694

MITR'S INCLUD

DRIVER'S SIGNATURE/AGENT : Venture

NOTICE TO RECEIVERS : Please check each item on this shipping bill carefully. CMC will not be responsible for any exceptions to goods unless notified within twenty four hours and noted on this document.

RECEIVED BY :

TIME: TIME IN:

TIME OUT

Page 1 of 2

469468

STRAIGHT BILL OF LADING-SHORT FORM ORIGINAL-NON NEGOTIABLE

72421556-01

SHIPMENT NO.(BOL): 72421556 DATE AND TIME: 04/02/2018 12:53:46 SHIP FROM:

CMC Sterling Steel Truck 2001 Brittmoore Road Houston, TX 77043-2208 USA

Contact Phone No. :713-690-0347

Fax No.

CARRIER'S NAME: Imber Ventura TRUCK/UNIT No:

CMC INCO TERMS: CPT Bryan

SHIP TO: 3101939

Tx A & M University Transporation 3100 State Hwy 47, Bldg. 7091 Bryan, TX 77807-0000 USA

Contact Phone No. :(254)859-5494

Fax No. :(254)859-5497

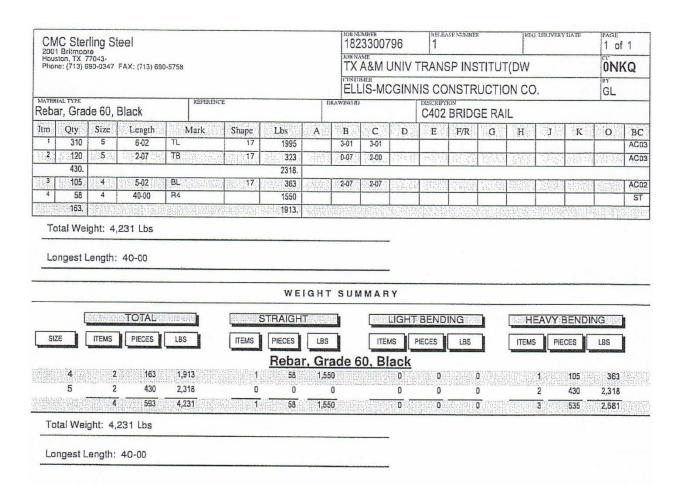
SEAL NUMBER : TRAILER/RAILCAR No: SOLD TO: 3007327 Ellis Mc Ginnis Construction 2895 Eddy Gatesville Pkwy Eddy, TX 76524-3911

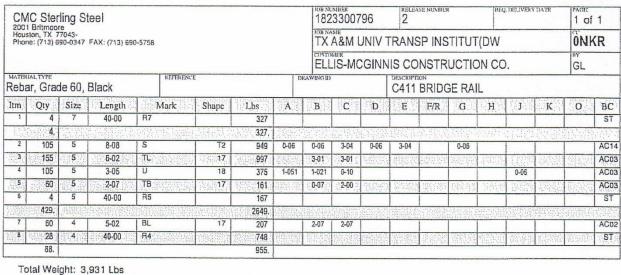
Contact Phone No. :2548595494

Fax No. :2548595497

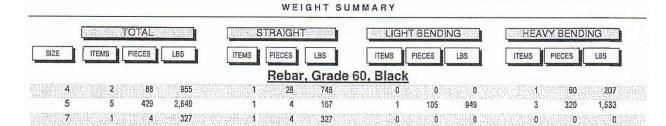
Subject to Section 7: Subject to Section 7 of Conditions of applicable bill of lading, if this shipment is to be delivered to the consignee without recourse on the consignor, the consignor shall sign the following statement. The carrier shall not make delivery of this shipment without payment of freight and all other lawful charges.

Consignor's Signature : BOL INSTRUCTIONS:


NOTES/SPECIAL INSTRUCTIONS: Additional Instructions:


				Material Details				
Delivery	Cust PO	Ctrl Cd	Rel No.	Release Description	Dwg#	Material Description	PCS	Weight LB
PROJECT:	: P/1823300796	UP				The second of th	1 103	1 Weight CD
3137044	2802	ONKQ	1	C402 BRIDGE RAIL		Rebar Black 60/420		4 220
3137048	2802	ONKR	2	C411 BRIDGE BAIL		Rebar Black 60/420		4,230
3137050	2802 -	ONKW	3	C412 BRIDGE RAIL		Rebar Black 60/420		8,533
						Total Weight		16.604

MTR'S INCLUDED


RECEIVED, subject to the classifications in effect on the date of the issue of the Bill of Lading, the property described above, in apparent good order, except as noted (contents of packages unknown), marked, consigned, and destined as indicated below, which said carrier (the word carrier being understood throughout this contents as meaning any person or the route to said destination. It is property under the contents as the carrier of all or any said property as as all destination. It or it or the route to said destination. It or it is the property of the carrier of all or any said property over all or any said property said any said

NOTICE TO RECEIVERS :Plea within twenty four hours and not	se check each item on this shipping	bill carefully. CMC will not be resp	eonsible for any exceptions to goo	ods unless notified
RECEIVED BY :	DATE:	TIME:		
DELIVERED BY:	DATE:		TIME OUT	-
				Page 1 of 2

Longest Length: 40-00

1,242

105

949

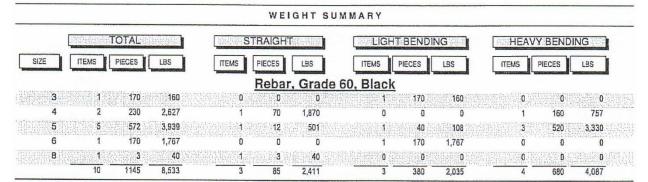
4

380

1,740

Total Weight: 3,931 Lbs

3,931


3

Longest Length: 40-00

CN 200	AC Ster	ling St	teel						182	233007	96	3	ASE NUMBE	K	HPL	, DELIVER	YDATE	1 of	i 1
Hou.	ston, TX 7 ne: (713) 6	7043- 90-0347	FAX: (713) 690	-5758					1	A&M	VINL	TRANS	SP INS	TITUT	r(DW			ONI	KW
			Section 1						EL	LIS-MO	CGINN	NIS CC		UCTIO	ON CC).		GL	
	ar, Grac	le 60,	Black		REFERENCE				DRAWINGI			C412	BRID(GE RA	IL				
ltm	Qty	Size	Length	1	Mark	Shape	Lbs	Α	В	C	D	E	F/R	G	Н	J	К	0	BC
1	3	8	5-00	R3			40	200000	1				-						0
	3.	4414		163.	HARRY I	111140	40.	ME		NAME.	14.11	William William		1415.116	11,717	1357	100	11111	13.5
2	170	6	6-11	Ų		S11	1767		6-112						3-042		T	0-063	TB
	170.			War.		Alleria;	1767.	1,20,11	N. L. B. Ster	Sissing P	(4)3.10		NEW YORK	MARKET S.				A-1,438-04	
3	340	5	7-01	TL-5		17	2511		4-00	3-012						<u> </u>	T		ACO
4	85	5	6-03	BL		17	554	Min	3-042	2-102	11111	155,500	100000	(4/20/04)	4/8/35		1.55500	#Wisi	ACO
5	95	5	2-08	TB		17	265		0-07	2-01									ACO
6	40	5	2-07	UB		S11	108	94524	2-07		had.				1-03	3536		0-033	AC
7	12	5	40-00	R5			501												ST
	572.						3939.	Part I										ingge	Signal Property
В	160	4	7-01	TL-4		17	757		4-00	3-012									AC0
9	70	4	40-00	R4			1870			Malifely.	BiE						GM 48	14000	ST
	230.						2627.					-						1	-
10	170	3	2-06	P		S11	160		2-06		3,17,47				1-022	113.33		0-023	AC
	170.						160.	-		1	******************	***********			to the same of the			1	

Total Weight: 8,533 Lbs

Longest Length: 40-00

Total Weight: 8,533 Lbs

Longest Length: 40-00

		Date Pr	AL TEST REPORT inted: 03/14/2018		PAGE 1
Md amer	ican Steel & Wire	CMC REBAR P O BOX 139094	4	CMC REBAR 2001 BRITTMOOR	RE
	No: 000000006015 Number: 4501198093 ip Date: 03/14/2018	DALLAS, TX 75	313	HOUSTON, TX 77	7043
Order N	Number: 91943 Number: 116288	Item Number 3REBAR	Description #3 GRADE 60 COIL	ED REBAR	
	Number C Mn 6185 0.3700 0.8000	P S Si 0.0120 0.0320 0.2100 (Cu Ni Cr A 0.2800 0.2200 0.2100 0.0	Mo Sn V 910 0.0130 0.0200 0.	Al N Nb 0010 0.0000 0.0000
	*	0.0120 0.0320 0.2100 (0.2800 0.2200 0.2100 0.0	Mo Sn V . 910 0.0130 0.0200 0.	Al N Nb 0010 0.0000 0.0000
	*	0.0120 0.0320 0.2100 (0.2800 0.2200 0.2100 0.0	910 0.0130 0.0200 0.	0010 0.0000 0.0000
	*	0.0120 0.0320 0.2100 0	0.2800 0.2200 0.2100 0.0	Mo Sn V 910 0.0130 0.0200 0. Elongation (% 8" guage)	Al N Nb 0010 0.0000 0.0000 Bend Test Pass/Fail
	6185 0.3700 0.8000	0.0120 0.0320 0.2100 0 MECHANIC	0.2800 0.2200 0.2100 0.0 CAL PROPERTIES Tensile	910 0.0130 0.0200 0. Elongation (% 8" guage)	0010 0.0000 0.0000 Bend Test

MATERIAL TEST REPORT PAGE 1 Date Printed: 03/29/2018 CMC REBAR CMC REBAR P O BOX 139094 2001 BRITTMOORE Customer No: 000000006015 DALLAS, TX 75313 HOUSTON, TX 77043 PO Number: 4501201423 Ship Date: 03/29/2018 Item Number Description Order Number: 92181 4REBAR # 4 GRADE 60 COILED REBAR Load Number: 116521 CHEMICAL ANALYSIS Heat Number Cu Ni Cr 1820636 $0.4400 \ \ 0.9100 \ \ 0.0160 \ \ 0.0240 \ \ 0.2400 \ \ 0.1700 \ \ 0.2400 \ \ 0.0600 \ \ 0.0110 \ \ 0.0020 \ \ 0.0040 \ \ 0.0077 \ \ 0.0003$ MECHANICAL PROPERTIES Yield Tensile Elongation Bend Test Heat Number (Psi/Mpa) (Psi/Mpa) (% 8" guage) Pass/Fail 1820636 66470 psi / 458 Mpa 114647 psi / 791 Mpa 10.00 Pass I hereby certify that the above test results are correct as contained in the records of the company. All Manufacturing processes of the steel materials in this product, including malting have occurred in the United States; The material was produced and tested according to ASTM A615/A615M-085. Quality Assurance:

CERTIFIED MILL TEST REPORT

For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Tommy Kenty

HEAT NO.:3078175		s		T	Quality Assurance Manager
SECTION: REBAR 13MM (#4) 40'0" 4 GRADE: ASTM A615-16 Gr 420/60 ROLL DATE: 03/03/2018 NELT DATE: 02/27/2018 Cert. No.: 02/27/2018 / 078175A3		O L D		S H I P	Delivery#: BOL#: CUST PO#: CUST P/R: DLVRY LBS / HEAT: DLVRY PCS / HEAT:
Characteristic	Value		Characteristic	Value	
C Mn P S Si Cu Cr Ni Mo V Ch	0.43% 0.73% 0.009% 0.046% 0.19% 0.33% 0.10% 0.21% 0.079% 0.000% 0.002%				Characteristic Value
Yield Strength test 1 Tensila Strength test 1 Elongation test 1 Elongation Gage Lgth test 1 Bend Test Diameter Bend Test 1	0.0014 62.0ksi 99.2ksi 174 8IN 1.750IN Passed				The Following is true of the material represented by this MTR: "Material is fully killed "100% metred and rolled in the USA "EN10204:2004 3.1 compliant "Contains no weld repair "Contains no Intercury contamination "Manufactured in accordance with the latest version of the plant quality menual "Meets the "Buy America" requirements of 23 CFR635-410

04/02/2018 20:57:52 Page 1 OF 1

·	Control Course Reports Agency	Date Prin	L TEST REPORT nled: 03/28/2018		PAGE 1
Mid Ameri	Can Steel & Wine	CMC REBAR P O BOX 139094		CMC REBAR 2001 BRITTMOOF	RE.
	No: 00000000060 Vumber: 450120144 ip Date: 03/28/2018	0		HOUSTON, TX 7	7043
Order N	Jumber: 92187 Jumber: 116527	Item Number 5REBAR	Description # 5 GRADE 60 COIL	ED REBAR	
1705	Number C M	Special designation of the second sec	Cu Ni Cr M	o Sn V	Al N Nh
1723	A STREET, STRE	700 0.0170 0.0260 0.2000 0.	2100 0.1100 0.1900 0.03	0 Sn V	.0010 0.0067 0.0005
1723	A STREET, STRE	700 0.0170 0.0260 0.2000 0. MECHANIC	2100 0.1100 0.1900 0.03	0 Sn V	0010 0.0067 0.0005
1723	3630 0.4600 0.87	MECHANIC Yield (Psi/Mpa)	2100 0.1100 0.1900 0.03	Elongation (% 8" guage)	AI N Nb .0010 0.0067 0.0005 Bend Test Pass/Fail
1723	3630 0.4600 0.87	700 0.0170 0.0260 0.2000 0. MECHANIC Yield	2100 0.1100 0.1900 0.03 AL PROPERTIES Tensile	Elongation (% 8" guage)	.0010 0.0067 0.0005 Bend Test

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

TOMMY HEWITT

EAT NO.:3078356 ECTION: REBAR T6MM (#5) 40° RADE: ASTM A615-16 Gr 420/ DLL DATE: 03/07/2018 ELT DATE: 03/07/2018 int. No.: 82333189 / 078356A7	60	0 .	3-2208	S H I P	CMC Starling Steal 2001 Brittmoore Rd Houston TX US 77043-2208 7136900347 7136905758	Quality Assu	Delivery#: 82333189 BOL#: 72398632 CUST PO#: CUST P/N: DLVRY LBS / HEAT: 24030.000 LB DLVRY PCS / HEAT: 576 EA
Characteristic	Value		Characteris	ic Value			
C	0.42%					Charac	teristic Value
Mn	0.86%						
P	0.008%						
j	0.045%						
Si	0.18%		¥ .			1	
Cu	0.33%						
Cr Ni	0.10%						
. Mo	0.17%						
V	0.088%						
Cb	0.000%					1	
. Sn	0.010%						
	0.002%					The Fellowine !	
	10					"Material is	o of the material represented by this MTR:
Yield Strength test 7	64.9ksi						red and rolled in the USA
Tonnilla Ci	102.5ksi					"EN10204:	2004 3.1 compliant
Elongation test 1	14%						o weld repair
Elongation Gage Lgth test 1	MIB						Mercury contamination
D 1	2.188IN					*Manufactu	red in accordance with the latest version
Bend Test 1	Passed					of the plant	quality manual
							"Buy America" requirements of 23 CFR635.410

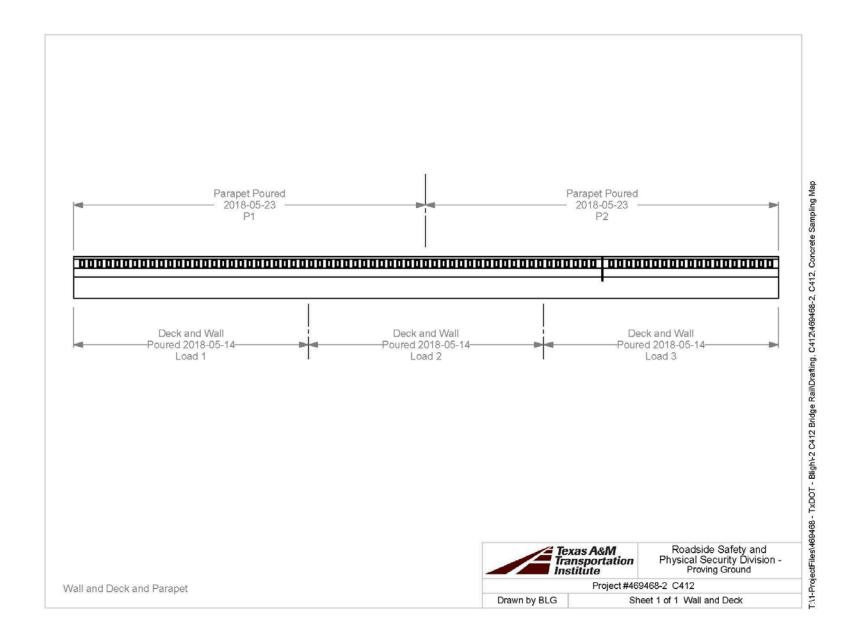
03/12/2018 15:39:47 Page 1 OF 1

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

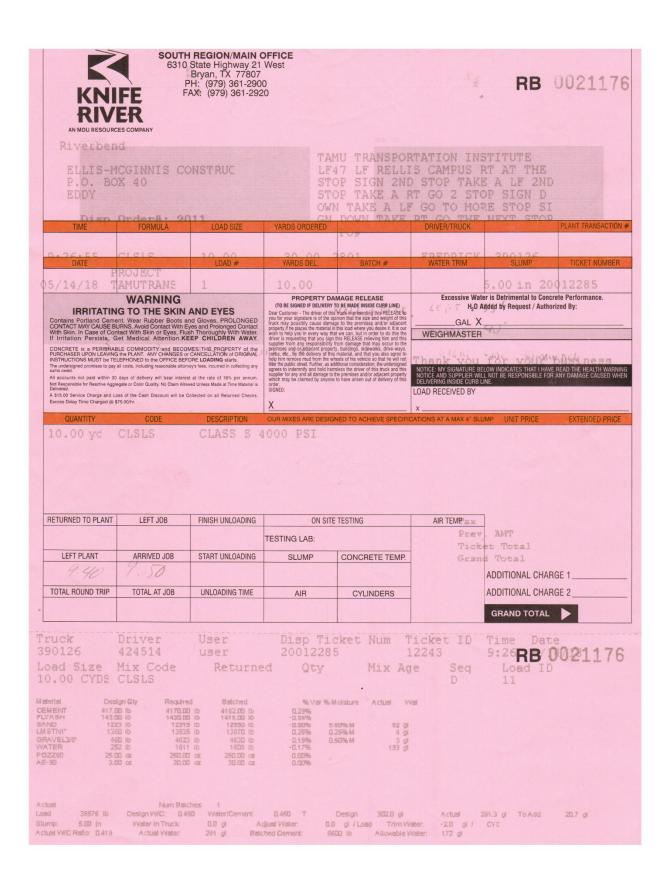
We hereby certify that the test results presented here are accurate and conform to the reported grade specification

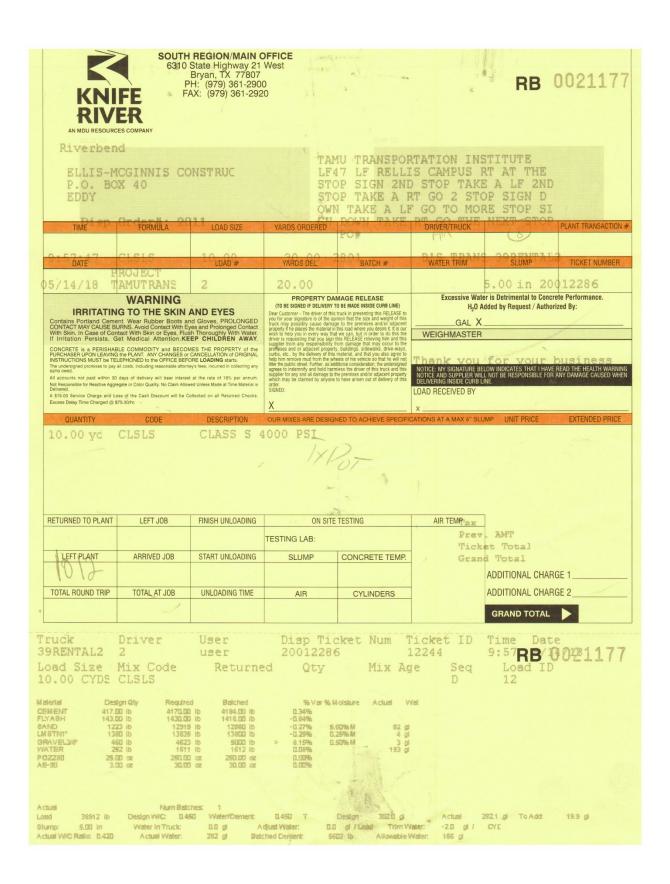
EAT NO.:3077775 ECTION: REBAR 138 HADE: ASTM A6155 OLL DATE: 02/21/20 ELT DATE: 02/11/20 ett. No.: 82326504 /	MM (#6) 60 -16 Gr 420/ 018 018 / 077775A	60	S O L D		3-2208	est	S H I P T O	CMC Storling Steel 2001 Brittmoore Rd Houston TX US 77043-2208 7136900347 7136905758	Guenty A350	Delivery#: 82326504 BOL#: 72388853 CUST PO#: CUST P/N: DLVRY LBS / HEAT: 43526.000 LB DLVRY PCS / HEAT: 483 EA
Cha	aracteristic	Value			0	haracteristic	Value			
	C	0.44%			1		Value		Charac	teristic Value
i i	Mn	0.87%								
	P	0.009%								
	S	0.049%								
E.	Si	0.17%								
9	Cu	0.29%								
	Cr	0.12%								
	Ni	0.16%								
i	Mo	0.048%		1						
	V	0.001%								
	Cb Sn	0.002%							1	
	Al	0.011%		- 1					73. 5.0	
1	Al	0.001%							the rollowing is the	ne of the material represented by this MTH:
Yield Streng	th test 1	62.7ksi		1					*Material is	
Tensile Streng	th test 1	103.1ksi		1					*ENIGRA	ited and rolled in the USA
Elongatio	on test 1	16%								2004 3. 1 compliant a weld repair
	th test 1	8IN								
Elongation Gage Lot				1					*Manufactu	o Mercury contamination
Elongation Gage Lgt Bend Test D		3.750IN								
Bend Test D	Diameter	3.750IN Passed							of the plant	red in accordance with the latest version quality manual

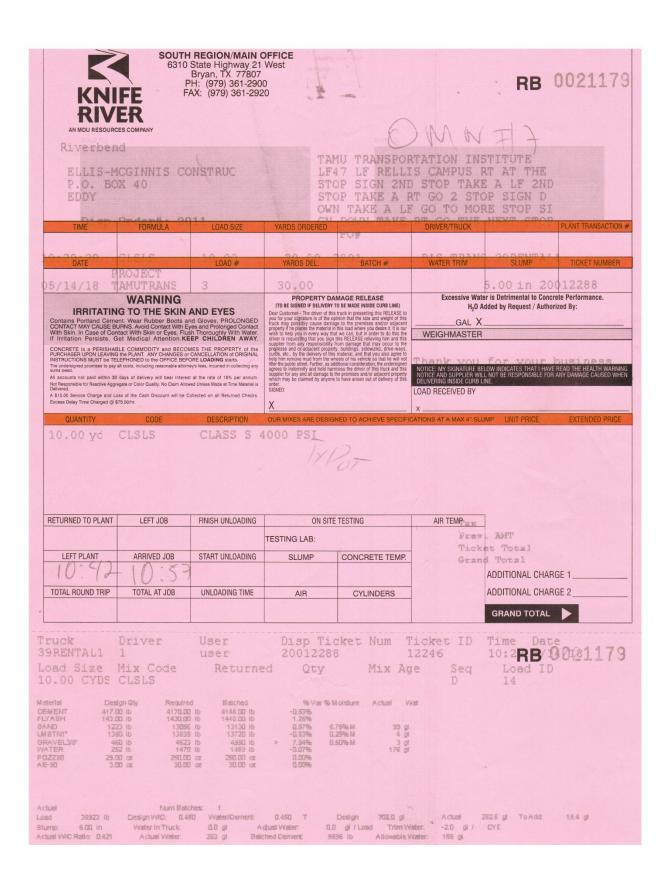
03/01/2018 18:08:26 Page 1 OF 1

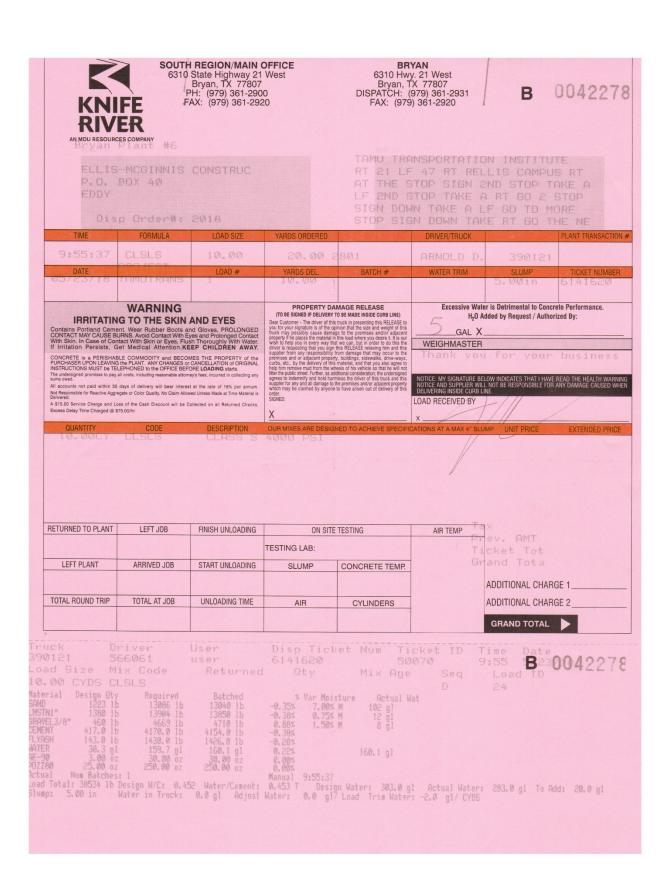

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

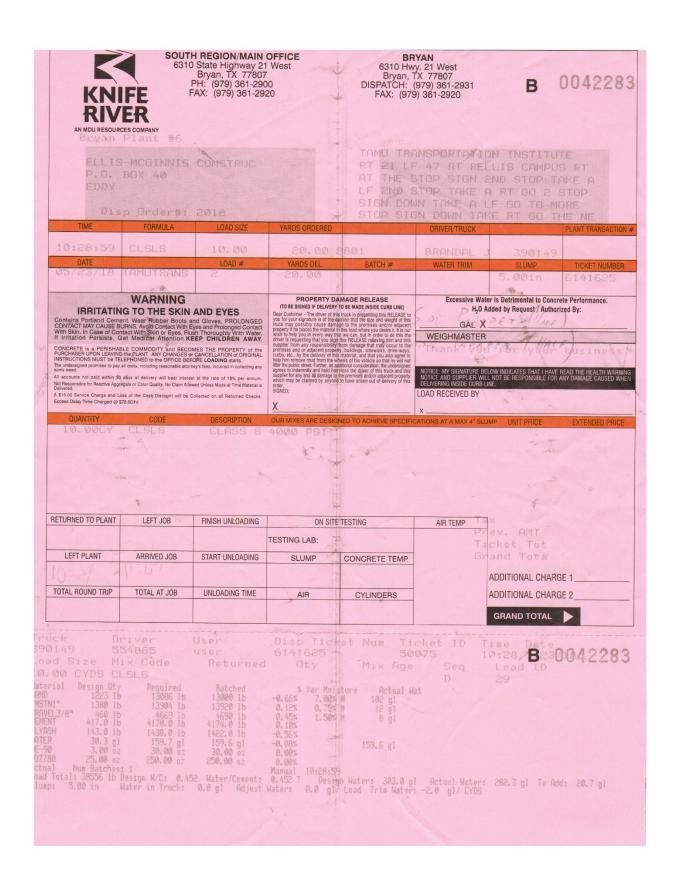
We hereby certify that the test results presented here are accurate and conform to the reported grade specification


TOMMY HEWITT


ECTION: REBAR 22MM (#7) 60'0" 420/60 RADE: ASTM A6 15-16 Gr 420/60 DIL DATE: 02/24/2018 ELT DATE: 02/24/2018 en. No.: 82346478 / 078084A625	S CMC Rebar Houston-West O L BRITTMOORE RD. D HOUSTON TX US 77043-2208 T 713-690-0347 O	S CMC Sterling Steel H I 2001 Brittmoore Rd P Houston TX US 77043-2208 T 7136900347 O 7136905758	Delivery#: 82346478 BOL#: 72417710 CUST PO#: CUST P/N: DLVRY LBS / HEAT: 38020.000 LB DLVRY PCS / HEAT: 310 EA
Characterístic Value	Characteri	stic Value	
C 0.42%		value	Characteristic Value
Mn 0.92%			
P 0.013%			
S 0.056%			
Si 0.15%		· ·	
Cu 0.34%			
Cr 0.19%			
Ni 0.17%			
Mo 0.081%			
V 0.001%			
Сь 0.003%			
Sn 0.014%		_	
Al 0.002%		Th	e Following is true of the meterial represented by this MTR:
VI. I . I			"Material is fully killed
Yield Strength test 1 67.9ksi			* 100% melted and rolled in the USA
T. 'n a'			"EN10204:2004 3.1 compliant
Tensile Strength test 1 106.5ksi			*Contains no weld repair
Tensile Strength test 1 106.5ksi Elongation test 1 13%			
Tensile Strength test 1 106.5ksi Elongation test 1 13% Elongation Gage Lgth test 1 8IN			*Contains no Mercury contamination
Tensile Strength test 1 106.5ksi Elongation test 1 13% Elongation Gaga Lgth test 1 8IN Bend Test Diameter 4.375IN			*Contains no Mercury contamination *Manufactured in accordance with the latest version
Tensile Strength test 1 106.5ksi Elongation test 1 13% Elongation Gage Lgth test 1 8IN			


03/27/2018 00:13:07 Page 1 OF 1


Proving 0 3100 SH Brvan, TX	Texas A& Transpor Institute 47, B/dg 7091 47	tation	Concrete Samp	Doc. No. QPF 5.7.2	Revision Date: 2018-04-17
Q	Quality Policy For	Revised by: Approved by	B. L. Griffith v: D. Kuhn	Revision:	Page:
Project N	lo: 469468-2	_ Casting Date	: 2018-05-14	_ Mix Design (psi): 4000
Printed Name Technician taki Samı	ing		Printed Name of Technician breakin Sampl	of Mut	x 106;
Signed Name Technician taki Samp	ing		Signed Name of Technician breaking Sample	1	1 4
Load No.	Truck No.	Ticket No.	Loca	tion (from concre	te map)
77	390 /26	20012285	WALL + DECK	LEFT 35	
T2	39 RENTAL 2	20012286	ju j	MIDDLE 40	
T3	39RENTALI	20012288	V	RIGHT SI	DE REMAND
Load No.	Break Date	Cylinder Age	Total Load (lbs)	Break (psi)	Average
TI	2018-06-15	32 days	5236	165000	
TI			6084	172000	5930
7/			5871	166000	
71		•		Lake	
+1	2018-06-15	32 days	6225	176000	
()			6154	174000	6201
1 <		,	6225	176000	
T3	2012-06-15	32 days	5291	151000	
73			555)	157000	5590
Г3			5836	165000	J- 10
					-95d



Proving G 3100 SH 4 Brvan, TX	Texas A& Transport Institute Tound Texas A&M Univers 17, Bidg 7091 College Station, TX 77807 Phone 979-845-637	572	Concrete Sampl	Doc. No. QPF 5.7.2	Revision Date: 2018-04-17
Q	uality Policy For	Revised by: Approved by	B. L. Griffith : D. Kuhn	Revision:	Page:
Project N	o: 4/5468-	2 Casting Date	: 2018-05-2	Mix Design (psi	
Printed Name Technician taki Sam	of fing fanse		Printed Name o Technician breaking Sample		Robin
Signed Name Technician taki Samp	ng Jole	The	Signed Name o Technician breaking Sample	1	
Load No.	Truck No.	Ticket No.	Loca	tion (from concre	te map)
1/1/1	390121	0045519	NORTH S	PARAP PARAP	ET (HACE)
Y2/72	390149	0092283	SOUTH SI	OF PARAPO	T (HALF
Load No.	Break Date	Cylinder Age	Total Load (lbs)	Break (psi)	Average
PITI	2018/08/15	2) 6-40	5305	150000	
P1 /T1	1	1	5500	152000	5493
P1/71			5522	158000	- /13
1.7			0,00	/2000	
P2/T2	2018/06/15	23days	5606	158500	
P2/72	1 1		5624	159000	5570
P2/12			5482	155000	
7					

B.3 VEHICLE PROPERTIES AND INFORMATION

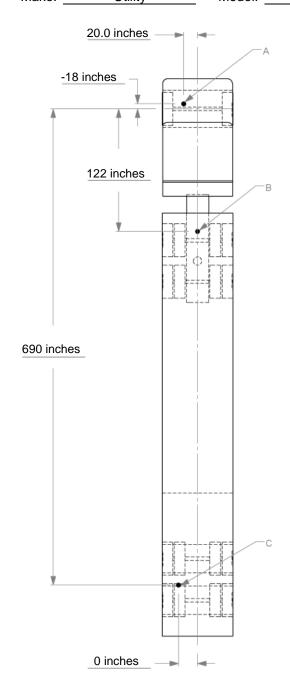
Table B.1. Vehicle Properties for Test No. 469468-2-1.

DATE:	2018-06	-15	TEST NO.:	46946	8-2-1
TRACTOR YEAR:	2007	_ MAKE:	FREIGHTLINER	MODEL:	CL 120
VIN No.:	1FUJA6Ck	(77LX75964	27 27	ODOMETER:	854,542
TRAILER YEAR:	2002	_ MAKE:	UTILITY	MODEL: _	53'
VIN No.:	1UYVS25392I	P787329			
			A/2		
		s L _{FI}	FTH WHEEL \searrow E	BALLAST C.M.	
	C M	T U	M ₃	G F M4	M ₅
GEOMETRY (2			
A 84.00 B 48.00 C 144.00 Allowable Range: C	E 465.00 F 48.00	G H 71.20 J 67.00 ±2 inches; Overall Traile inches max.; Ballast G	K 49.50 O L 49.00 P M 34.50 Q or Length = 800 inches max; Overall C Center of Mass Ht = 73 ±2 inches abov	79.50 S 18 73.00 T 41	0.00 U 23.00 0.00 V 31.00 0.00 W 148.00 hes max; Trailer Overhang = 87
MAS	SS(lb)	CURB 871		ST INERTIAL 10040	

MASS (lb) M ₁	CURB 8710		TEST INERTIAL 10040	
M ₂	4840		19160.00	
M ₃	5700		17880	
M_4	5110		17870	
M ₅	4060	Allowable Range	15350	Allowable Range
M_{Total}	28420	29,000 ±3100 lb	80300	79,300 ±1100 lb

Table B2. Accelerometer Locations.

Date: <u>2018-06-15</u> Test No.: <u>469468-2-1</u> VIN No.: <u>1FUJA6CK77LX75964</u> TRACTOR


Year: 2007 Make: Freightliner Model: CL 120

 TRAILER

 Year:
 2003
 Make:
 Utility
 Model:
 53-ft

Height above ground:

A: <u>33</u> inches B: <u>37</u> inches C: <u>50</u> inches

B.4 SEQUENTIAL PHOTOGRAPHS

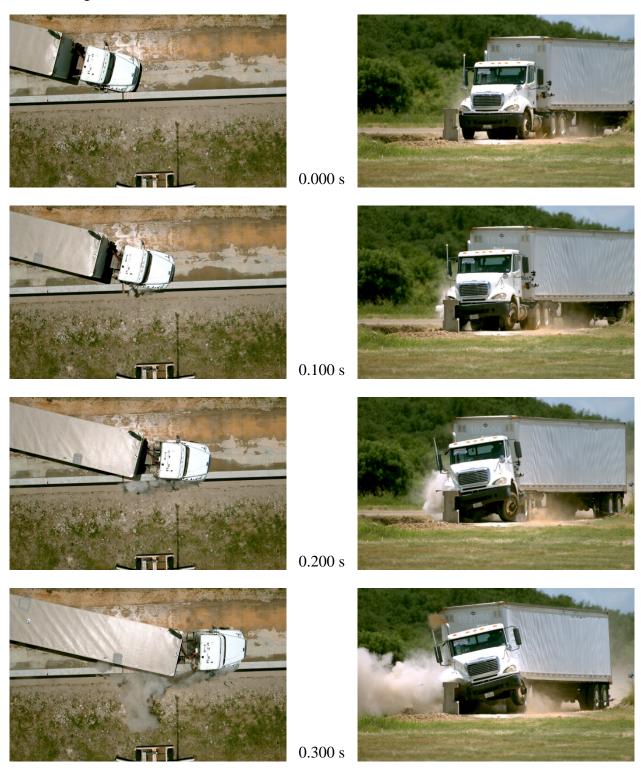


Figure B.1. Sequential Photographs for Test No. 469468-2-1 (Overhead and Frontal Views).

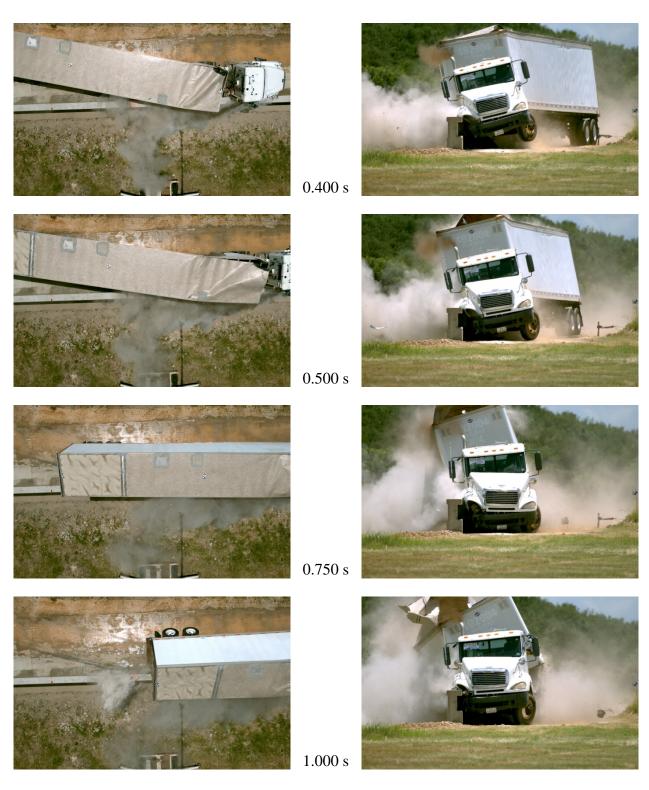


Figure B.1. Sequential Photographs for Test No. 469468-2-1 (Overhead and Frontal Views) (Continued).

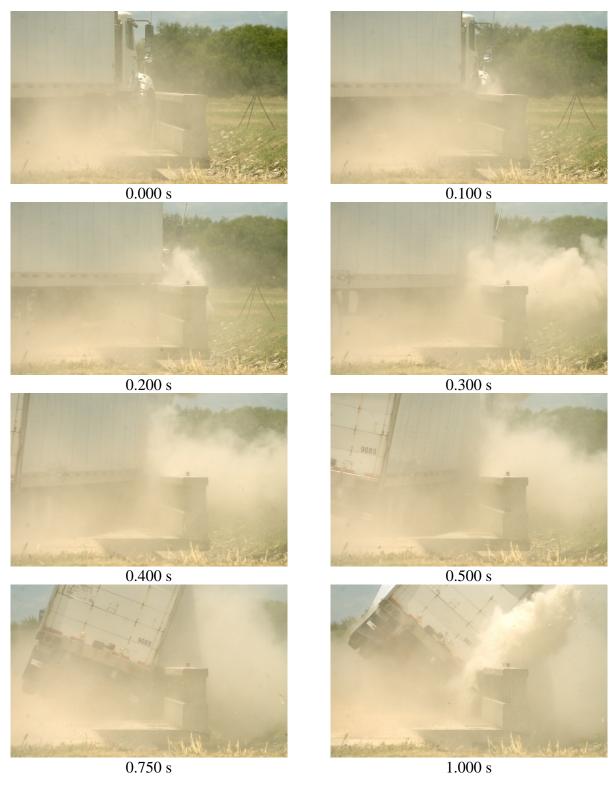


Figure B.2. Sequential Photographs for Test No. 469468-2-1 (Rear View).

Figure B.3. Vehicle Angular Displacements for Test No. 469468-2-1.

Yaw.

Pitch.

3. Roll.

1.

2.

Figure B.4. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-2-1 (Accelerometer Located at Center of Gravity).

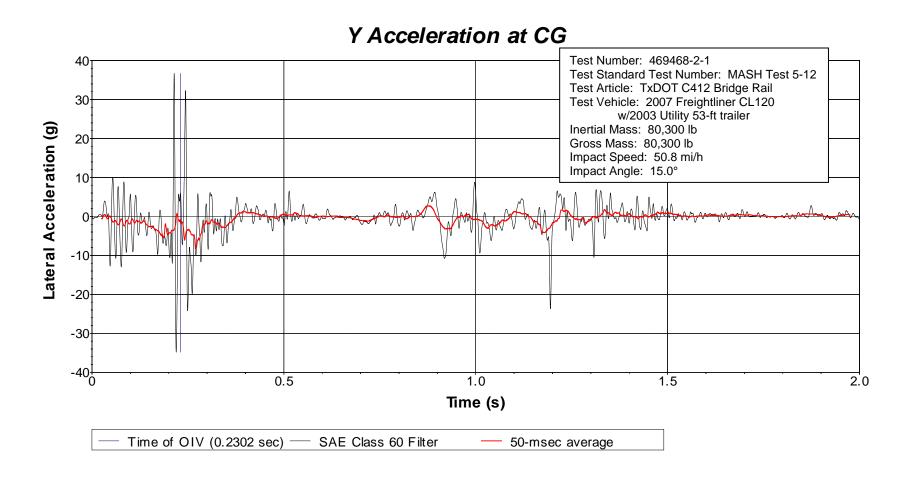


Figure B.5. Vehicle Lateral Accelerometer Trace for Test No. 469468-2-1 (Accelerometer Located at Center of Gravity).

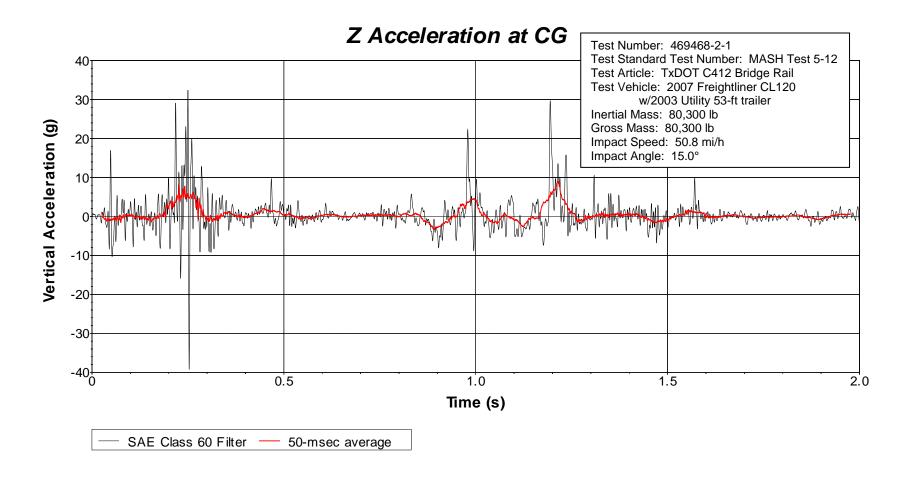


Figure B.6. Vehicle Vertical Accelerometer Trace for Test No. 469468-2-1 (Accelerometer Located at Center of Gravity).

X Acceleration on Tractor

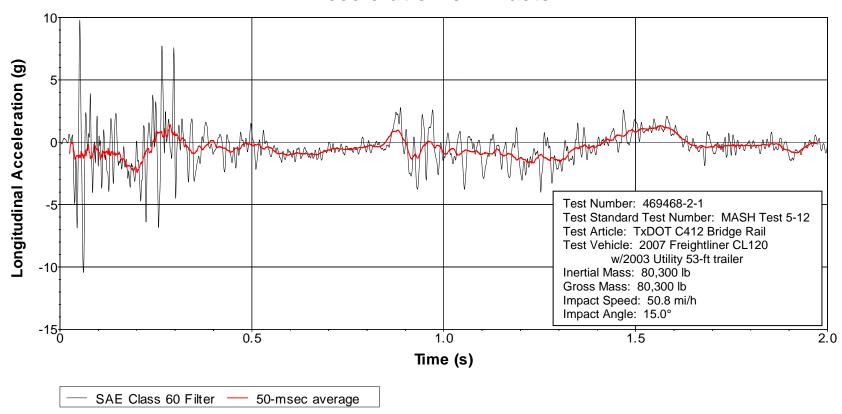


Figure B.7. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-2-1 (Accelerometer Located on Tractor).

Y Acceleration on Tractor

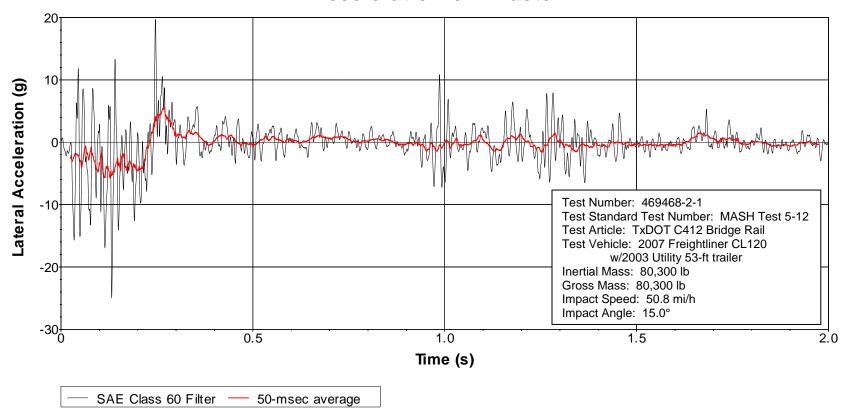


Figure B.8. Vehicle Lateral Accelerometer Trace for Test No. 469468-2-1 (Accelerometer Located on Tractor).

Z Acceleration on Tractor

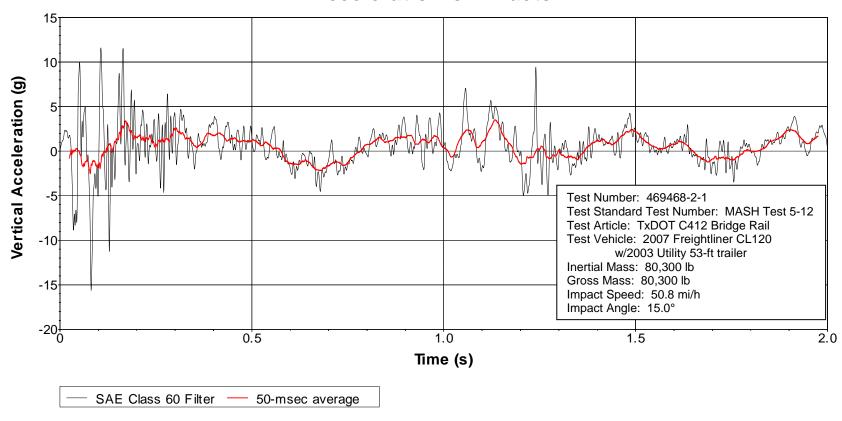


Figure B.9. Vehicle Vertical Accelerometer Trace for Test No. 469468-2-1 (Accelerometer Located on Tractor).

X Acceleration at Rear of Trailer

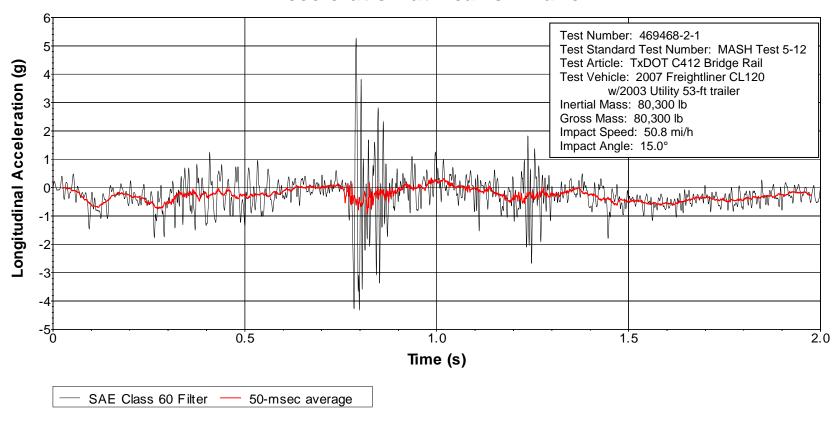


Figure B.10. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-2-1 (Accelerometer Located at Rear of Trailer).

Y Acceleration at Rear of Trailer

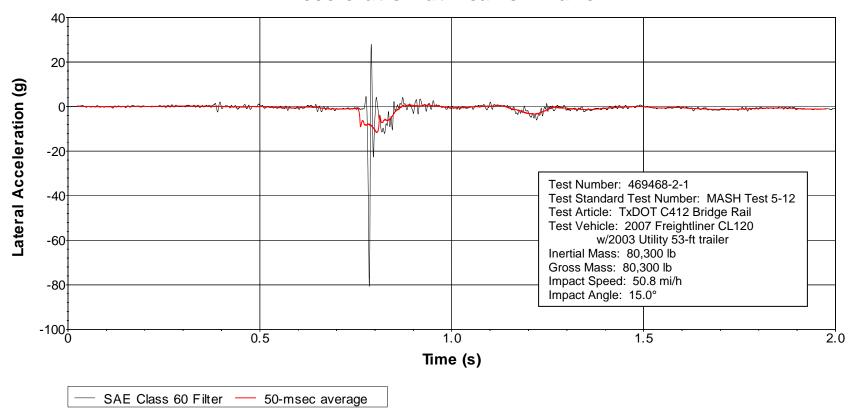


Figure B.11. Vehicle Lateral Accelerometer Trace for Test No. 469468-2-1 (Accelerometer Located at Rear of Trailer).

Z Acceleration at Rear of Trailer

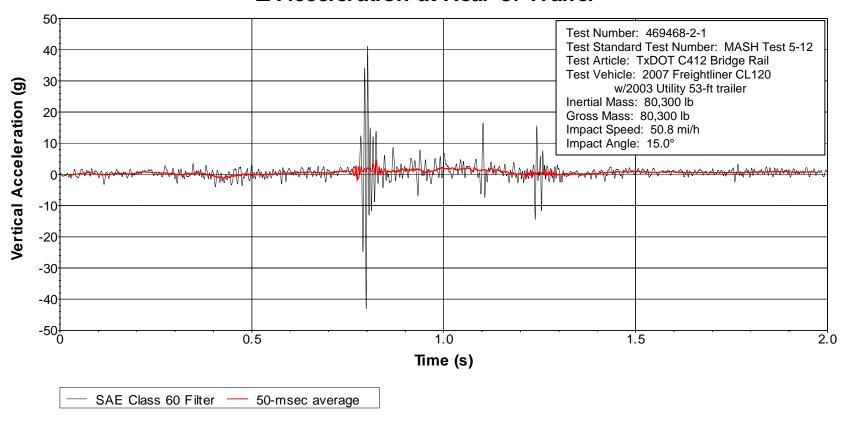


Figure B.12. Vehicle Vertical Accelerometer Trace for Test No. 469468-2-1 (Accelerometer Located at Rear of Trailer).

Existing Working Slab

Project 469468-3

Drawn By GES

C411 Bridge Rail

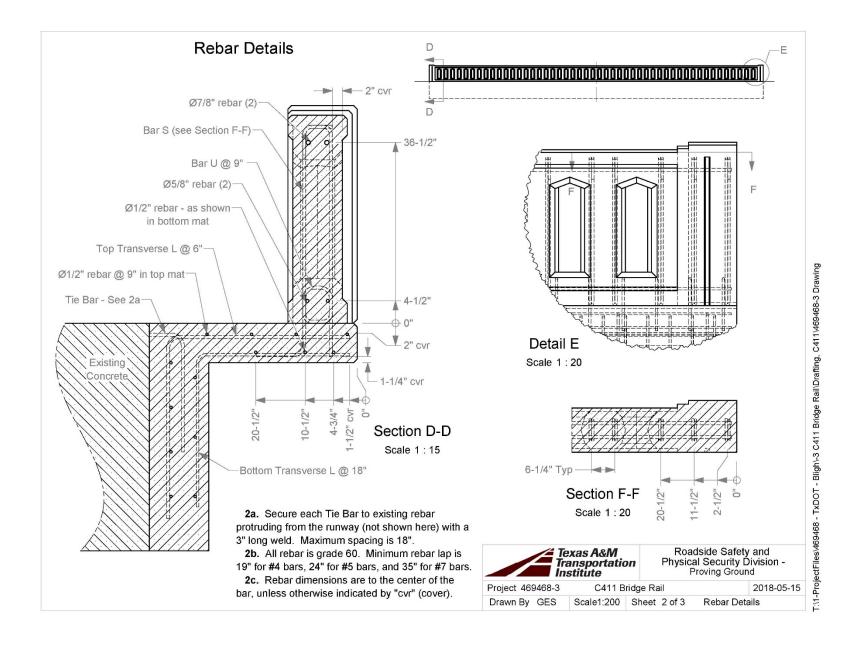
Scale1:100 Sheet 1 of 3

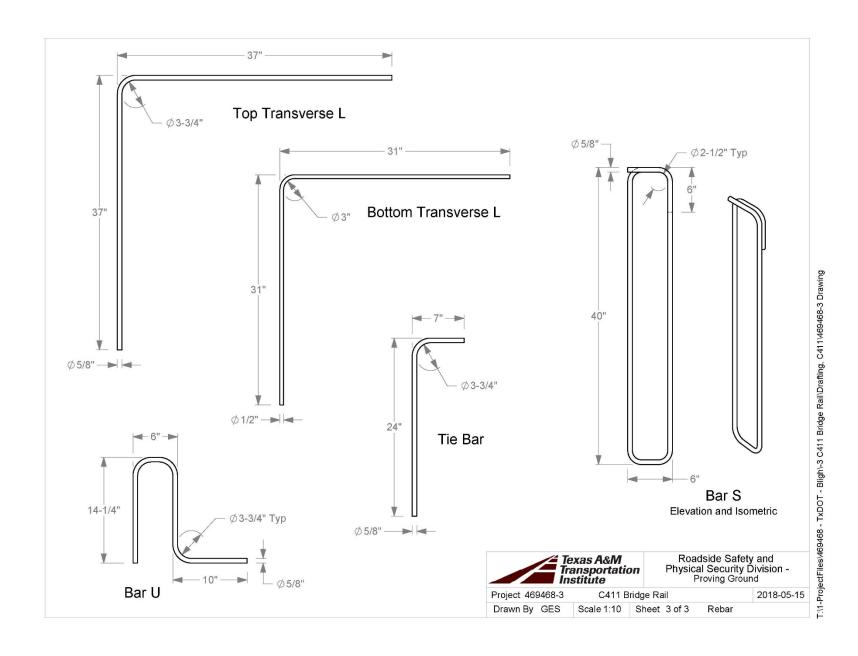
Concrete Details

◄ 12" **►**

APPENDIX C. TXDOT C411 BRIDGE RAIL

DETAILS OF TXDOT C411 BRIDGE RAIL


OF TYPO-broked Files NA 174 BRIDGE RAIL


OF TYPO-broked Files NA 174 BRIDGE RAIL BRIDGE RAI

2018-05-15

Concrete Details

C.1

C.2 SUPPORTING CERTIFICATION DOCUMENTS

STRAIGH OR	T BILL OF LADING-SHORT FORM IGINAL-NON NEGOTIABLE		
CMC		72421556-01	
SHIPMENT NO.(BOL): 72421556 DATE AND TIME: 04/02/2018 12:53:46 SHIP FROM: DMC Sterling Steel Truck 2001 Brittmoore Road Houston, TX 77043-2208 USA Jontact Phone No. :713-690-0347 Fax No. :	CARRIER'S NAME: Imber Ventura TRUCK/UNIT No: CMC INCO TERMS: CPT Bryan SHIP TO: 3101939 Tx A & M University Transporation 3100 State Hwy 47, Bidg. 7091 Bryan, TX 77807-0000 USA Contact Phone No. :(254)859-5494 Fax No. :(254)859-5497	SEAL NUMBER: TRAILER/RAILCAR No: #SSOLD TO: 3007327 Ellis Mc Ginnis Construction 2895 Eddy Gatesville Pkwy Eddy, TX 76524-3911 USA Contact Phone No. :254855 Fax No. :2548595497	
	ol applicable bill of tading. If this shipment is to be delivered to the c shall not make delivery of this shipment without payment of freight	onsignee without recourse on the consig and all other lawful charges.	inor, the
Consignor's Signature : BOL INSTRUCTIONS; NOTES/SPECIAL INSTRUCTIONS:	· • • • • • • • • • • • • • • • • • • •	101	
Additional Instructions :	1 2015	15T L	20
Jim	(254)277-2815	J. OLI	P
	Material Details		
	No. Release Description Dwg#	Material Description PCS	Weight LB
PROJECT: R/1823300796 UP	C402 BRIDGE RAIL Re	bar Black 60/420	4,230
137048 2802 ONKR 2		bar Black 60/420	3.931
3137050 2802 ONKW 3	C412 BRIDGE RAIL R	bar Black 60/420	8.533
	Ta	tal Weight	16,694
· · · · · · · · · · · · · · · · · · ·			
	MTR'S INC	CLUGED	_
y.	MTR'S INC		- کرز':_:
FICCEIVED, subject to the classifications in effect on the lackingss unknown), marked, consigned, and destined a corporation in possession of the proberty under the continue of the continue	date of the Issue of the Bitt of Lading, the property described above is indicated below, which said carrier the word carrier being under act) agrees to carry to its subail piace of delivery at Isan destination each Carrier of all or any said property over all of any said property company, the every sample be the defined hereunder shall be sufficiently carrier shipmant. Shipper highly said property is a carrier shipmant. Shipper highly carrier that he is the classification or part which governs the transportation of this shipses are property on the said of the carrier shipmant. Shipper highly carrier shipmant has a said of the classification or part which governs the transportation of this ship said to the classification or part which are considered to the control of the shipmant move and the said of the control of the shipmant move and the said of the control of		ad (contents of 10 any person of 10 any
NOTICE TO RECEIVERS: Please check each ite within twenty four hours and noted on this docum	date of the Issue of the Bitt of Lading, the property described above is neighbored. So an ideated below, which said carrier the word carner being under act agrices to carry to its subal place of delivery at Isan did cestination and carrier of all or any said property over all of any said property coperty. The very service be the temporary and because the property of the property	e, in apparent good order, except as no stood throughout this contract at meaning. It can be seen as the seen as t	
NOTICE TO RECEIVERS :Please check each lite within twenty four hours and noted on this docum	date of the Issue of the Bitt of Lading, the property described above some property described above which has a dark the work of the property	e, in apparent good order, except as no sport howeign for more than the sport howeign or galver to a collect the sport of	

STRAIGHT BILL OF LADING-SHORT FORM ORIGINAL-NON NEGOTIABLE

CARRIER'S NAME: Imber Ventura

TRUCK/UNIT No:

72421556-01

SHIPMENT NO.(BOL): 72421556 DATE AND TIME: 04/02/2018 12:53:46 SHIP FROM:

CMC Sterling Steel Truck 2001 Brittmoore Road Houston, TX 77043-2208 USA

Contact Phone No. :713-690-0347 Fax No.

CMC INCO TERMS: CPT Bryan SHIP TO: 3101939 Tx A & M University Transporation

3100 State Hwy 47, Bldg. 7091 Bryan, TX 77807-0000 USA

Contact Phone No. :(254)859-5494

:(254)859-5497

SEAL NUMBER : TRAILER/RAILCAR No: SOLD TO: 3007327 Ellis Mc Ginnis Construction 2895 Eddy Gatesville Pkwy

Eddy, TX 76524-3911 USA

Contact Phone No. :2548595494 Fax No. :2548595497

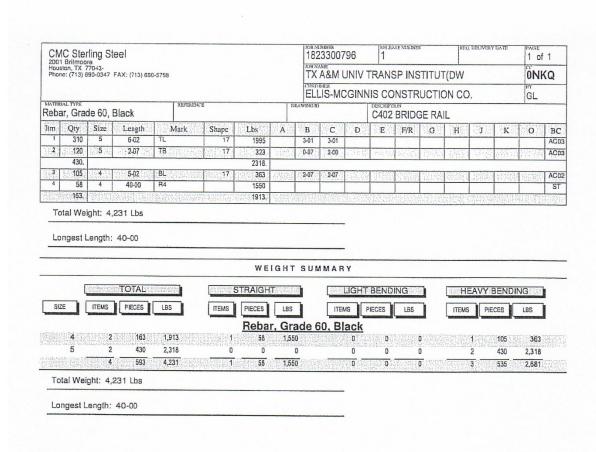
Subject to Section 7: Subject to Section 7 of Conditions of applicable bill of lading. If this shipment is to be delivered to the consignee without recourse on the consigner shall sign the following statement. The carrier shall not make delivery of this shipment without payment of freight and all other tawful charges.

Consignor's Signature : BOL INSTRUCTIONS:

NOTES/SPECIAL INSTRUCTIONS: Additional Instructions:

	T			Material Details				
Delivery	Cust PO	Ctrl Cd	Rel No.	Release Description	Dwg #	Material Description	PCS	Weight LE
PROJECT:	: R/1823300796	JP				, marerial beganipulari	100	1 weight LE
3137044	2802	ONKQ	1	C402 BRIDGE RAIL	T	Rebar Black 60/420		4,230
3137048	2802	ONKR	2	C411 BRIDGE RAIL		Rebar Black 60/420		
3137050	2802 -	ONKW	3	C412 BRIDGE RAIL		Rebar Black 60/420		8,533
						Total Weight		16 604

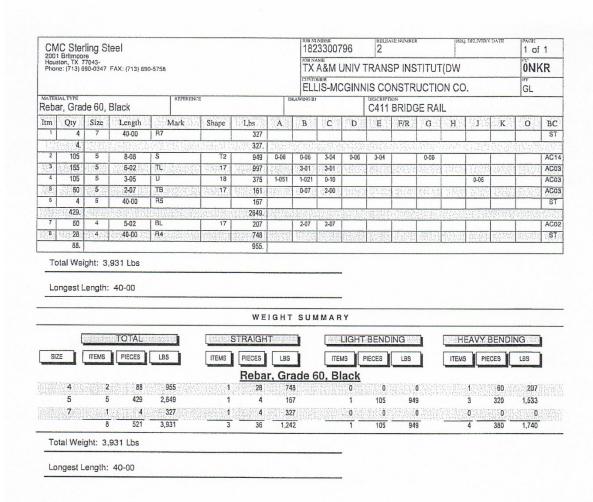
MTR'S INCLUDED

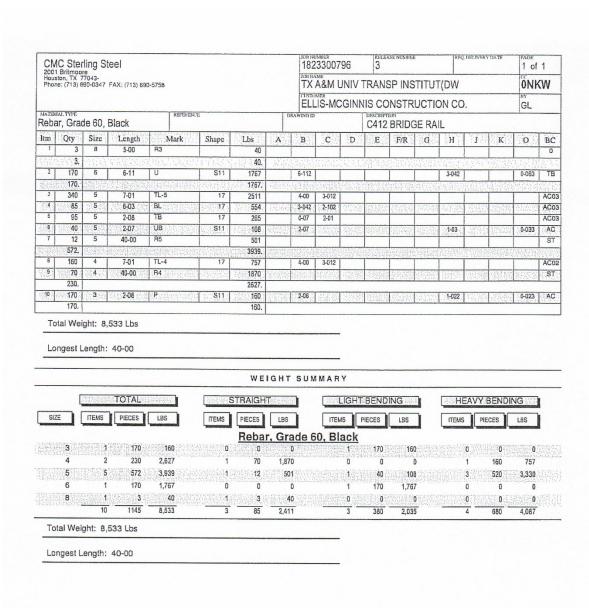

DRIVER'S SIGNATURE/AGENT : _

NOTICE TO RECEIVERS :Please check each item on this shipping bill carefully. CMC will not be responsible for any exceptions to goods unless notified within twenty four hours and noted on this document.

RECEIVED BY : DATE: DELIVERED BY:

TIME: TIME IN:


Page 1 of 2



v16.02.080 (T) (HOW)

©2018 aSa UNAUTHORIZED REPRODUCTION PROHIBITED

Monday, March 26, 2018 3:01 PM

v16.02,080 (T) (HOW)

O2018 aSa UNAUTHORIZED REPRODUCTION PROHIBITED

Monday, March 26, 2018 3:02 PM

			AL TEST REPORT inted: 03/14/2018		PAGE 1
MIA America	in Steel & Wire	CMC REBAR P O BOX 139094		MC REBAR 001 BRITTMOOF	RE
	No: 000000006015 umber: 4501198093 Date: 03/14/2018	DALLAS, TX 75	313	OUSTON, TX 7	7043
Order Ni	umber: 91943 umber: 116288	Item Number 3REBAR	Description #3 GRADE 60 COILED) REBAR	
			CAL ANALYSIS		
Heat Nu 3076		P S Si 0.0120 0.0320 0.2100 0	Cu Ni Cr Mo 0.2800 0.2200 0.2100 0.0910	Sn V 0 0.0130 0.0200 0.	AI N Nb .0010 0.0000 0.0000
		0.0120 0.0320 0.2100 0	0.2800 0.2200 0.2100 0.0910	Sn V 0 0.0130 0.0200 0	AI N Nb .0010 0.0000 0.0000
		0.0120 0.0320 0.2100 0		Sn V 0 0.0130 0.0200 0 Elongation (% 8" guage)	AI N Nb .0010 0.0000 0.0000 Bend Test Pass/Fail
	185 0.3700 0.8000 Heat Number	0.0120 0.0320 0.2100 0 MECHANIC	0.2800 0.2200 0.2100 0.0910 CAL PROPERTIES Tensile	0 0.0130 0.0200 0.	.0010 0.0000 0.0000 Bend Test

Mid Ameri	CONTROL OF THE STATE OF THE STA	CMC REBAR P O BOX 139094		SIMPTO: CMC REBAR 2001 BRITTMOOR	RE :	
	lumber: 450120142	23	313	HOUSTON, TX 77	7043	
Order N	p Date: 03/29/2018 jumber: 92181 jumber: 116521	Item Number 4REBAR	Description # 4 GRADE 60 COILE	ED REBAR		Marian Carlot A
	§	Mn P S Si 100 0.0160 0.0240 0.2400 0	CAL ANALYSIS <u>Cu Ni Cr Mc</u> 0.2300 0.1700 0.2400 0.06		AI N	Nb 0.0003
	}	Mn P S Si 100 0.0160 0.0240 0.2400 0	<u>Cu Ni Cr Mo</u> 0.2300 0.1700 0.2400 0.060		Al N 0040 0.0077 0	Nb 0.0003
	}	Mn P S Si 100 0.0160 0.0240 0.2400 0	Cu Ni Cr Mo		Al N 0040 0.0077 0	Nb 0.0003
	0.4400 0.9	Mn P S SI 100 0.0160 0.0240 0.2400 0 MECHANIC Yield	Cu Ni Cr Mc 0.2300 0.1700 0.2400 0.060 CAL PROPERTIES Tensile	00 0.0110 0.0020 0.	.0040 0.0077 0. Bend Test	Nb 0.0003

CERTIFIED MILL TEST REPORT

For additional copies call 830-372-8771 We hereby certify that the test results presented here are accurate and conform to the reported grade specification

TOMMY HEWITT

AT NO.:3078175	8			Quality Assurance Manager
CTION: REBAR 13MM (#4) 40'0" 420/60 ADE: ASTM A615-16 Gr 420/60 LL DATE: 03/03/2018 LT DATE: 02/27/2018 rt. No.: 02/27/2018 / 078175A371	o L D		S H I P	Delivery#: BOL#: CUST PO#: CUST P/N: DLVRY LBS / HEAT: DLVRY PCS / HEAT:
Characteristic Value		Characteristic	Value	
C 0.43%			-	Characteristic Value
Mn 0.73%				
P 0.009%				
\$ 0.046%				
Si 0.19%				
Cu 0.33% Cr 0.10%				
Cr 0.10% Ni 0.21%				
Mo 0.079%				
V 0.000%				
Cb 0.002%				
Sn 0.014%				
AI 0.001%				The Following is true of the material represented by this MTR:
Yield Strength test 1 62.0ksi				"Material is fully killed
Tensile Strength test 1 99.2ksi				*100% multed and rolled in the USA
Elongation test 1 17%				*EN10204:2004 3.1 compliant
Elongation Gage Lgth test 1 8IN				*Contains no weld repair
Bend Test Diameter 1.750IN				"Contains no Mercury contamination
Bend Test 1 Passed				"Manufactured in accordance with the latest version of the plant quality menual "Maets the "Buy America" requirements of 23 CFR635.410

04/02/2018 20:57:52

Page 1 OF 1

The state of the s	Date Pri	L TEST REPORT		PAGE 1
Md American Steel & Wire	CMC REBAR P O BOX 139094	C	MC REBAR 001 BRITTMOOR	Е
Customer No: 000000006015 PO Number: 4501201440 Ship Date: 03/28/2018	DALLAS, TX 753		OUSTON, TX 77	7043
Order Number: 92187 Load Number: 116527	5REBAR	Description # 5 GRADE 60 COILE	D REBAR	
1723630 0.4600 0.8700 0	MECHANIC	Cu Ni Cr Mo .2100 0.1100 0.1900 0.0300 AL PROPERTIES	Sn V 0 0.0110 0.0030 0.0	AI N Nb 0010 0.0067 0.0005
Heat Number	Yield (Psi/Mpa)	Tensile (Psi/Mpa)	Elongation (% 8" guage)	Bend Test Pass/Fail
1723630 62	474 psi / 431 Mpa	108254 psi / 747 Mpa	11.71	Pass
t hereby certify that the above test results are correct the records of the company. All Manufacturing process materials in this product, including melting have occur. United States, The material was produced and tested ASTM A615/A615M-065.	sses of the steel		Quality Assurance:	W. Luft

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

TOMMY HEWITT

IEAT NO.:3078356 ECTION: REBART 76MM (#5) 40'0 RADE: ASTM A6 15-16 Gr 420/6 OLL DATE: 03/07/2018 ELT DATE: 03/07/2048 en. No.: 82333189 / 078356A7	65	S CMC Rebar Houston-West O L BRITTMOORE RD. HOUSTON TX US 77043-2208 T 713-690-0347	S CMC Starling Steel H 1 2001 Brittmoore Rd Houston TX US 77043-2208 T 7136900347 O 7136905758	Ouality Assurance Manager Delivery#: 82333189 BOL#: 72398632 CUST PO#: CUST P/N: DLVRY LBS / HEAT: 24030.000 LB DLVRY PCS / HEAT: 576 EA
Characteristic	Value	Characteristic	Value	
C	0.42%		70108	Characteristic Value
Mn	0.86%			
P	0.008%			
s	0.045%			
Si	0.18%	Ž.		
•	0.33%	*		
	0.10%			
	0.17%			
	0.088%			
	0.000%			
	0.002%			
	0.010%			
i Al	0.002%			The Following is true of the material represented by this MTR:
Yield Strength test 7				Material is fully killed
Townth. C.	64.9ksi			* 100% melted and rolled in the USA
Florend Test 1	102.5ksi			*EN10204:2004 3.1 compliant
Florentin- P	14%			*Contains no weld repair
Band Task Di	MI			*Contains no Mercury contamination
	2.188IN			*Manufactured in accordance with the latest version
Bend Test 1 P	assed			of the plant quality manual
RKS:				*Mants the "Buy America" requirements of 23 CFR635.410

03/12/2018 15:39:47 Page 1 OF 1

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

TOMMY HEWITT

Mn 0.87% P 0,009% S 0.049% S 0.17% Cu 0.29% Cr 0.12% Ni 0.16% Mo 0.048% V 0.001% Cb 0.002% Sn 0.011% Al 0.001% Yield Strength test 1 62.7ksi Tensile Strength test 1 103.1ksi Elongation Gago Light test 1 16% Elongation Gago Light test 1 8IN Bend Test Diameter 3.750IN	y Assurance Manager Delivery#: 82326504 BOL#: 72388853 CUST PO#: CUST P/N: DLVRY LBS / HEAT: 43526.000 LB DLVRY PCS / HEAT: 483 EA
C 0.44% Mn 0.87% P 0.009% S 0.049% Si 0.17% Cu 0.29% Cr 0.12% Ni 0.16% Mo 0.048% V 0.001% Cb 0.002% Sn 0.011% Al 0.001% Yield Strength test 1 62.7ksi Tensile Strength test 1 103.1ksi Elongation test 1 16% Elongation Gage Light test 1 8IN Bend Test Diameter 3.750IN	
P 0.009% S 0.049% Si 0.17% Cu 0.29% Cr 0.12% Ni 0.16% Mo 0.048% V 0.001% Cb 0.002% Sn 0.011% Al 0.001% Yield Strength test 1 62.7ksi Tensile Strength test 1 103.1ksi Elongation test 1 16% Elongation Gage Light test 1 8IN Bend Test Diameter 3.750IN	Characteristic Value
S 0.049% Si 0.17% Cu 0.29% Cr 0.12% Ni 0.16% Mo 0.048% V 0.001% Cb 0.002% Sn 0.011% Al 0.001% Yield Strength test 1 62.7ksi Tensile Strength test 1 103.1ksi Elongation test 1 16% Elongation fest 1 8IN Bend Test Diameter 3.750IN	
Si 0.17% Cu 0.29% Cr 0.12% Ni 0.16% Mo 0.048% V 0.001% Cb 0.002% Sn 0.011% Al 0.001% Yield Strength test 1 62.7ksi Tensile Strength test 1 103.1ksi Elongation test 1 16% Elongation Gage Light test 1 8IN Bend Test Diameter 3.750IN	
Cu 0.29% Cr 0.12% Ni 0.16% Mo 0.048% V 0.001% Cb 0.002% Sn 0.011% Al 0.001% Yield Strength test 1 62.7ksi Tensile Strength test 1 103.1ksi Elongation test 1 16% Elongation Gage Light test 1 3IN Bend Test Diameter 3.750IN	
Cr 0.12% Ni 0.16% Ni 0.16% Mo 0.048% V 0.001% Cb 0.002% Sn 0.011% Al 0.001% The Followin	
Ni	
Mo 0.048% V 0.001% Cb 0.002% Sn 0.011% Al 0.001% Yield Strength test 1 62.7ksi Tensile Strength test 1 103.1ksi Elongation test 1 16% Elongation Gage Light test 1 8IN Bend Test Diameter 3.750IN	
V 0.001% Cb 0.002% Sn 0.011% Al 0.001% Yield Strength test 1 62.7ksi Tensile Strength test 1 103.1ksi Elongation test 1 16% Elongation Gage Light test 1 8IIN Bend Test Diameter 3.750IN	
Cb	
Sn 0.011%	
Al 0.001% Yield Strength test 1 62.7ksi **10 Tensile Strength test 1 103.1ksi **EN Elongation test 1 16% Elongation Gage Light test 1 8IIN Bend Test Diameter 3.750IN	
Yield Strength test 1 62.7ksi *100 Tensile Strength test 1 103.1ksi *2N Elongation test 1 16% *Cor Elongation Gage Light test 1 8IN *Cor Bend Test Diameter 3.750IN *Mai	
Yield Strength test 1 62.7ksi *10 Tensile Strength test 1 103.1ksi *EN Elongation test 1 16% *Cor Elongation Gage Light test 1 8IN *Cor Bend Test Diameter 3.750IN *Max	ng is true of the material represented by this MTH:
Tensile Strength test 1 103.1ksi *EW *Cor *Elongation test 1 16% *Cor *Cor	nterial is fully killed
Elongation test 1 16% *Cor Elongation Gage Lyth test 1 8IN *Cor Bend Test Diameter 3.750IN *Mai	0% melted and rolled in the USA 10204:2004 3.1 compliant
Elongation Gage Light test 1 8IN *Cor Bend Test Diameter 3.750IN *Mail	ntains no weld repair
Bend Test Diameter 3.750IN	ntains no Mercury contamination
	nufactured in accordance with the latest version
	he plant quality manual
	ets the "Buy America" requirements of 23 CFR635.410

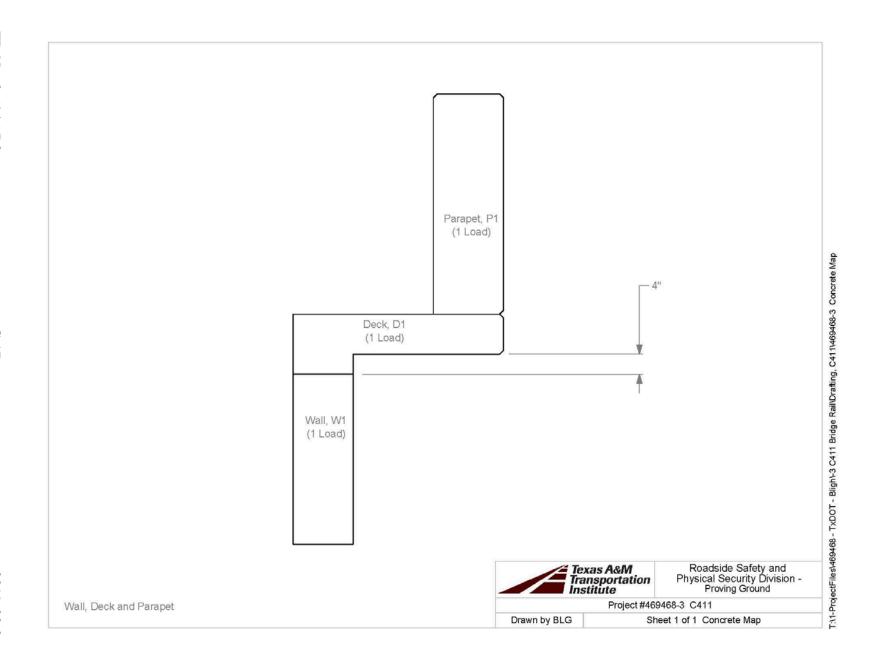
03/01/2018 18:08:26 Page 1 OF 1

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

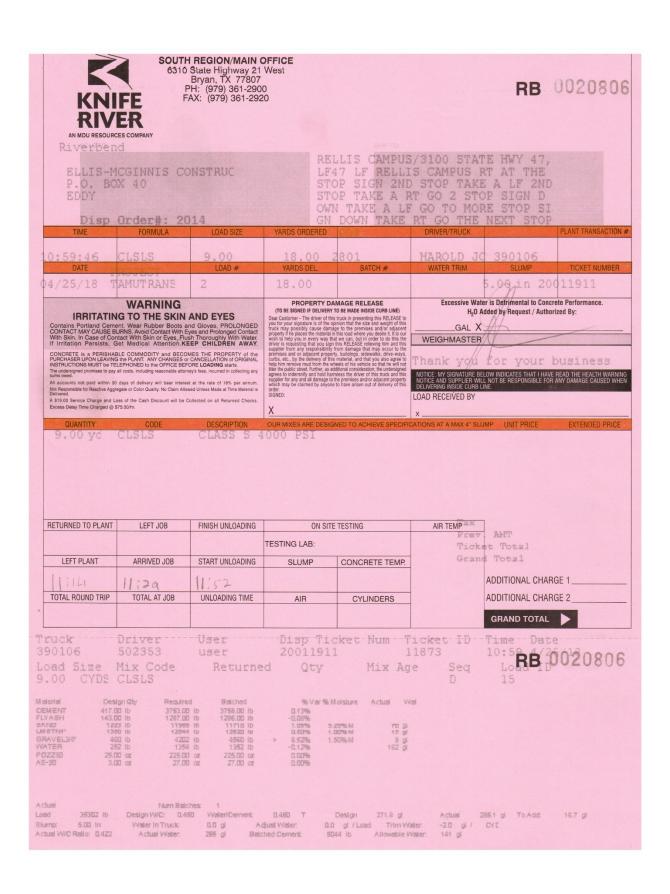
HEAT NO.:3078084		S CMC Rebar Houston-West		Quality Assurance Menager
ECTION: REBAR 22MM (#7) (IRADE: ASTM A615-16 Gr 42 OLL DATE: 02/24/2018 SELT DATE: 02/24/2018 ert. No.: 82346478 / 078084	0/60	O L BRITTMOORE RD. HOUSTON TX US 77043-2208 T 713-690-0347	S CMC Sterling Steel H I 2001 Brittmoore Rd P Houston TX US 77043-2208 T 7136900347 O 7136905758	Delivery#: 82346478
Characterist	c Value	Char	acteristic Value	
E E	0.42%	Onde	acteristic value	Cheracteristic Value
g M				
	0.013%			
	0.056%			
å s	0.15%			
Ç Cı	0.34%			
f c	0.19%			
i N	0.17%			
Mo	0.081%			
g v	0.001%			
Ch	0.003%			
Sn	0.014%			
å Al	0.002%			The Following is true of the material represented by this MTR:
		.		Material is fully killed
Yield Strength test 1	67.9ksi			* 100% melted and rolled in the USA
Tensile Strength test 1	106.5ksi			*EN10204:2004 3.1 compliant
				*Contains no weld repair
Elongation test 1	13%			
Elongation test 1 Elongation Gage Light test 1	NIB			*Contains no Mercury contamination
Elongation test 1 Elongation Gage Lgth test 1 Bend Test Diameter				*Contains no Mercury contamination *Manufactured in accordance with the latest version
Elongation test 1 Elongation Gage Light test 1	NIB			*Contains no Mercury contamination *Manufactured in accordance with the latest version of the plant quality manual *Meets the "Buy America" tequirements of 23 CFR635.410

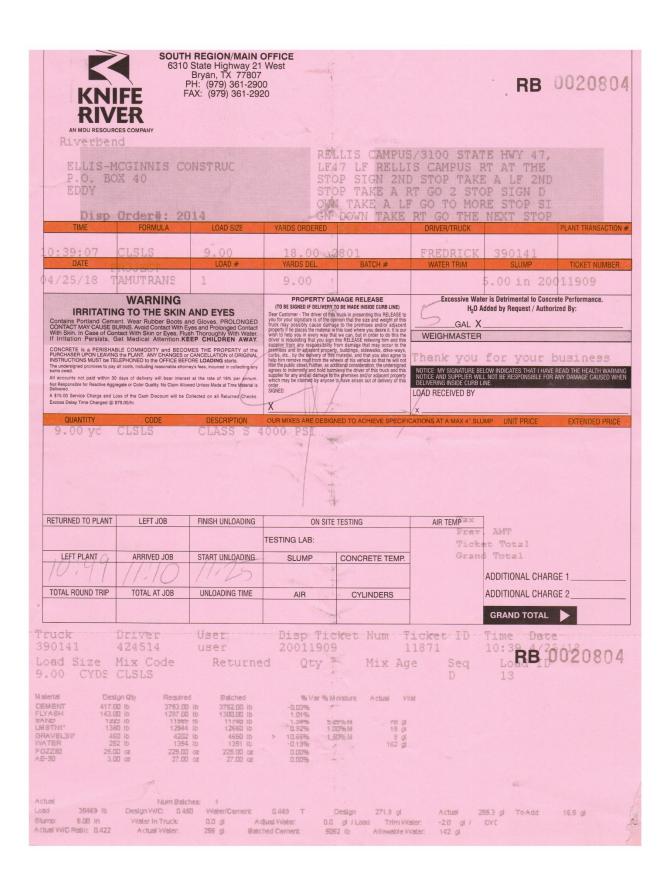
03/27/2018 00:13:07 Page 1 OF 1

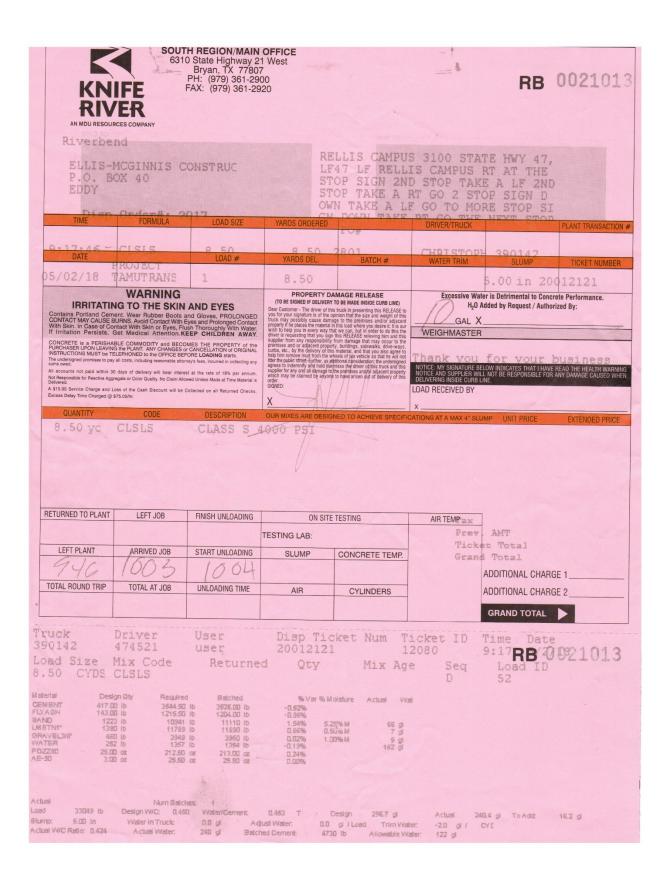

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

TOMMY HEWITT


EAT NO.:3078559		S CMC Rebar House			T	Quality Assurance Manager
ECTION: REBAR 25MM (#8) 50 RADE: ASTM A615-16 Gr 420/ OLL DATE: 03/17/2018 RELT DATE: 03/14/2018 ort. No.: 82343437 / 078559A	60	S CMC Rebar Hous O L BRITTMOORE RD HOUSTON TX US 77043-2208 T 713-890-0347		S H I P	CMC Sterling Steal 2001 Brittmoore Rd . Houston TX US 77043-2208 7136900347 7136905758	Delivery#: 82343437 BOL#: 72412704 CUST PO#: CUST PO#: DLVRY LBS / HEAT: 21360.000 LB DLVRY PCS / HEAT: 160 EA
Characteristic	Value		Characterist	tic Value		
j c	0.43%					Characteristic Value
Mn	0.93%				4	
P	0.011%				`	
S	0.045%					
Si	0.21%					
Cu	0.29%					
Cr	0.20%				:	
į Ni	0.23%					
, Mo	0.082%					i i
V	0.001%					
. Сь	0.002%					
l Sn	0.011%					The College Control
; AI	0.002%					The Following is true of the meterial represented by this MTR: *Material is fully killed
Yield Strength test 1	70.3ksi					*100% melted and ralled in the USA
Tensile Strength test 1	109,8ksi					*EN10204:2004 3.1 compliant
Elongation test 7	14%					*Contains no weld repair
Elongation Gage Lgth test 1	8IN					*Contains no Mercury contamination
Bend Test Diameter	5.000IN					*Manufactured in accordance with the latest version
Bond Test 1	Passed					of the plant quality manual
ARKS:						"Meets the "Buy America" requirements of 23 CFR635, 410


03/20/2018 18:55:38 Page 1 OF 1



Proving G 3100 SH Brvan, TX	Texas A& Transpor Institute 47, Bidg 7091 47, 7607 Texas A&M Univers College Station, TX Phone 979-845-631	tation 77843	5.7.2	Concrete Samp	Doc. No. QPF 5.7.2	Revision Date: 2018-04-17
	Quality Policy For		Approved b		Revision:	Page:
Project N	o: 469468-X 3	23 728 Ca	sting Date	2018-05-02	_Mix Design (ps	i): class 5 4
Printed Name Technician taki Samp	ng / 1	EIT T	Ł	Printed Name o Technician breaking Sample	of _	
Signed Name Technician taki Samp	ng A	Te	7	Signed Name o Technician breaking Sample	1	The
Load No.	Truck No.	Tic	ket No.	Locat	tion (from concre	ete map)
PI/TI	390142	002	1013	All . F Pas	NAME AND ADDRESS OF THE OWNER, TH	.,
Load No.	Break Date	Cylin	der Age	Total Load (lbs)	Description 13	T -
P1/11	7618-5-22	_	DAYS	144,000	Break (psi)	Average
PITTI		20,			5165	60 0
01/11		1		149,000		5200
P1/11	₹	*		144,000	5165	
						•

Proving Gri 3100 SH 41 Bryan TX 7	Texas A& Transpor Institute Texas A&M Univers 7, Bidg 7091 College Station, TX 77807 Phone 979-845-637	F72	Concrete Sample	Doc. No. QPF 5.7.2	Revision Date: 2018-04-17
	uality Policy For	- topproved to	: B. L. Griffith by: D. Kuhn	Revision:	Page:
Project No	o: 469468-23	Casting Date	e: 2018-04-25	Mix Design (ps	i): Cless 5 400
Printed Name (Technician takin Samp			Printed Name o	f	
Signed Name of Technician takin	of 2	I)	Signed Name o	f	*
Sampl	Truck No.	200	Sample	1	200
1/17	390141	Ticket No.		tion (from concre	
DZ/TO	390106	0020304		call s fo	-mstart of f
		0020,00	Filled up	emalang v	olome
Load No.	Break Date	Cylinder Age	Total Load (lbs)	Break (psi)	Average
WITTI	2018-5-22	270275	160,000	546D	
04/FZ "	ē	1	183,000	4475	6085
N1/11			173,500	6120	
01/12			147,000	5910	
21/12			141,000	5695	5730
21/12	7	*	158,000	5590	
1000					4378
14/	27 1965				

C.3 *MASH* TEST 2-10 (CRASH TEST NO. 469468-3-1)

C.3.1 Vehicle Properties and Information

Table C.1. Vehicle Properties for Test No. 469468-3-1.

Date:	2018-05	-24	Test No.:	46946	8-3-1	VIN No.:	KNADI	H4A37A6	652037
Year:	2010		Make:	KI	Α	_ Model:		RIO	
Tire Infl	ation Pressur	e: <u>32</u>	PSI	Odometer:	217070	<u> </u>	Tire Size:	185/65R	14
Describ	e any damago	e to the	vehicle prior	to test: <u>N</u>	lone				
	otes acceleron	neter lo	ocation.	A M —			••		N 7
Optiona None	CID: 1.6 iission Type: Auto or FWD al Equipment: e	 RWD	_ Manual 4WD	P-		R	• • • • • • • • • • • • • • • • • • • •		A B B L V V V V V V V V V V V V V V V V V
Type: Mass: Seat P	165		entile male			W	E	D ->	
	etry: inches 66.38 51.50 165.75 34.00 98.75 rel Center Ht F	F G H I J		3 ±5 inches; F = 35		39 ±4 inches; 0 = 1		U V W X W-H R SUPPORT (24+	15.75 21.50 35.90 107.00 0.00
	R Ratings: 18	718 374 338		inches; W-H < 2 inc	thes or use MASI	H Paragraph A4.3.		,	55 Static 1641 971 2612
Mass D lb	istribution:	LF:	780	RF:	776	LR:	449	RR:	442

Table C.2. Exterior Crush Measurements of Vehicle for Test No. 469468-3-1.

Date:	te: 2018-05-24 Test No.: 46946		469468	3-3-1	_ VIN No.:	KNADH4A37A6652037		
Year:	2010	_ Make: K		4	_ Model:			
	â	VEHICLE C	tion and a time the service of the			ET ¹		
Complete When Applicable End Damage Side Damage								
		d end width			Bowing: B1			
	Onderonne	u chu widuh			Downig. Di	XI		
Corner shift: A1					B2	X2		
		A2						
End shift at frame (CDC)					Bowing constan	t		
	(check o	ne)		X1+X2				
< 4 inches					2	=		
		≥4 inches						

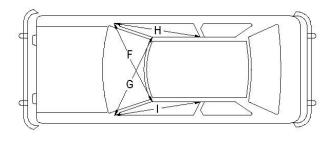
Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

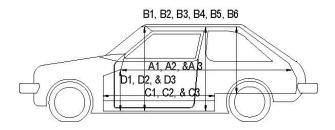
		Direct Damage				X2.00					
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C ₁	C ₂	С3	C4	C5	C ₆	±D
1	AT FT BUMPER	17	14	36	2	4	4.5	5.5	9	14	+9
2	ABOVE FT BUMPER	17	12	38	0	2	4	5	9	12	+60
						72					
	Units in inches						7.7				

Table taken from National Accident Sampling System (NASS).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.


^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

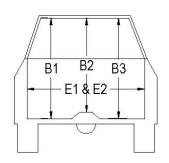

^{***}Measure and document on the vehicle diagram the location of the maximum crush.

Table C.3. Occupant Compartment Measurements of Vehicle for Test No. 469468-3-1.

Date:	2018-05-24	_ Test No.:	469468-3-1	_ VIN No.:	KNADH4A37A6652037
Year:	2010	Make:	KIA	Model:	RIO

^{*}Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

DEFORINATION INEASUREMENT								
	Before	After inches	Differ.					
A1	67.50	67.50	0.00					
A2	67.25	67.25	0.00					
А3	67.75	67.00	-0.75					
B1	40.50	40.50	0.00					
B2	39.00	39.00	0.00					
B3	40.50	40.00	-0.50					
B4	36.25	36.25	0.00					
B5	36.00	36.00	0.00					
B6	36.25	36.25	0.00					
C1	26.00	26.00	0.00					
C2	0.00	0.00	0.00					
C3	26.00	22.00	-4.00					
D1	9.50	9.50	0.00					
D2	0.00	0.00	0.00					
D3	9.50	9.00	-0.50					
E1	51.50	51.00	-0.50					
E2	51.00	52.00	1.00					
F	51.00	51.00	0.00					
G	51.00	51.00	0.00					
Н	37.50	37.50	0.00					
Į	37.50	37.50	0.00					
J*	51.00	49.50	-1.50					

C.3.2 Sequential Photographs

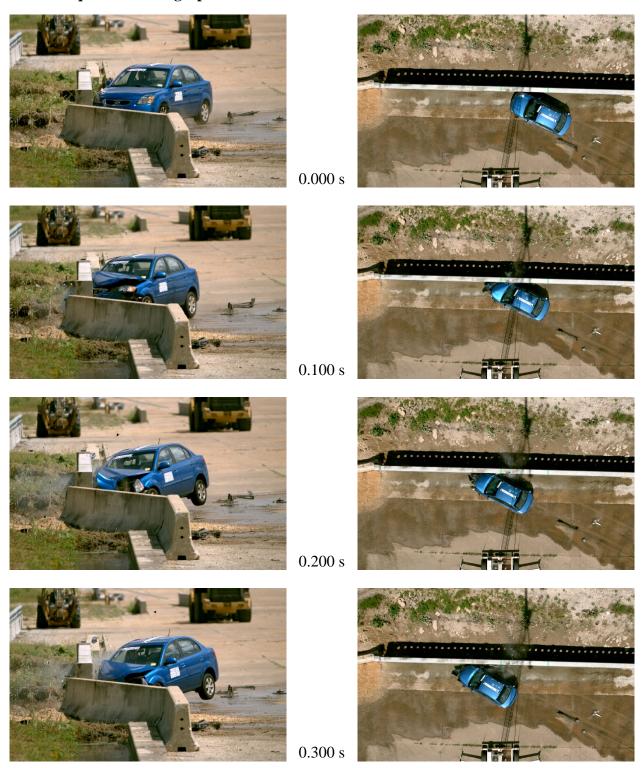


Figure C.1. Sequential Photographs for Test No. 469468-3-1 (Gut and Overhead Views).

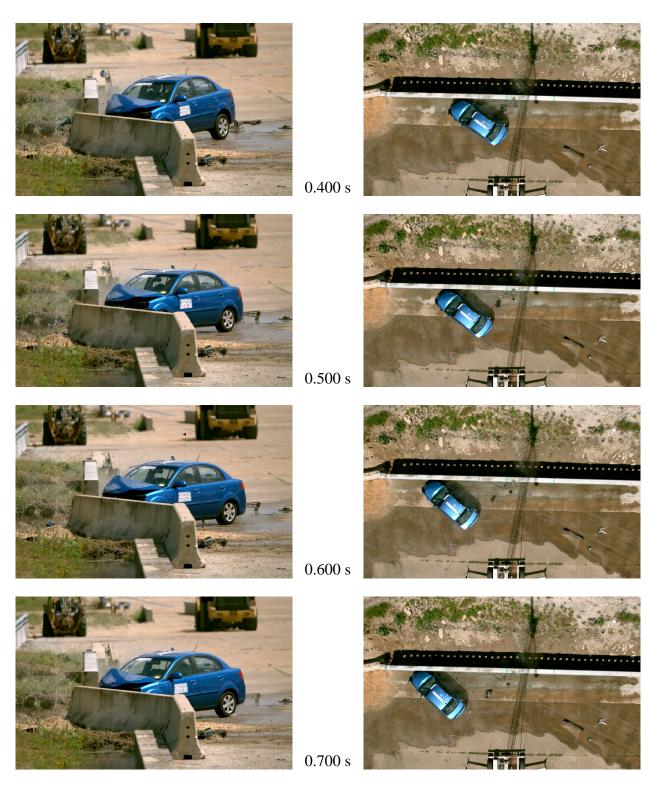


Figure C.1. Sequential Photographs for Test No. 469468-3-1 (Gut and Overhead Views) (Continued).

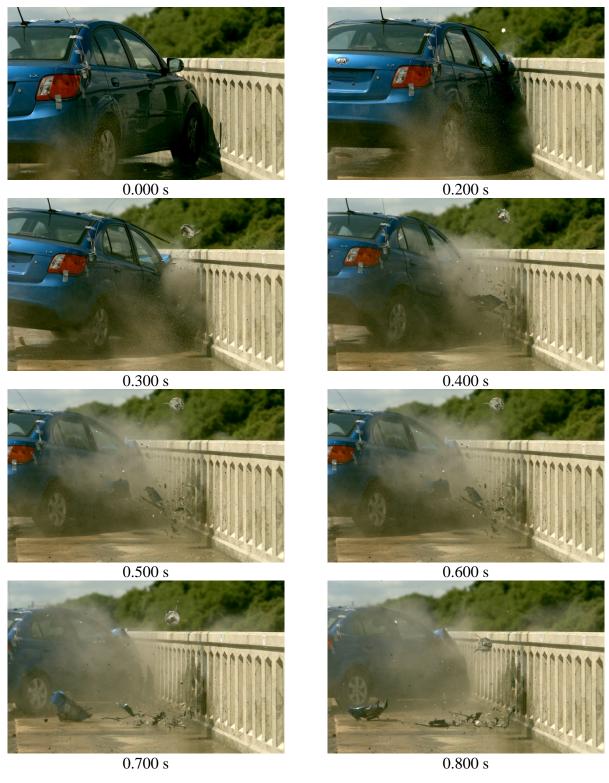


Figure C.2. Sequential Photographs for Test No. 469468-3-1 (Rear View).

Figure C.3. Vehicle Angular Displacements for Test No. 469468-3-1.

Figure C.4. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-3-1 (Accelerometer Located at Center of Gravity).

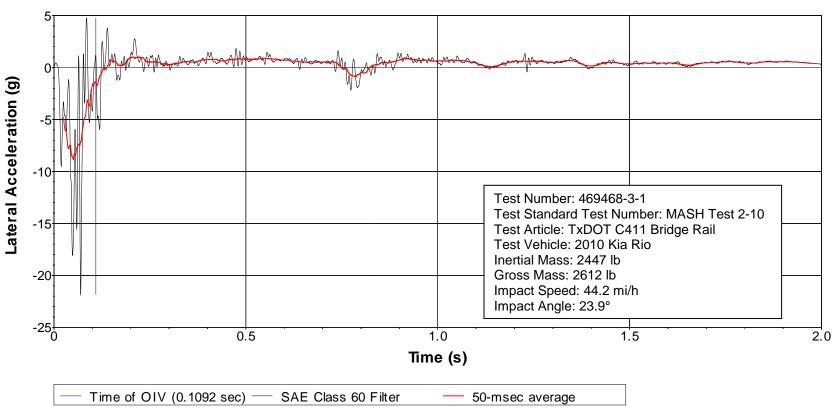


Figure C.5. Vehicle Lateral Accelerometer Trace for Test No. 469468-3-1 (Accelerometer Located at Center of Gravity).

Z Acceleration at CG

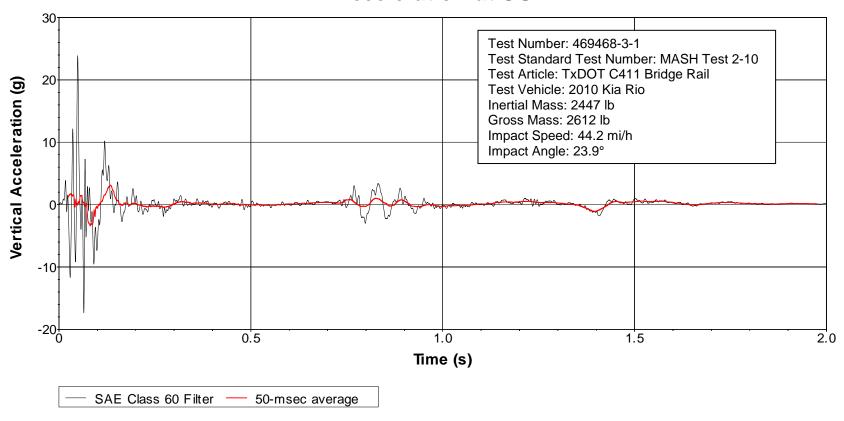


Figure C.6. Vehicle Vertical Accelerometer Trace for Test No. 469468-3-1 (Accelerometer Located at Center of Gravity).

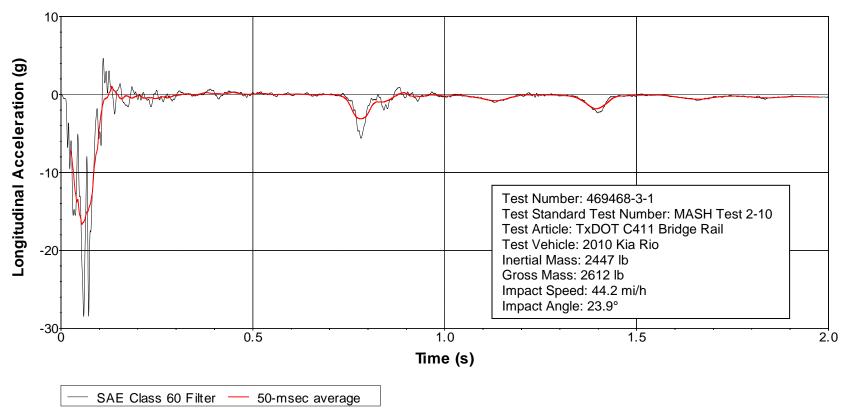


Figure C.7. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-3-1 (Accelerometer Located Rear of Center of Gravity).

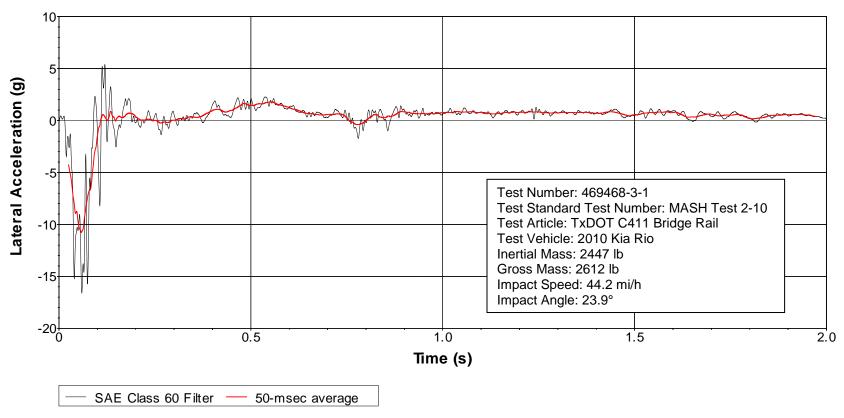


Figure C.8. Vehicle Lateral Accelerometer Trace for Test No. 469468-3-1 (Accelerometer Located Rear of Center of Gravity).

Z Acceleration Rear of CG

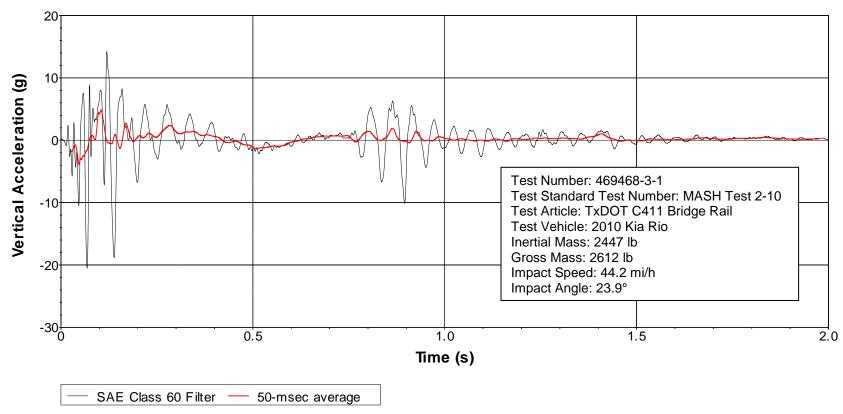


Figure C.9. Vehicle Vertical Accelerometer Trace for Test No. 469468-3-1 (Accelerometer Located Rear of Center of Gravity).

C.4 *MASH* TEST 2-11 (CRASH TEST NO. 469468-3-2)

C.4.1 Vehicle Properties and Information

Table C.4. Vehicle Properties for Test No. 469468-3-2.

Date:2	2018-05-2	2 Test No.: _	469468-3	-2 VIN No.:	1C6RR6FF	PODS	500861
Year:	2013	Make:	RAM	Model:	1:	500	
Tire Size:	265/70	R 17	296	Tire Inflation Pres	ssure: 35 PSI		<i>2</i>
Tread Type:	HIGHW	/AY			neter: 173096		
Note any da	ımage to the	vehicle prior to to	est: NONE				77
• Denotes :	accelerom et	er location.		X - X -	-		3
NOTES: _			1)) †
Engine Type Engine CID:			A M Wheel Track			ĵi.	MHP51.
Transmission Auto	or	Manual VD 4WD		R P Q P	्राह्म । एस्त्र ।	RTALE M	
Optional Eq NONE	uipment:		P—				
Dummy Dat Type: Mass: Seat Positi	50 PE 165 L	ERCENTILE .BS .CT SIDE	1 1 T	F-E-	V S	-D-	- K .
Geometry:	inches			MCNT	_c1	REAR	_
· ·		F40.00		<u>20.00</u> p _	3.00	U _	27.75
		g <u>28.87</u>		30.00 Q _	30.50	٧ _	30.50
VII.01		H62.40		<u>68.50</u> R _	18.00	W _	62.40
3255 g	14.00	11.75	1938	<u>88.00</u> s _	13.00	Χ_	77.40
Wheel Co		J <u>27.00</u> 14.75 _{Clea}	Wheel Well	<u>46.00</u> т <u> </u>	77.00 Bottom Frame	_	12.00
Height f Wheel C		200 Dec. 2014 2014 2	arance (Front) — Wheel Well		Height - Front Bottom Frame		6507 547773347 650904 279456740
Height			arance (Rear)	9.25 G = > 28 inches; H = 63 ±4	Height - Rear	MIND-67	25.50
GVWR Rat		-237 £13 miches, E-140 £1. Mass: lb	121 P		Inertial		
Front	3700	M _{front}	<u>Curb</u> 28	50 <u>rest</u>	2785	Gios	ss Static 2870
Back	3900			06 —	2227	*	2307
Total	6700	M _{Total}	29.25.70	56	5012	<u> </u>	5177
Mass Distri		4004		(Allowable Range for TIM and	1987/23/2004 ASS	-000	4404
lb		LF: 1361	RF:1	<u>424</u> LR:	1126_ RF	₹:	1101

Table C.5. Measurements of Vehicle Vertical CG for Test No. 469468-3-2.

Date: 2018-0	15-22 T	est No.: _	469468	3-3-2	VIN:	CORROPPO)DS50086]
Year: 20°	13	Make: _	RAI	v1	Model:		1500	
Body Style: G	UAD CAI	3			Mileage:	173096		
Engine: 4.7L	V-8			Tran	smission:	AUTO		
Fuel Level: E	MPTY	Ball	ast: _133	LBS			(4-	40 lb max)
Tire Pressure:	Front:	35 ps	i Rea	ar: <u>35</u>	_psi S	Size: 265/70	O R 17	
Measured Ve								
LF:	1361		RF:	1424		Front Axle	2785	
LR:	1126		RR:	1101		Rear Axle	e: <u>2227</u>	
Left:	2487		Right:	2525			ı: <u>5012</u>	
						5000 ±	110 lb allow ed	
Wh	concern concern w	140.50	inches	Track: F:	in m management	inches R		inches
	148 ±12 inch	ies allow ed			Irack = (F+R)/2 = 67 ±1.5 incl	nes allow ed	
Center of Gra	avity, SAE	J874 Sus	pension N	/lethod				
X:	62.40	inches	Rear of F	ront Axle	(63 ±4 inches	s allow ed)		
Y:	0.00	inches	Left -	Right +	of Vehicle	Centerline		
Z:	28.87	inches	Above Gr	ound	(minumum 28	.0 inches allow e	d)	
Hood Heig	ht:	46.00	inches	Front	Bumper H	leight:	27.00	inches
	43 ±4 ir	nches allowed						
Front Overhar	5000 St.	40.00	3 6	Rear	Bumper H	leight:	30.00	inches
Overall Long								
Overall Leng	70	3 inches allow	700					

Table C.6. Exterior Crush Measurements of Vehicle for Test No. 469468-3-2.

Date:	2018-05-22	_ Test No.: _	469468-3-2	VIN No.:	1C6RR6FPODS500861
Year:	2013	Make:	RAM	Model:	1500

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete Wh	nen Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2
< 4 inches	2
≥ 4 inches	

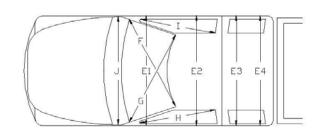
Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

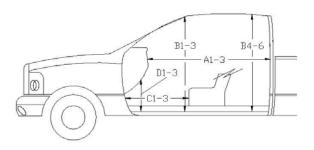
Specific Impact Number		Direct Damage									
	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C ₁	C ₂	C ₃	C ₄	C5	C ₆	±D
1	AT FT BUMPER	22	10	52	2	5	7	8	9	10	+10
2	ABOVE FT BUMPER	22	12	45	3	4.5	6.5	9	11	12	+70
				0.0							
	inches			9							

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.


Note: Use as many lines/columns as necessary to describe each damage profile.


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

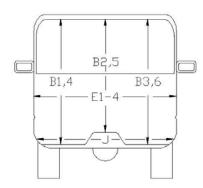

^{***}Measure and document on the vehicle diagram the location of the maximum crush.

Table C.7. Occupant Compartment Measurements of Vehicle for Test No. 469468-3-2.

Date:	2018-05-22	_ Test No.:	469468-3-2	_ VIN No.:	1C6RR6FPODS500861
Year:	2013	Make:	RAM	Model:	1500

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

	Before	After inches	Differ.
A1	65.00	65.00	0.00
A2	63.00	63.00	0.00
A3	65.50	65.50	0.00
В1	45.00	45.00	0.00
B2	38.00	38.00	0.00
В3	45.00	45.00	0.00
B4	39.50	39.50	0.00
B5	43.00	43.00	0.00
B6	39.50	39.50	0.00
C1	26.00	26.00	0.00
C2	0.00	0.00	0.00
C3	26.00	22.00	-4.00
D1	11.00	11.00	0.00
D2	0.00	0.00	0.00
D3	11.50	11.00	-0.50
E1	58.50	58.50	0.00
E2	63.50	64.50	1.00
E3	63.50	63.50	0.00
E4	63.50	63.50	0.00
F	59.00	59.00	0.00
G	59.00	59.00	0.00
Н	37.50	37.50	0.00
1	37.50	37.50	0.00
J*	25.00	24.75	-0.25

C.4.2 Sequential Photographs

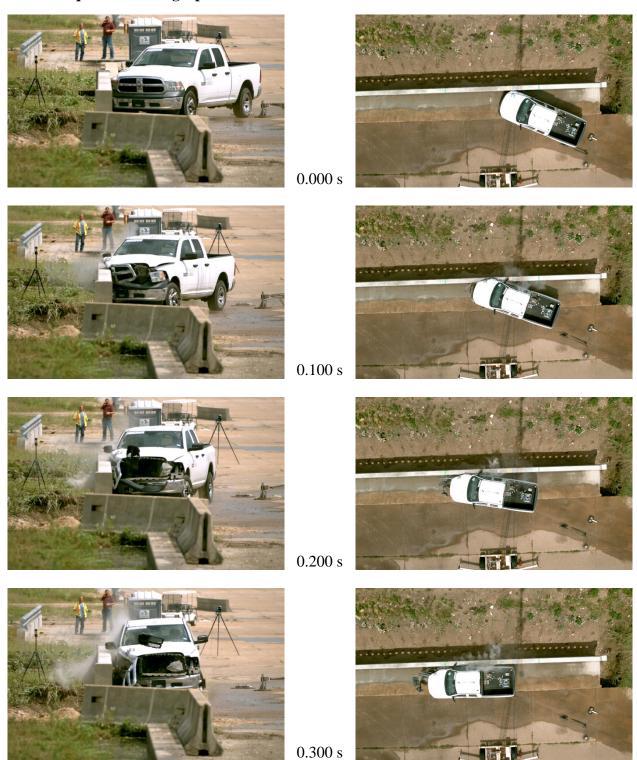


Figure C.10. Sequential Photographs for Test No. 469468-3-2 (Gut and Overhead Views).

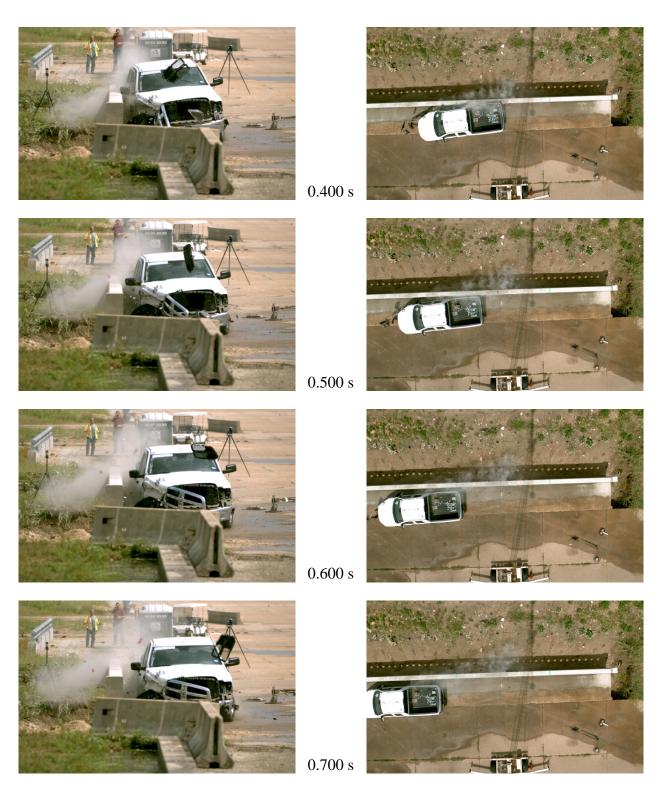


Figure C.10. Sequential Photographs for Test No. 469468-3-2 (Gut and Overhead Views) (Continued).

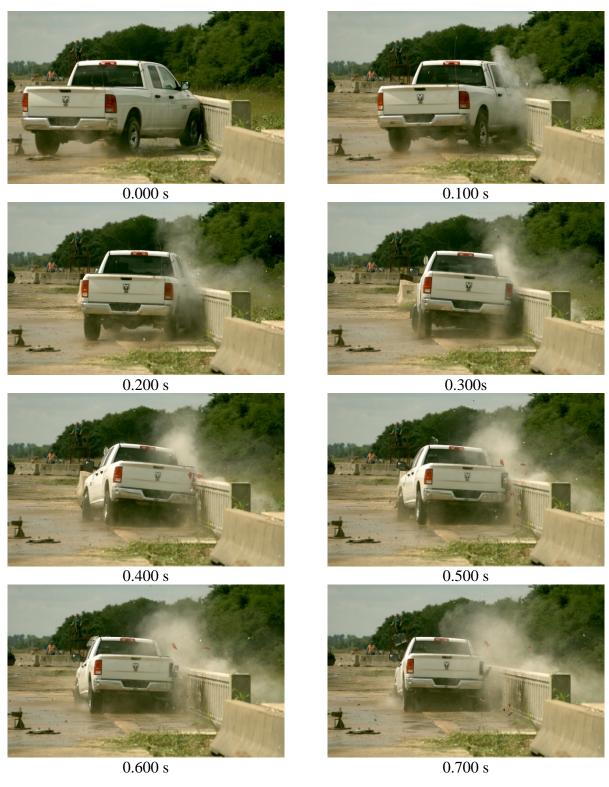
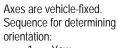



Figure C.11. Sequential Photographs for Test No. 469468-3-2 (Rear View).

- 1. Yaw.
- 2. Pitch.
- Roll. 3.

Figure C.12. Vehicle Angular Displacements for Test No. 469468-3-2.

Figure C.13. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-3-2 (Accelerometer Located at Center of Gravity).

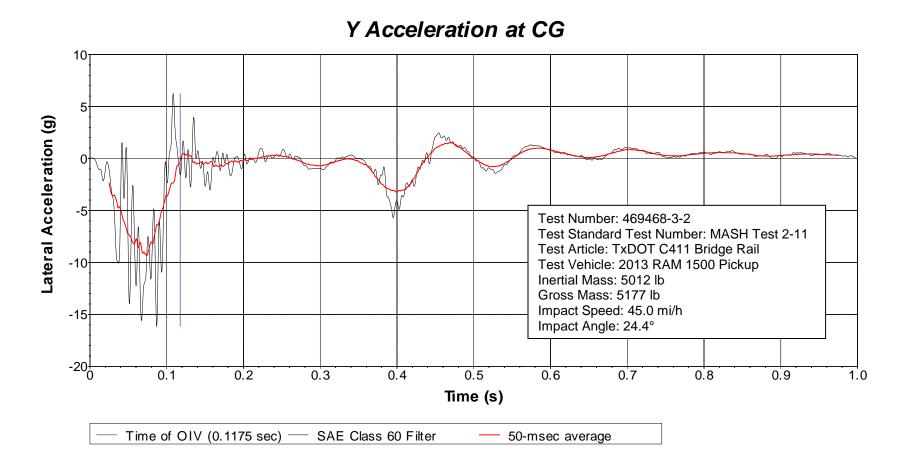


Figure C.14. Vehicle Lateral Accelerometer Trace for Test No. 469468-3-2 (Accelerometer Located at Center of Gravity).

Z Acceleration at CG

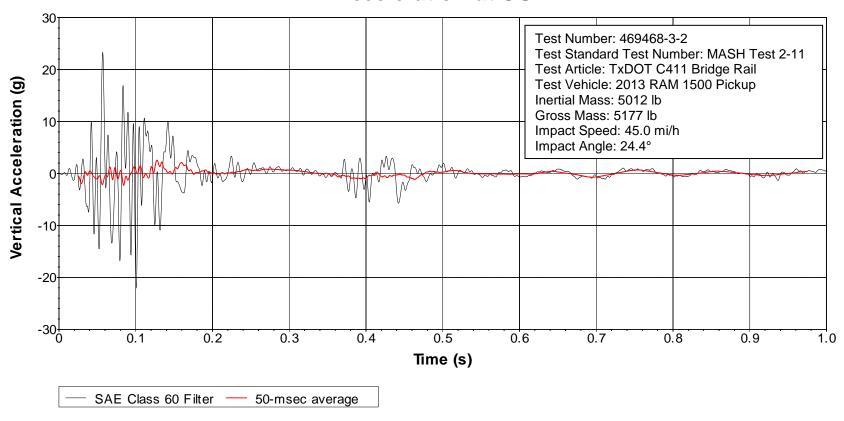
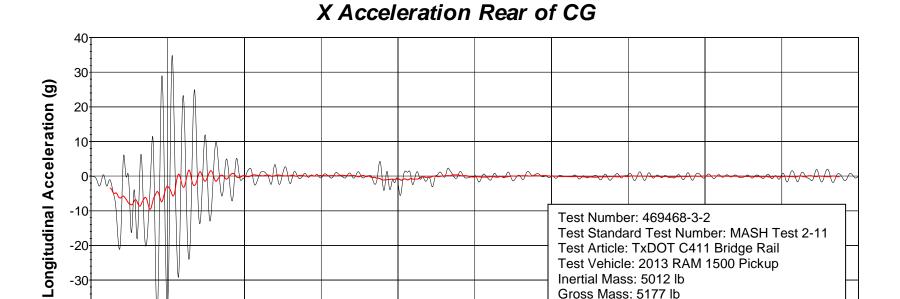


Figure C.15. Vehicle Vertical Accelerometer Trace for Test No. 469468-3-2 (Accelerometer Located at Center of Gravity).

-40

-501

0.1


SAE Class 60 Filter —

0.2

0.3

50-msec average

0.4

0.5

Time (s)

Impact Speed: 45.0 mi/h

0.7

0.8

0.9

1.0

Impact Angle: 24.4°

0.6

Figure C.16. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-3-2 (Accelerometer Located Rear of Center of Gravity).

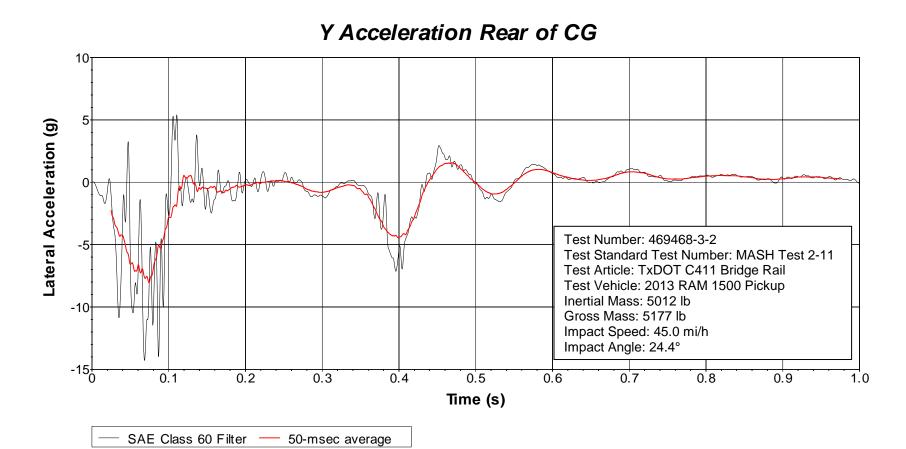
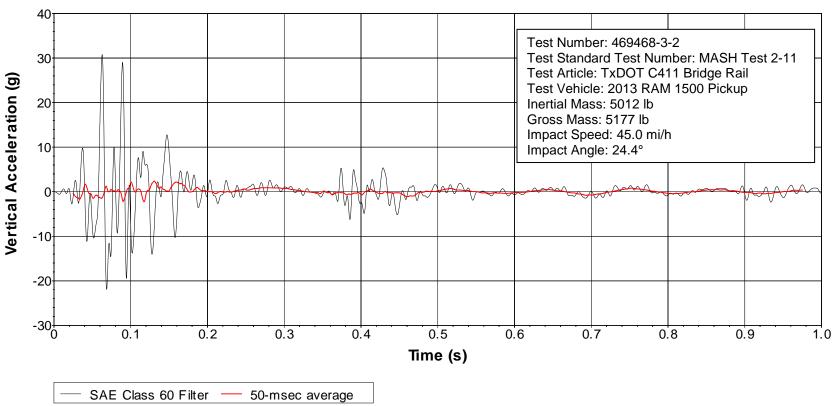
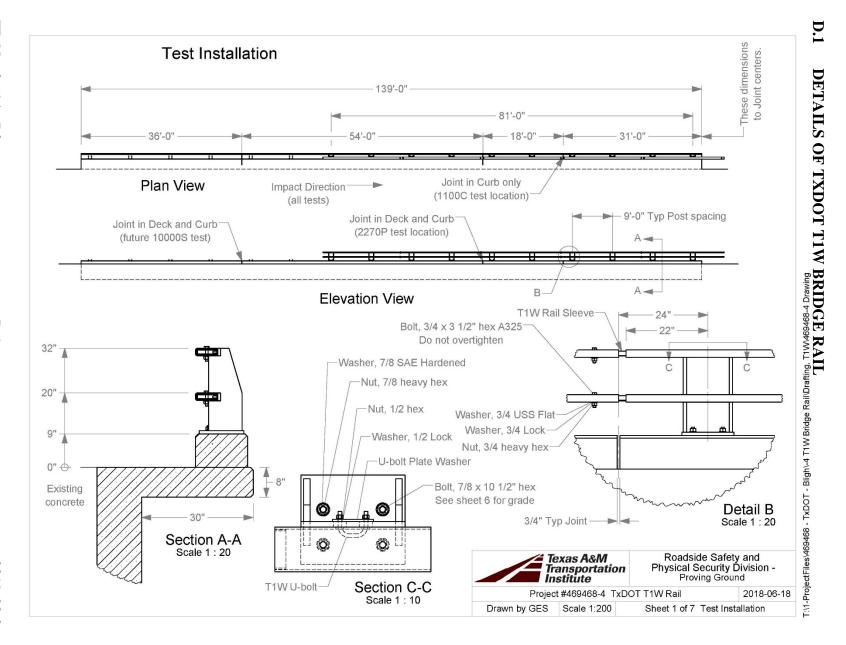
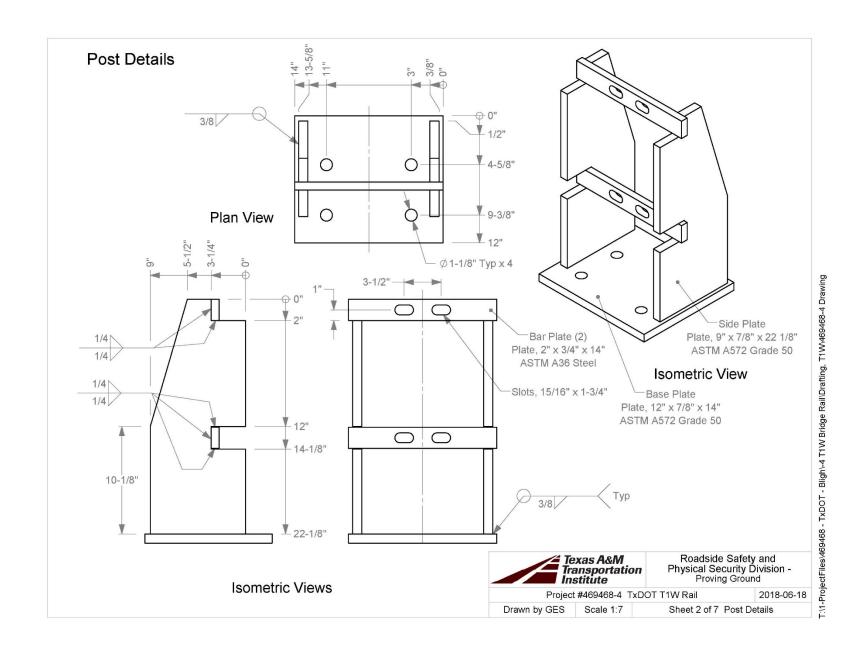
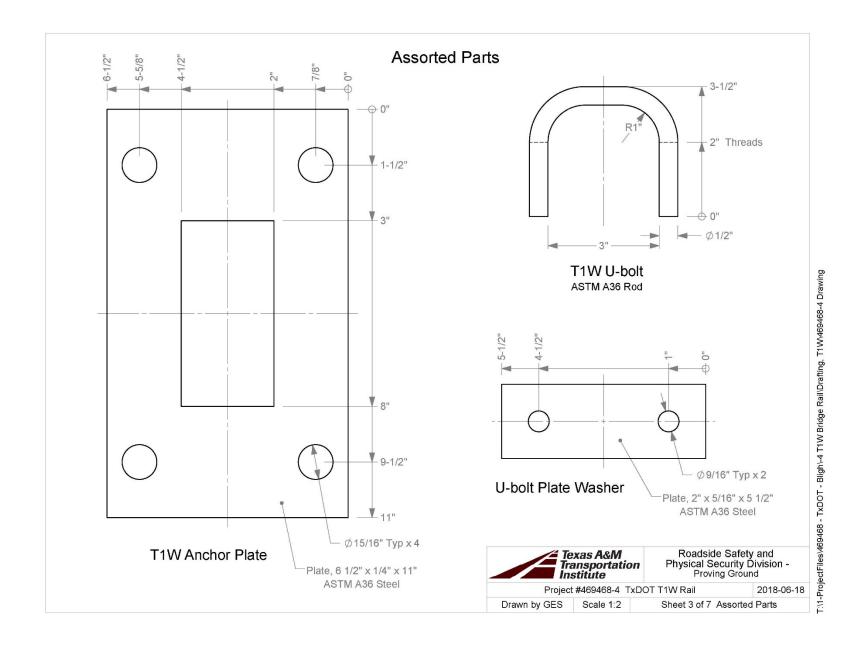
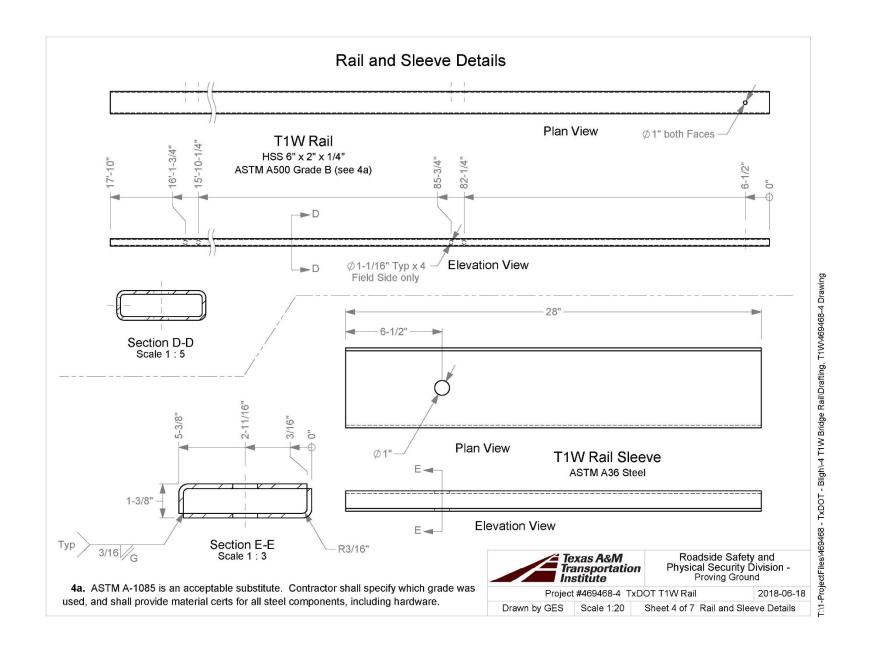
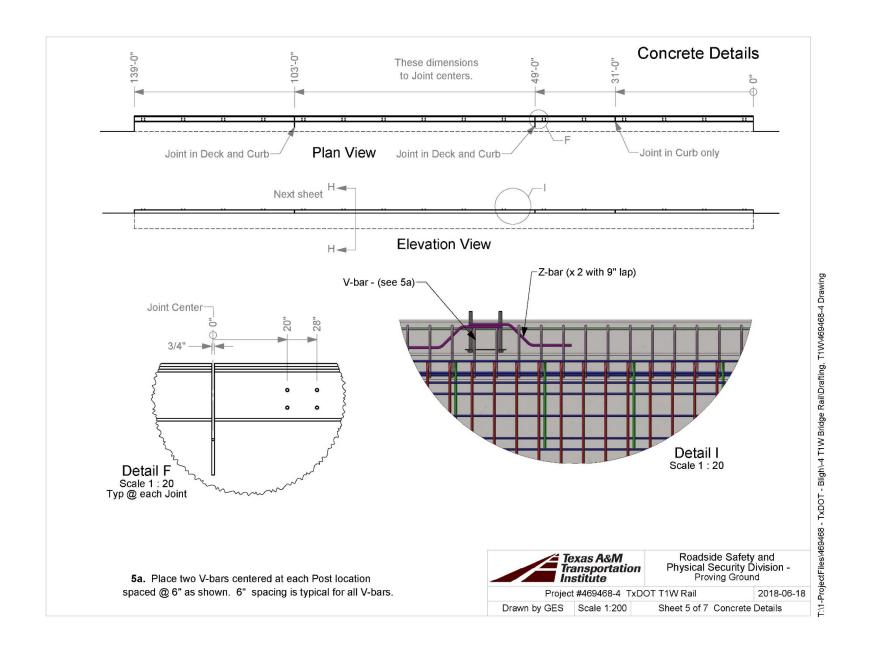
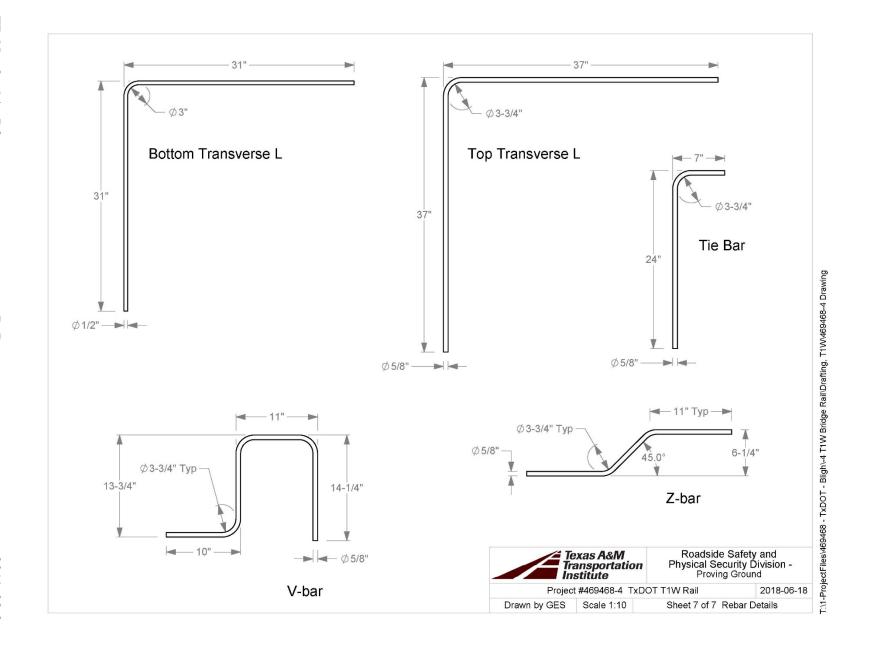


Figure C.17. Vehicle Lateral Accelerometer Trace for Test No. 469468-3-2 (Accelerometer Located Rear of Center of Gravity).


Figure C.18. Vehicle Vertical Accelerometer Trace for Test No. 469468-3-2 (Accelerometer Located Rear of Center of Gravity).


APPENDIX D. TXDOT T1W BRIDGE RAIL



D.2 SUPPORTING CERTIFICATION DOCUMENTS

STRAIGHT BILL OF LADING-SHORT FORM ORIGINAL-NON NEGOTIABLE

CMC INCO TERMS: CPT Bryan

Texas Traffic Institute T1w Rail -

3100 State Hwy 47, Bldg. 7091

72464667

SHIPMENT NO.(BOL): 72464667 DATE AND TIME: 05/15/201812:19:00

SHIP FROM: CMC Sterling Steel Truck 2001 Brittmoore Road Houston, TX 77043-2208

USA

Contact Phone No. :713-690-0347

Contact Phone No. :(254)859-5494

TRUCK/UNIT No:

SHIP TO: 3102704

Fax No. :(254)859-5497

CARRIER'S NAME: PBH Priority Express Corp

Bryan, TX 77807-0000 USA

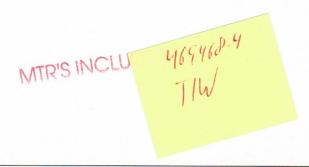
SEAL NUMBER:

TRAILER/RAILCAR No: SOLD TO: 3007327

Ellis Mc Ginnis Construction 2895 Eddy Gatesville Pkwy Eddy, TX 76524-3911

USA

Contact Phone No. :2548595494


Fax No. :2548595497

Subject to Section 7: Subject to Section 7 of Conditions of applicable bill of lading, if this shipment is to be delivered to the consignee without recourse on the consignor, the consignor shall sign the following statement. The carrier shall not make delivery of this shipment without payment of freight and all other lawful charges.

Consignor's Signature : _ BOL INSTRUCTIONS:

NOTES/SPECIAL INSTRUCTIONS: MIKE 254-859-5494 Additional Instructions :

				Material Details				
Delivery	Cust PO	Ctrl Cd	Rel No.	Release Description	Dwg #	Material Description	PCS	Weight LB
PROJECT:	R/1823300809	UP						
3178495	2812	0QXN	1	T1W RAIL		Rebar Black 60/420		5,520
						Total Waight		E 500

RECEIVED, subject to the classifications in effect on the date of the issue of the Bill of Lading, the property described above, in apparent good order, except as noted (contents of packages unknown), marked, consigned, and destined as indicated below, which said carrier following the property of the property under the contract, agrees to carry to its usual place of delivery at said destination. If on its route, otherwise to deliver to a profit or any said property over all or any

DRIVER'S SIGNATURE/AGENT : _

NOTICE TO RECEIVERS :Please check each item on this shipping bill carefully. CMC will not be responsible for any exceptions to goods unless notified within twenty four hours and noted on this document.

RECEIVED BY :	DATE:	TIME:
---------------	-------	-------

DELIVERED BY:

DATE TIME IN: ,TIME OUT_

Page 1 of 1

STRAIGHT BILL OF LADING-SHORT FORM ORIGINAL-NON NEGOTIABLE

72464667

SHIPMENT NO.(BOL): 72464667 DATE AND TIME: 05/15/201812:19:00

SHIP FROM:

CMC Sterling Steel Truck 2001 Brittmoore Road Houston, TX 77043-2208

Contact Phone No. :713-690-0347

CMC INCO TERMS: CPT Bryan SHIP TO: 3102704 Texas Traffic Institute T1w Rail -

3100 State Hwy 47, Bldg. 7091 Bryan, TX 77807-0000 USA

TRUCK/UNIT No:

Contact Phone No. :(254)859-5494 Fax No.

:(254)859-5497

SEAL NUMBER : TRAILER/RAILCAR No: SOLD TO: 3007327

Ellis Mc Ginnis Construction 2895 Eddy Gatesville Pkwy Eddy, TX 76524-3911

USA

Contact Phone No. :2548595494

Fax No. :2548595497

Subject to Section 7: Subject to Section 7 of Conditions of applicable bill of lading, if this shipment is to be delivered to the consignee without recourse on the consignor, the consignor shall sign the following statement. The carrier shall not make delivery of this shipment without payment of freight and all other lawful charges.

CARRIER'S NAME: PBH Priority Express Corp

Consignor's Signature : BOL INSTRUCTIONS:

NOTES/SPECIAL INSTRUCTIONS: MIKE 254-859-5494 Additional Instructions :

Material Details Ctrl Cd Rel No. Material Description **Cust PO** Release Description Dwa# PCS Weight LB PROJECT: R/1823300809 3178495 T1W RAIL Rebar Black 60/420 5.520 Total Weight 5,520

MTR'S INCLUDED

RECEIVED, subject to the classifications in effect on the date of the issue of the Bill of Lading, the property described above, in apparent good order, except as noted (contents of packages unknown), marked, consigned, and destined as indicated below, which said carrier theiring understood frioughput this contract as meaning any person or the property order the contract, agrees to carry to its usual plot of delivery at said destination, it on its order of the route to said destination. It is mutually agreed, as to each carrier of all or any said property over all or any said property over all or any portion of said route to destination, and as to each party at any time interested in all or any or said property, that every service to be performed hereunder shall be subject to all the terms and conditions of the Uniform Domestic Straight Bill of Lading set forth (1) in Official, Southerri, Western and Illinois Freight Classifications in effect on the date hereof, if this is a rail or a rail-water shipment, or (2) agreed to by the shipper and accepted for himself and his assigns. This is to certify that the entry advertises that he is familiar with a said carrier and the said terms and conditions of the said bill of agreed to by the shipper and accepted for himself and his assigns. This is to certify that the anover all or a part of Bill of Lading approved by the Interested Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commission. NOTE: Where the rate is dependent on value, shipper's are required to state specifically in writing the agreed or declared value of property. The agreed or declared value of the property is hereby specifically state by the shipper's exception.

DRIVER'S SIGNATURE/AGENT:

NOTICE TO RECEIVERS :Please check each item on this shipping bill carefully. CMC will not be responsible for any exceptions to goods unless notified within twenty four hours and noted on this document.

RECEIVED BY :	DATE:	TIME:	,
DELIVERED BY:	DATE	TIME IN	T.11

Page 1 of 1

STRAIGHT BILL OF LADING-SHORT FORM **ORIGINAL-NON NEGOTIABLE**

CMC INCO TERMS: CPT Bryan

Texas Traffic Institute T1w Rail -

3100 State Hwy 47, Bldg. 7091

72464667

SHIPMENT NO.(BOL): 72464667 DATE AND TIME: 05/15/201812:19:00

SHIP FROM:

CMC Sterling Steel Truck 2001 Brittmoore Road Houston, TX 77043-2208

Fax No.

Contact Phone No. :713-690-0347

Bryan, TX 77807-0000 USA Contact Phone No. :(254)859-5494

TRUCK/UNIT No:

SHIP TO: 3102704

Fax No. :(254)859-5497 SEAL NUMBER: TRAILER/RAILCAR No: SOLD TO: 3007327

Ellis Mc Ginnis Construction 2895 Eddy Gatesville Pkwy Eddy, TX 76524-3911

USA

Contact Phone No. :2548595494

Fax No. :2548595497

Subject to Section 7: Subject to Section 7 of Conditions of applicable bill of lading, if this shipment is to be delivered to the consignee without recourse on the consignor, the consignor shall sign the following statement. The carrier shall not make delivery of this shipment without payment of freight and all other lawful charges.

CARRIER'S NAME: PBH Priority Express Corp

Consignor's Signature : BOL INSTRUCTIONS:

NOTES/SPECIAL INSTRUCTIONS: MIKE 254-859-5494 Additional Instructions:

	Material Details							
Delivery	Cust PO	Ctrl Cd	Rel No.	Release Description	Dwg #	Material Description	PCS	Weight LB
PROJECT:	R/1823300809 L	JP.						
3178495	2812	0QXN	1	T1W RAIL		Rebar Black 60/420		5,520
			10			Total Weight		5,520

MTR'S INCLUDED

RECEIVED, subject to the classifications in effect on the date of the issue of the Bill of Lading, the property described above, in apparent good order, except as noted (contents of packages unknown), marked, consigned, and destined as indicated below, which said carrier (the word carrier being understood throughout this contract as meaning any person or corporation in possession of the proberly under the contract, agrees to carry to its usual place of delivery at said destination. If on its route, otherwise to deliver to another carrier on the route to said destination. If on its route, otherwise to deliver to another carrier on the route to said destination. If on its route, otherwise to deliver to another carrier on the route to said property over all or any said property over all or any portion of said route to destination, and as to each party at any time interested in all or any of said property, that every service to be performed hereunders shall be subject to all the terms and conditions of the Uniform of the property of the carrier of the carrier

DRIVER'S SIGNATURE/AGENT : __

NOTICE TO RECEIVERS : Please check each item on this shipping bill carefully. CMC will not be responsible for any exceptions to goods unless notified within twenty four hours and noted on this document.

RECEIVED BY :	DATE:	TIME:		
DELIVERED BY:	DATE:	TIME IN:	.TIME OUT	
				Page 1 of 1

STRAIGHT BILL OF LADING-SHORT FORM **ORIGINAL-NON NEGOTIABLE**

CMC INCO TERMS: CPT Bryan

Texas Traffic Institute T1w Rail -

3100 State Hwy 47, Bldg. 7091

TRUCK/UNIT No:

SHIP TO: 3102704

72464667

SHIPMENT NO.(BOL): 72464667 DATE AND TIME: 05/15/201812:19:00

SHIP FROM :

CMC Sterling Steel Truck 2001 Brittmoore Road Houston, TX 77043-2208

USA

Contact Phone No. :713-690-0347

Fax No.

Bryan, TX 77807-0000 USA

Fax No.

:(254)859-5497

Contact Phone No. :(254)859-5494

CARRIER'S NAME: PBH Priority Express Corp

SEAL NUMBER: TRAILER/RAILCAR No: SOLD TO: 3007327

Ellis Mc Ginnis Construction 2895 Eddy Gatesville Pkwy Eddy, TX 76524-3911

USA

Contact Phone No.

Fax No. :2548595497

Subject to Section 7: Subject to Section 7 of Conditions of applicable bill of lading, if this shipment is to be delivered to the consignee without recourse on the consignor, the consignor shall sign the following statement. The carrier shall not make delivery of this shipment without payment of freight and all other lawful charges.

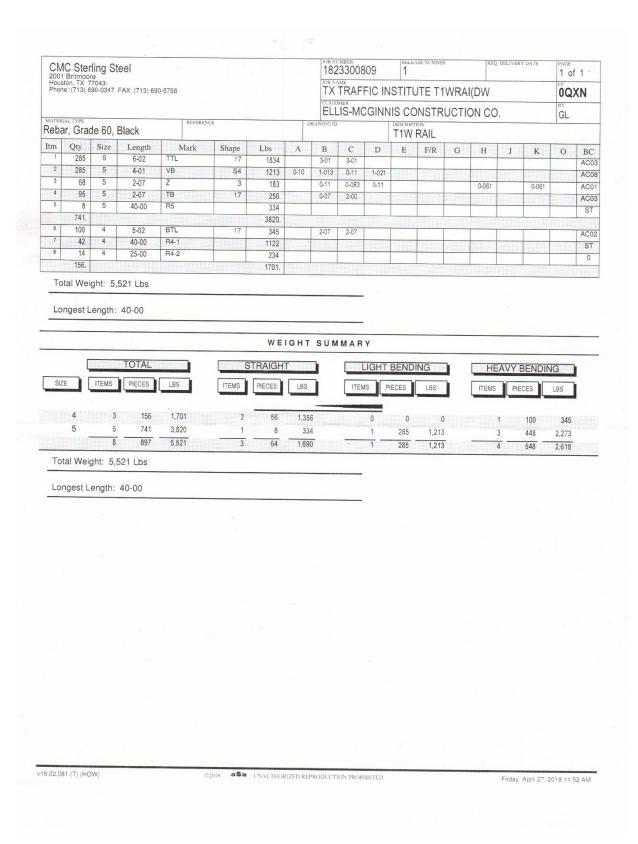
Consignor's Signature : BOL INSTRUCTIONS:

NOTES/SPECIAL INSTRUCTIONS: MIKE 254-859-5494 Additional Instructions:

				Material Details				
				iwateriai Details				, , , , , , , , , , , , , , , , , , , ,
Delivery	Cust PO	Ctrl Cd	Rel No.	Release Description	Dwg #	Material Description	PCS	Weight LB
PROJECT:	R/1823300809	UP						
3178495	2812	0QXN	1	T1W RAIL		Rebar Black 60/420		5,520
						Total Weight		5.520

MTR'S INCLUDED

RECEIVED, subject to the classifications in effect on the date of the issue of the Bill of Lading the property described above, in apparent good order, except as noted (contents of packages unknown), marked, consigned, and destined as indicated below, which said carrier being understood throughout this contract as meaning any person or the route to said destination. It is mitutally agreed, as to each carrier of all of any said property over all or any said property, that every service to be performed nereunder shall be subject to all that the terminance of said property, that every service to be performed nereunder shall be subject to all that the terminance of the said property, that every service to be performed nereunder shall be subject to all that the terminance of the said of


DRIVER'S SIGNATURE/AGENT : _

NOTICE TO RECEIVERS : Please check each item on this shipping bill carefully. CMC will not be responsible for any exceptions to goods unless notified within twenty four hours and noted on this document.

RECEIVED BY :	DATE:	TIME:	

DELIVERED BY: DATE: _,TIME OUT

TR No. 0-6946-R2 D-11 2019-03-26

CMC STEEL TEXAS
1 STEEL MILL DRIVE
SEGUIN TX 78155-7510

Bend Test 1 Passed

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

*Meets the "Buy America" requirements of 23 CFR635.410

TOMMY HEWITT

Quality Assurance Manager

HEAT NO.:3079675 SECTION: REBAR 13MM (#4) 40'C GRADE: ASTM A615-16 Gr 420/6 ROLL DATE: 04/25/2018 MELT DATE: 04/25/2018 Cert. No.: 82374860 / 079675A3	0	S CMC Ret O L BRITTMO D HOUSTO US 7704 T 713-690	ON TX 3-2208	S H I P			Delivery#: 82374860 BOL#: 72461341 CUST PO#: CUST P/N: DLVRY LBS / HEAT: 13254.000 LB DLVRY PCS / HEAT: 496 EA
Characteristic	Value		Characteris	ic Valu	e	Charac	teristic Value
С	0.41%						,
Mn	0.81%						
P	0.011%						
S	0.048%						
Si	0.18%						
Cu	0.32%						
Cr	0.16%						
Ni	0.16%						
Мо	0.056%						
V	0.000%						
Cb	0.002%						
Sn	0.011%					The Following is t	rue of the material represented by this MTR:
Al	0.000%					1	is fully killed
Will Committee of							elted and rolled in the USA
Yield Strength test 1	62.8ksi					1	1:2004 3.1 compliant
Tensile Strength test 1	99.4ksi						no weld repair
Elongation test 1	13%					1	no Mercury contamination
Elongation Gage Lgth test 1	8IN						tured in accordance with the latest version
Bend Test Diameter	1.750IN					of the pla	int quality manual

REMARKS :

MATERIAL TEST REPORT

PAGE 1

Date Printed: 05/02/2018

Customer No: 000000006015

PO Number: 4501221760

Ship Date: 05/02/2018 Order Number: 93623

Load Number: 117909

CMC REBAR P O BOX 139094

DALLAS, TX 75313

Item Number

4REBAR

Description

4 GRADE 60 COILED REBAR

CMC REBAR

2001 BRITTMOORE

HOUSTON, TX 77043

I	CHEMICAL ANALYSIS															
	Heat Number	С	Mn	P	S	Si	Cu	Ni	Cr	Mo	Şn	V	Al	N	Nb	
Person	1820634	0.4300	0.9000	0.0150	0.0220	0.2400	0.2400	0.1700	0.2500	0.0500	0.0130	0.0020	0.0040	0.0082	0.0003	

MECHANICAL PROPERTIES Tensile Elongation **Bend Test** Yield (% 8" guage) Pass/Fail Heat Number (Psi/Mpa) (Psi/Mpa) 1820634 68590 psi / 473 Mpa 116653 psi / 805 Mpa 13.27 Pass

I hereby certify that the above test results are correct as contained in the records of the company. All Manufacturing processes of the steel materials in this product, including melting have occurred in the United States. The material was produced and tested according to ASTM A615/A615M-065.

Quality Assurance:

MATERIAL TEST REPORT Date Printed: 03/28/2018

PAGE 1

Mid American Steel & Wire

Customer No:

000000006015

PO Number: 4501201440

Ship Date: 03/28/2018 Order Number: 92187

Load Number: 116527

CMC REBAR P O BOX 139094

DALLAS, TX 75313

Item Number

5REBAR

Description

#5 GRADE 60 COILED REBAR

CMC REBAR

2001 BRITTMOORE

HOUSTON, TX 77043

CHEMICAL ANALYSIS

Heat Number Si Cu Mn Ni Mo Sn Nb

1723630

0.4600 0.8700 0.0170 0.0260 0.2000 0.2100 0.1100 0.1900 0.0300 0.0110 0.0030 0.0010 0.0067 0.0005

	MECHANIC	CAL PROPERTIES			
	Yield	Tensile	Elongation	Bend Test	
Heat Number	(Psi/Mpa)	(Psi/Mpa)	(% 8" guage)	Pass/Fail	
1723630	62474 psi / 431 Mpa	108254 psi / 747 Mpa	11.71	Pass	line or o

I hereby certify that the above test results are correct as contained in the records of the company. All Manufacturing processes of the steel materials in this product, including melting have occurred in the United States. The material was produced and tested according to ASTM A615/A615M-065.

Quality Assurance

CMC STEEL TEXAS 1 STEEL MILL DRIVE SEGUIN TX 78155-7510

0.20%

0.088%

0.002%

0.012%

69.3ksi

Mo

Cb

Sn

Yield Strength test 1

CERTIFIED MILL TEST REPORT For additional copies call

For additional copies call 830-372-8771 We hereby certify that the test results presented here are accurate and conform to the reported grade specification

TOMMY HEWITT

*Meets the "Buy America" requirements of 23 CFR635.410

							Commit (ICVIII)		
HEAT NO.:3079087 SECTION: REBAR 16MM (#5) 40'0" 420/60 8096 GRADE: ASTM A615-16 Gr 420/60 ROLL DATE: 04/06/2018 MELT DATE: 04/03/2018 Cert. No.: 82359116 / 079087A236		S CMC Rebar Houston-West O L BRITTMOORE RD. HOUSTON TX US 77043-2208 T 713-690-0347			CMC Sterling Steel 2001 Brittmoore Rd Houston TX US 77043-2208 7136900347 7136905758	Quality Assur	Delivery#: 82359116 BOL#: 72437512 CUST PO#: CUST P/N: DLVRY LBS / HEAT: 48060.000 LB DLVRY PCS / HEAT: 1152 EA		
Characteristic	Value		Characteristi	c Valu	9	Chara	cteristic Value		
С	0.41%			- 1		T	cteristic value		
Mn	0.82%								
Р	0.013%								
S	0.049%								
Si	0.19%								
Cu	0.34%								
Cr	0.20%								

Al 0.002%

The Following is true of the material represented by this MTR:

*Material is fully killed

*100% melted and rolled in the USA
*EN10204:2004 3.1 compliant

Tensile Strength test 1 106.4ksi
Elongation test 1 14%

Elongation test 1 14%

*Contains no Mercury contamination

Bend Test Diameter 2.188IN *Manufactured in accordance with the latest version

Bend Test 1 Passed Of the plant quality manual

REMARKS:

MATERIAL STATEMENT

SUPPLIER: ADDRESS:

Texas Corrugators-Austin Division, Inc.

105 Tradesman Park Dr.

Hutto, TX 78634

COUNTY: TEXAS A&M TTI TXDOT

PROJECT: B860008

CONTROL:

CONTRACT NUMBER: 512-388-0588

CONTRACTOR: ROADWAY SPECIALTIES, INC

DIVINACIN	UMBER: 312-3	000-0300	CONTRACTOR, ROADWAY SPECIALTIES, INC									
Purchase Order #	Quantity (Amt/Units)	MATERIAL DESCRIPTION	Mill Name	Heat#	Material Use	Required Specification	Documer HTR	ntation Cert				
R-0443	168.4 L. F.	6" X 2" X 1/4" RECT. TUBE	SOUTHLAND TUBE	1719347	TIWRAIL	A500-13 B\C	Х					
	31.6 SQ. FT.	7/8" PLATE	NUCOR STEEL	B6Y6840	T1W RAIL	A572-50	X					
	4.1 SQ. FT.	%" PLATE	SSAB	E88228	TIW RAIL	A36	X					
	15 SQ. FT	3/16" PLATE	UNITED STATES STEEL CORPORATION	52473D	TIW RAIL	A36	х					
						6						

This is to certify that the materials listed above and on the attached supplement (if attached) are in conformance with the governing specification(s). This is also to certify that all manufacturing processes for steel and iron materials or for the application of coatings (epoxy, galvanizing, painting or any other coating that protects or enhances the value of the steel or iron material) to these materials occurred in the United States of America.

Manufacturing processes are defined as all processes required to change the raw ore or scrap metal into the finished in-place steel or iron product. The attached mill test reports (MTRs) and Certifications (Cert.) are offered as proof of domestic origin.

as proof of domestic origin.	[Sect. The Sect. As an Alleger Sect. As a section of the section o	I declare under penalty of perjury under the laws of the United Texas, that the foregoing is true and correct and that I am auth	States of America and the State of sorized to sign for the firm listed
Subscribed and sworn to before me	KAREN DUBOSE A Re Notery Public, State of Texas SE Comm. Expires 10-04-2021	Authorized Corporate Official Signature	8/16/18 Date
this later day of Play 20 8	Motory ID 11033805	Ryan J. Cole – Vice President Type Name and Title	
Notary Public TYPEN CMODS		Texas Corrugators-Austin Division, Inc.	
My Commission Expires: / O . 4	20	(Firm Name)	

P.O. Box 938 Round Rock, TX 78680 EIN# 74-2516771 (512) 388-0588 ph (512) 388-0417 fax

INVOICE

Invoice # 138969 Invoice/Ship Date 6/25/2018

Sold to:

Deliver to:

ROADWAY SPECIALTIES, INC PO BOX 90309 AUSTIN, TX 78709 CUSTOMER PICK UP

Customer PO	Ship Via	Telephone	Ref. No.	Orde	er Date	SLS	# Т	erms			
13153	CPU	512-280-6666	R-0443	6/22	22/2018 RJC Net 30						
Units		Description		<u> </u>	Qty U/M Unit Price Ar						
6 2 2 10 — 20 20 64 6 6 6	* ANCHOR PLATES * PU ON SB 17179	2) —			84.83 6.0 2.0 10.0 20.0 20.0 64.0 6.0 16.0	EA EA EA					
					Amo	unt					
Job Name: TEX	AS A&M TTI TXDOT	Γ1W RAIL			Tax ((0.0%))	\$0.0			
Job #: B860 General: ELL	0008				Tota	al					

02-21-2018 11:00

Load - 2989385

BL - 3837958

BLR466

Texas Corrugators, Inc Cust. PO - M-8787

Order-Line - 15785209 / 1

Heat - 1719347

3525 Richard Arrington, Jr., Bivd, N, Birmingham, Alabama 35234 Phone: (205) 251-1884 Lab Fax (205) 421-4561 Lab@SouthlandTube.com

TEST REPORT

Andree Committee and a literature private improved the last of	established in process of the second contract con-	odrianson market national national national desired frances	en de la		CONTRACTOR OF THE PARTY OF THE			
Customer Name	KLOECKN	ER METALS CORPO	RATION					
Customer PO N	o.: 7244956		omer Part No: T6214RI	ner Part No: T6214RECTA5000288				
Spec/Grade: /	\500-13 Grade B/C			Heat No.:	1719347			
Description: (CARBON STEEL T	JBING		Print Date:	2/16/2018			
Size/Length:	6" X 2" X 1/4" 24'			Nominal Thickness:	0.250			
Carbon (C):	0.2200	Tin (Sn):	0.0040	Vanadium (V):	0.0040			
Manganese (Mr	0.8000	Nickel (Ni):	0.0300	Columbium (Cb):	0.0010			
Phosphorus (P)	: 0.0090	Chromium (Cr):	0.0400	Titanium (Ti):	0.0010			
Sulphur (S):	0.0030	Molybdenum (Mo):	0.0100	Boron (B):	0.0000			
Silicon (Si):	0.0400	Aluminum (Ai):	0.0250	Calcium (Ca):	0.0020			
Copper (Cu):	0.0800	Nitrogen (N):	0.0050	Carbon Equiv. (CE):	0.3715			

				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Sample Number	Sample Date	Tensile (psi)	Yield (psi)	Elongation (%)
SL60752	2/1/2018	76,200	62,300	27.50

We hereby certify that the above figures are correct as contained in the records of this company. Testing, where it is performed, is performed according to applicable standards (Yield Strength determined using 0.2% offset method and Elongation is measured over a 2" gauge length). Finished goods that require destructive testing by either flattening or flaring to meet the requirements of the standard to which they are certified have been destructively tested in accordance with the pertinent standard. Further, this certification is compliant with the EN10204:2004 Standard for Type 3.1 inspection Documents.

Ron Lowery

Laboratory Manager Southland Tube Incorporated

Melted & Manufactured in the U.S.A.

STI Pickup No.: 02LB245

STI Order No.: 00458471

STI Item No.: 2.0X6.025024

NUCOR	MILL TEST CERTIFICATE 1700 HOLT RD N.E.
NUCER STEEL TUBEALOUSA, INC.	Tuscaloosa, AL 35404-1000

SFI GRAY STEEL - Date:5/4/2018 - Customer:TEXAS CORRUGATORS-AUSTIN DIV, (EMAIL INV) - PO#:R-0443 - P/N:

800 800-8204 customerservice@nucortusk.com

Load Numb	er .	Tálla	LEEM .	Order:	Number		PO N	0 L	ine N	9	∌ Pa	rt Nu	nber	. 7		ertifi	cate	Numbe	r 🔭 🧳	Prepa	red	
R140252			23 N-151				22.98	39 1							s	7014230	11-1			01/12/	2017 0	9:12
Grade	6 39 all	346	Marin St.	at Tar	10.0			, a		242					24 / 2017		SFI-G	RAY S	STEEL			Environment Security
Order Des										1					er PO#:							
Hot Roll	Plate 0.8750 IN x	aë ode	TH v 220	L OOD TI	SI .					1				Thickne					T1 00 0		•	
	Tan Descri			(4004 %)												7/8			SFI PO #	701993		
AS7250D L	OW SI: ASTM	A572-5	0-15/A708	-50-15	/M270-5	0 Lo 5	H im	pac		1				Hest &		B6Y684	0-02					
														Plate #	:	54545						
Shipped		0.020000000	Certifae	24 and 10 and 2	Mn	F P.4	ĵŠ.	Ši.	, Çû	Ni s	Cr.	No ;	Gb.	V.	Ale	ŢĴ,	N2 >	B	' ca	ş Şn	ČEV	ACI
Item	Numbe	100	By _G			. 44	100		14 10		200	'A 022	0.047	0.037	o opt	O OTE I	011	0.0001	0.007		0.27	
6L2535BA	B6Y6840-0	12 ***	B6Y6840		A	0.012			0.16	-			-	-	-	-			0.001	-	0,32	-
6L2535CA	B6Y6840-0	2 ***	B6Y6840			0.012			0.16	· ·				to the part of	100 100 100 100 100 100 100 100 100 100			116	0.001		0.32	-
61.2535CE	B6Y6840-0	32 ***	B6Y6840	0.07	1.23	0.012	0.003	0.03	0.16	0.06	0.07	0.022	0.047	0.077	0.025	0.015	0.011	0.0001	0.001	8	0,32	1
Interest and the second	and the second	San America	New Colonia	Charles See		in loca	4000		A88031	JA TO	E17880		Charpy	Advances.					S CHARLES	Contract of		
	Certified By 1914		eat mber	Yield Viei	e Ko	e Y		ONGATI 211 - 3	8 3	denua. HOKZA	HB	Stze	mii , . I	2 2	44.3	AVo	4 2	1	34	33 1	Ayg_	Temp
1	S6L2535FTT		40 ***	65.5	70.9	92.	4		26.1							1						
6L2535BA	S6L2535FLT	86Y68	40 ***			- "						7.5	181	196	202	193	.0					+20 F
6L2535CA	S6L2535FTT	B6Y68	40 ***	65.5	70.9	92.	4		26.1						1							
6L2535CA	S6L2535FLI	B6Y68	40 ***									7.5	181	196	202	193	.0					-20 F
6L25350B	S6L2535FTT	B6Y68	40 ***	65.5	70.9	92.	4		26.1													
Company of the Compan	CEL STEEL T	REVES	40 ±5#	-								7.5	181	196	202	193	.0			. 1		-20 F

3 Weight: 17152 LBS Items: 3 PCS:

Mercury has not come in contact with this product during the manufacturing process for has any mercury been used by the manufacturing process. Certified in accordance with EN 18204 3.1. No weld repair has been performed on this material. (SO 9001:2008 Registered, PED Certified.

'** indicates Heats melted and Manufactured in the U.S.A.

We hereby certify that the product described above passed all of the tests required

SFI GRAY STEEL - Date: 5/4/2018 - Customer: TEXAS CORRUGATORS-AUSTIN DIV, (EMAIL INV) - PO#:R-0443 - P/N:

Test Certificate

Test Certificate

12400 Highway 43 North, Axis, Alabama 36505, US

Form TC1: Revision 2: Date 23 Apr 2014

3 / 5 / 2018	SFI-GRAY STE	EL	Customer P.	omer P.O. No.: 702112							Order l	lo.: 41-	5293	38-01	Shipp	ing Ma	nifes	t: A	T2604	04
Customer Name:			Product Des						ASME SA36	(17)			Shir	n Date	: 26 Feb	19	Cort	Na	08165	0700
Customer PO #:					AASHTO	M270	0(15)36, 0	.80-	-1.20 MN			1			: 26 Feb				of 1	
Thickness:	3/4" SFI	PO #: 702112										-								
Heat & Slab:	E88228-A04																			
Plate #:	55318-9,55321-27		Size: 0.75	50 X 8			58.0	(11	(1)										,	
	Tested Piec	es			Tensil		,							lmpa	ct Tests					
Heat	Piece	Tested	Ts		UTS	%RA	Elong %	Tst		Abs	. Energ	y(FTLB			hear	Tst		Tst		WTT
Id	Id	Thickness	Loc	(KSI)	(KSI)		2in 8in	Dir	Hardness	1	2 3	Avg	1	2	3 Avg	Tmp	Dir	Siz		%Shr
E8B228	A03	0.623 (DISCI	(T) [I	57	77		22 22 23	T T T					T				Т			· · · · · · · · · · · · · · · · · · ·
E8B228 E8B228	A04 A07	0.748 (DISCI 1.000 (DISCI	\$B	56	76 75		23	1					1							
DODEEO	11201	131000 (22202		1. 7	1				<u> </u>	-										
Heat						Che	mical Ana	lveic												
Id	.C Mn	P S	Si To	t Al Cu	i Ni	Cr			Съ V	Ti	В	N		IIW						ORGN
E8B228	.19 .99	.008 <.0	01 .23 .0	25 .26	5 .17	.10	.07	1.0	008 .004	.008	8 .00	03.00	62 .	.42						USA

KILLED																				
	Y IS NOT A META	LLURGICAL	COMPONENT	OF TH	E STEE	L AN	D NO W	ERC	URY WAS	NTE	NTION	ALLY I	ADDI	ED DI	URING T	HE M	ANUI	FACT	URE	
	S PRODUCT. IW) = C + MN/6	+ /CP+MO+	V) /5 + /N	T+CII) /	15															
	10204:2004 INS					NT														
100% MI	ELTED AND MANUF	ACTURED IN	THE USA.																	
	TS SHIPPED:		DODG 0	T.D.C.	3.50	00		30D	220		305			500						
	28 A04		PCES: 8	, LBS:	360	OU	,	888	228		A05			PCE	5: 2,	LBS	:	90	00	
ļ.																				
1																				
l																				
1																				
1									2)											
(U)	Cust Part # :								T THIS MATE				Į19	stin V	/ard					
	Cust I all π.				REOU	SD IN A IREME	NTS OF. T	NCE HE /	WITH, AND MAPPROPRIATE	1EETS SPEC	THE IFICAT	ON -	J (1	Still V	SENIOR M	ETALLUG	GIST - V	PRODUC	-	.
Ŀ					1			.,												

United States Steel Corporation

- Melted & Manufactured in the USA Certificate -

Order Number: CQ36555-01

Part Number:

37283

Purchase Order Number: M4424561=4/08

HICKMAN

Source Plant: Granite City Works Certificate Date: 05/14/2013

- Shipmont Details --

Sold To: Ryerson Procurement Corp

Po Box 91602

Lubbock, TX 79490-1602, US

Ship To: Ryerson Procurement Corp

C/O Hickman Processing 5026 N County Rd 1015 Blytheville, AR 72315-6907, US Producer: United States Steel Corporation

600 Grant Street

Pittsburgh, PA 15219, USA

Order Information - CQ36555-01 -

ASTM A1011-12B 36 TYPE 2 FOR CONVERSION TO A36 APPROVED SS C .25 MAX MN 1.35 MAX PICKLE NON-TEMPER ROLLED HR36SK58 EXPOSED-NONTR OIL MEDIUM NO PICKLE WELDS YS MIN 36 KSI TS 58 KSI/80 KSI EL MIN 21 % EL DIST 2 INCHES

Item

- Load Lift Information

Description .177IN X 48

Ft Length IN

Load ID:

Ship Date:

Warehouse Number:

Material ID:

Heat Number:

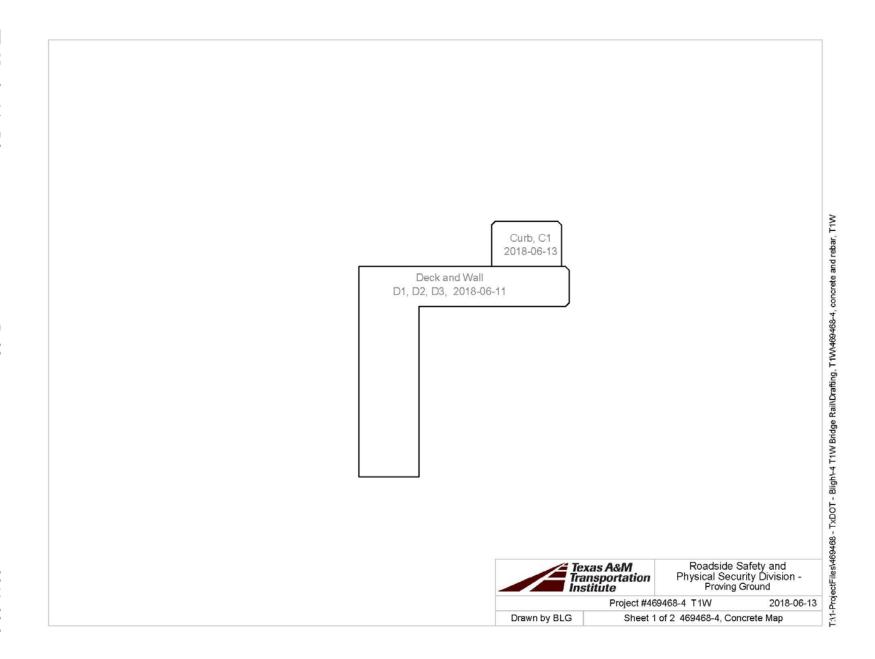
Weight:

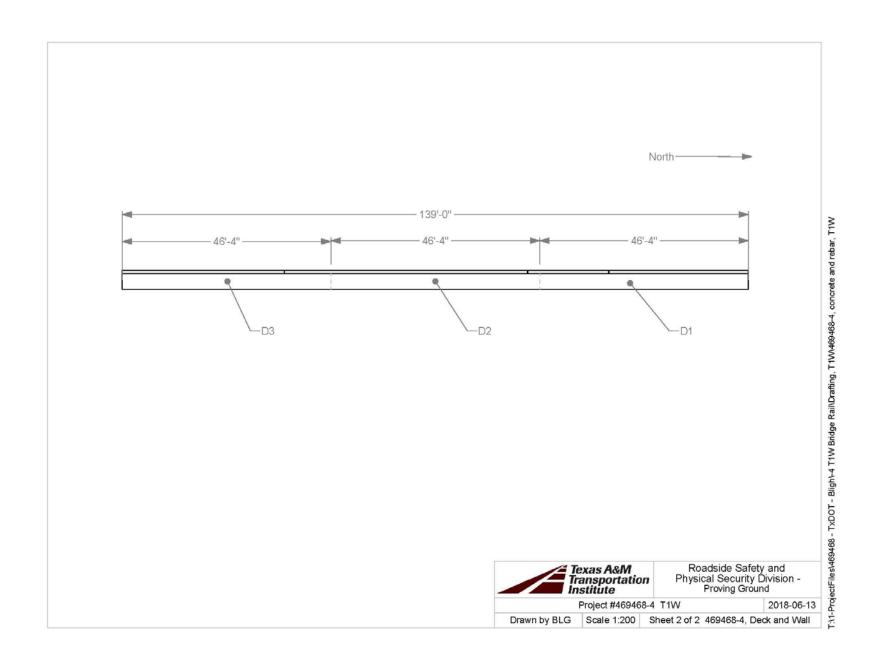
Lin Ft/Pcs:

CW13884

05/14/2013

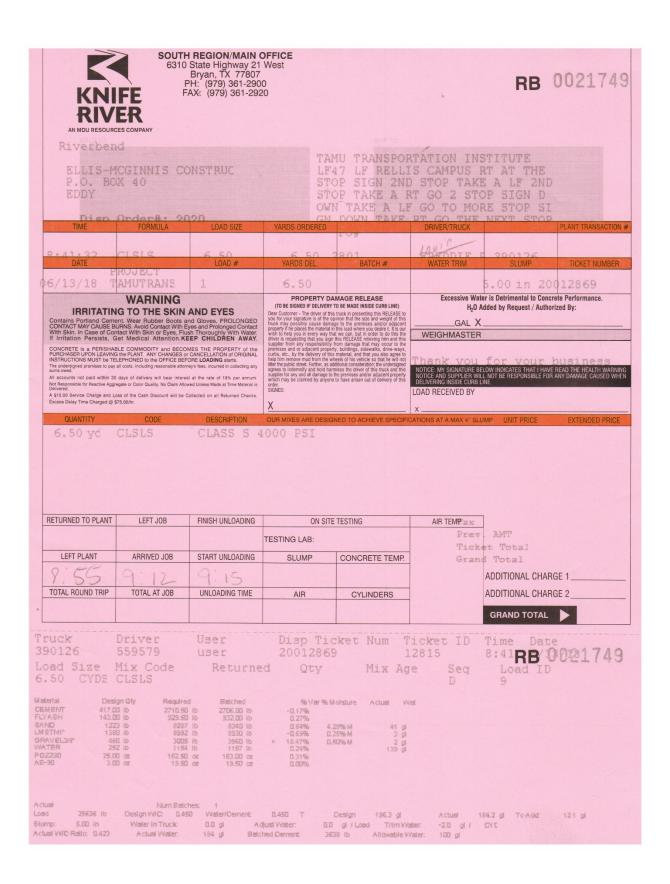
04/09/13-32

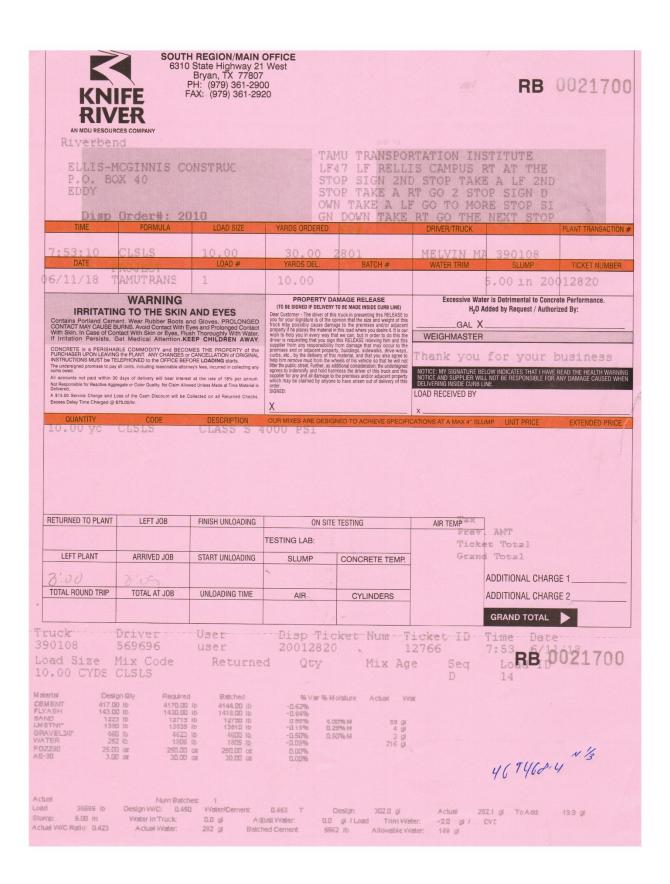

HSM 00539570

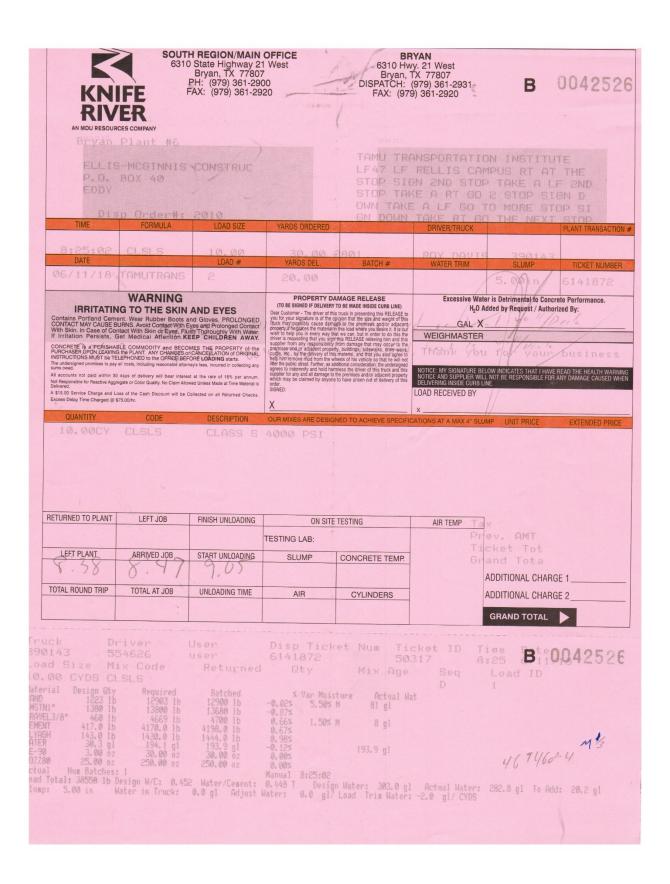

52473D

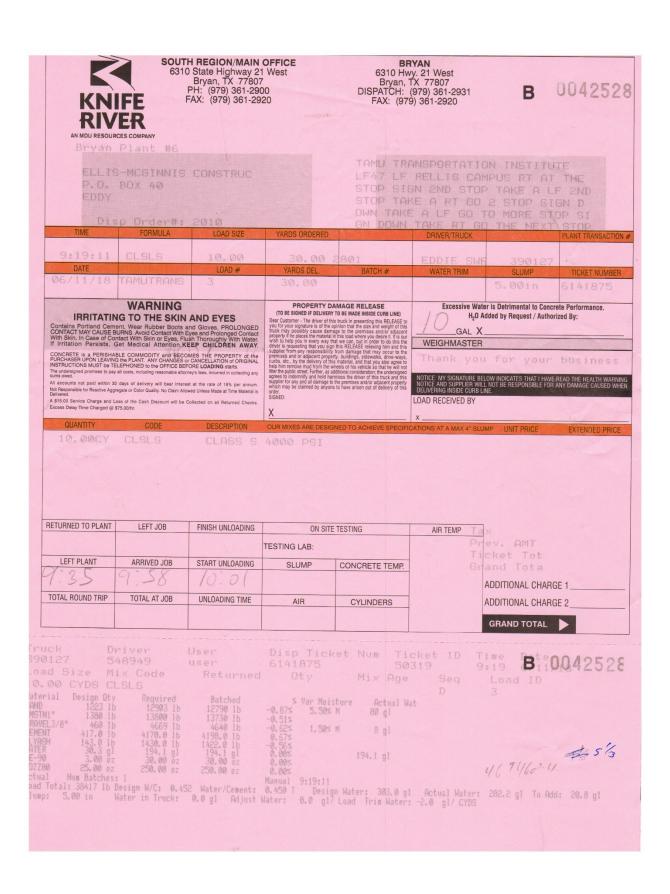
41,100 1,383

This Melted and Manufactured in the USA Certificate confirms that the steel products which are described above resulted from a production sequence in which the melting and pouring of the iron and steel and all major manufacturing steps occurred in the United States of America.


This document is for information purposes only. It is the Buyer's responsibility to investigate and understand its or its customer's requirements and to determine if the steel products described above comply with the requirements of any particular federal, state, provincial or local law or regulation specifying the origin of the steel or restricting the place of manufacture of steel which can be used in any public works project or other application or use that is funded directly or indirectly by government sources. Buyers concerned with such matters should consult with their customer and/or review applicable laws, regulations and government agency guidelines to determine the extent to which melting and/or manufacturing of steel in any country, state, province or locale is required for any particular application or use of the steel products identified above.






Proving Gro 3100 SH 47, Brvan. TX 7	Texas A&I Transport Institute Texas A&IM Universit Bidg 7091 College Station, TX Phone 979-845-6375		5.7.2	Concrete Samplir	a di la companya da l	Revision Date: 2018-04-17
Qı	uality Policy For	m	Revised by: E Approved by:		Revision:	Page:
Project No	: 469468-4	Ca	asting Date:	2018/06/13	Mix Design (psi): <u>4000</u>
Printed Name of Technician takin Sampl	g M. 44	Roc	insuh	Printed Name of Technician breaking Sample	GREG	FriTZ
Signed Name of Technician takin Sampl	g / /	n		Signed Name of Technician breaking Sample	2	2 F
Load No.	Truck No.	Ti	cket No.	Locati	on (from concre	ete map)
CITI	390 26	00.	11249	/ TRUCK /C	0% of a	16
Load No.	Break Date	Cyl	inder Age	Total Load (lbs)	Break (psi)	Average
TI	2018-8-1	50	DAYS	193,000	6825	
				182,000	6,435	4600
1				185,000	6,545	
	A SW					
	4					

Project No: 469413-4 Casting Date: 2013-06-11 Mix Design (psi): 4000 psi Printed Name of Technician taking Sample Signed Name of Technician breaking Sample Load No. Truck No. Ticket No. Location (from concrete map) D2/T2 390103 0021700 Starting Nath End. WALL/ORCK, 1/3 Loss D2/T2 390127 6042523 Southern End, Fine 1 1/3, vell/Orck Load No. Break Date Cylinder Age Total Load (lbs) Break (psi) Avera T 1 2018-8-1 So DAY 5 175 000 6,190 G03 1/2,000 5,730		Proving Ground 3100 SH 47, Bid Brvan, TX 77801	In.	exas A&N ansporta stitute s A&M University ge Station, TX 7 e 979-845-6375	March Co., St. Co., S	5.7.2 C	oncrete Sar	mpling	Doc. No. QPF 5.7.2 Revision:	Revision Date: 2018-04-17 Page:
Printed Name of Technician taking Sample Signed Name of Technician breaking Sample Signed Name of Technician breaking Sample Load No. Truck No. Ticket No. Location (from concrete map) D2 / T2 390100 0021700 Starting North End, VARL/DECK, '/3 Lease North End, Fine 1 '/3, Vall/Deck North End					1					
Technician taking Sample Signed Name of Technician taking Sample Load No. Truck No. Ticket No. Location (from concrete map) D2/T2 390100 0021700 Steeting North End Fine 1 1/3, vell/peak D3/T3 300127 6042528 Southern End Fine 1 1/3, vell/peak Load No. Break Date Cylinder Age Total Load (lbs) Break (psi) Avera T1 2018-8-1 So DAYS 175 000 6,190 603 1/2 1/7,000 6,260 1/84,000 6,510 1/84,000 6,685 6,866	Pro	oject No:	4699	162-4	Cas	ting Date:	2018-06-	//_ M	ix Design (psi	1: 4000 psi
Technician taking Sample Load No. Truck No. Ticket No. Location (from concrete map) D2/71 390100 0021700 Starting North End, VALU/DECK, 1/3 Long D2/72 390143 0012526 Middle 3rd or total voll/p D3/73 300127 6012528 Southern End, Fine 1 1/3, Vall/Deck Load No. Break Date Cylinder Age Total Load (lbs) Break (psi) Avera T1 7018-8-1 So DAYS 175 000 6,190 603 1/2 1/7,000 6,260 1/80,000 6,365 6,38 1/84,000 6,510 1/89,000 6,685 6,36		cian taking	6	REC	5 K	加开	Technician bre	eaking	SREG H	2152
D2/T2 390100 0021700 Starting North End, WALL/DECK, 1/3 Leng D2/T2 390143 0042526 Middle 3rd or total voll/p D3/T3 390127 6042528 Souther End, Fine 1 1/3, Vell/Deck Load No. Break Date Cylinder Age Total Load (lbs) Break (psi) Avera T1 2018-8-1 SO DAYS 175, 000 6,190 175,000 6,190 603 177,000 6,260 180,000 6365 6,38 184,000 7,005 189,000 6,685 6,866		cian taking	1	2	10	1/2	Technician bre	eaking	9	The
D2/T2 3G0143 0042526 Middle 3id or total voll/p D3/T3 3Q0127 6042528 Southern End, Fine 1 1/3, Vell/pieck Load No. Break Date Cylinder Age Total Load (lbs) Break (psi) Avera T	Load	l No.	Truc	k No.	Tic	ket No.		Location	(from concre	ete map)
D3/T3 300127 6042528 Southern End, Fine 1 1/8, Vell/Dicket	DI	171	3901	00	0021	700	Starting North	HEND	WALLOECK	
Load No. Break Date Cylinder Age Total Load (lbs) Break (psi) Avera T 1 2018-8-1 So DAYS 175,000 G,190 175,000 G,190 G03 162,000 S,730 177,000 G,260 180,000 G345 G,38 184,000 G510 189,000 7,005 189,000 G,685 G,86	12/	T2	3901	43			Middle	3rd	or tota	1 val/per
TI 2018-8-1 SO DAYS 175, 000 6,190 175,000 6,190 603 162,000 5,730 177,000 6,260 180,000 6,345 6,38 184,000 6,510 189,000 7,005 189,000 6,685 6,86	03/	73	3001	27	6043	1528	Southern	End,	Fine 1 /3,	Ve 1/Deck
175,000 6,190 G03 175,000 6,190 G03 162,000 5,730 177,000 6,260 180,000 6,365 6,38 184,000 6,685 189,000 6,685 6,86	Loa	d No.	Brea	k Date	Cylin	nder Age	Total Load	(lbs)	Break (psi)	Average
162,000 5,730 177,000 6,260 180,000 6345 6,38 184,000 6510 198,000 7,005 189,000 6,685 6,86	TI		2018-	8-1	So	DAYS	175,00	00 (,190	N. F.
72 177,000 6,260 180,000 6365 6,38 184,000 6510 198,000 7,005 189,000 6,685 6,86	1		1				175,00	0 4	,190	6035
177,000 6,260 180,000 6365 6,38 184,000 6510 198,000 7,005 189,000 6,685 6,86	*	7.					162,000) 5	,730	
184,000 (510 198,000 7,005 189,000 6,685 (686	77								,260	
73 198,000 7,005 189,000 6,685 6,86	1						180,000		345	4,380
189,000 6,685 6,86	*						184,00	0 6		
105 ND 100C	T3						198,00	00 7	-	
195,000 6,995	1						189,00	0 4	,685	6,860
	*		4	•		*	195,00	0 6	,895	
									1	
			N-4							
					- 100					

D.3 *MASH* TEST 3-10 (CRASH TEST NO. 469468-4-1)

D.3.1 Vehicle Properties and Information

Table D.1. Vehicle Properties for Test No. 469468-4-1.

Date:	2018-08-03	3 Test No.:	469468	-4-1	VIN No.:	KNAC	504354	
Year:	2009	Make:	Kia	l	_ Model:		Rio	
Tire Infla	ation Pressure:	32 psi	Odometer:	10	0354	Tire Size:	185/	65R14
Describ	e any damage	to the vehicle prior	to test: N	one				
• Deno	tes accelerome : <u>None</u>	eter location.	A M			• •		N T
<u> </u>	CID: 1.6 L ission Type: Auto or	nder Manual WD 4WD	P		R	•		A B B L L L L L
Dummy Type: Mass: Seat P	50th	percentile male 165 lb ER SIDE	1_1	F	H W E	G U	D -	K
Geome	try: inches			◀		C		
Α	66.38 F	33.00	Κ	12.25	P	4.12	U _	15.25
В	51.50 G	e	L	25.25	Q	22.50	V _	21.25
C	165.75 ⊢	35.72	Μ	57.75	R	15.50	W _	35.70
D	34.00	Ι 7.75	Ν	57.70	s	8.25	Χ_	101.00
E	98.75	J <u>21.50</u>	0	28.25	Т	66.20		
Whe	el Center Ht Fr	ont 11.00	Wheel	Center Ht	Rear	11.00	W-H	-0.02
RANGE	LIMIT: A = 65 ±3 inches	; C = 169 ±8 inches; E = 98 ± M+N/2 = 56 ±2 in	:5 inches; F = 35 ±4 ches; W-H < 2 inche	inches; H = 39 s or use MASH	±4 inches; O = T0 Paragraph A4.3.2	P OF RADIATOR S	SUPPORT (24 ±4	inches);
GVWR	Ratings:	Mass: Ib	<u>Curb</u>		Test I	<u>nertial</u>	Gros	ss Static
Front	1718	M_{front}	157	5		1551		1636
Back	1874	— M _{rear}	88	9		879		959
Total	3638	M _{Total}	2464	4		2430		2595
		_	Allo	wable TIM = 24:	20 lb ±55 lb Allow	rable GSM = 2585 lb	± 55 lb	
Mass D	istribution:	LF: <u>775</u>	RF:	776	LR:	458	RR:	421

Table D.2. Exterior Crush Measurements of Vehicle for Test No. 469468-4-1.

Date:	2018-08-03	_ Test No.: _	469468-4-1	VIN No.: _	KNADE223496504354
Year:	2009	Make:	Kia	Model:	Rio

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable							
End Damage	Side Damage						
Undeformed end width	Bowing: B1 X1						
Corner shift: A1	B2 X2						
A2							
End shift at frame (CDC)	Bowing constant						
(check one)	X1+X2 _						
< 4 inches	2						
≥ 4 inches							

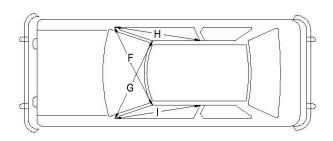
Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

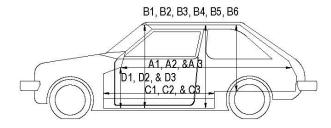
C: C-		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L***	C ₁	C_2	C ₃	C ₄	C ₅	C ₆	±D
1	AT FT BUMPER	16	8	14	8	6	4				-18
2	ABOVE FT BUMPER	16	10	42	1	1	2	3	6	10	+45
	Measurements recorded										
×	inches or mm										

¹Table taken from National Accident Sampling System (NASS).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.


^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

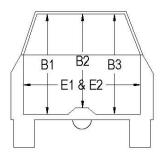

^{***}Measure and document on the vehicle diagram the location of the maximum crush.

Table D.3. Occupant Compartment Measurements of Vehicle for Test No. 469468-4-1.

Date:	2018-08-03	_ Test No.: _	469468-4-1	VIN No.: _	KNADE223496504354
Year:	2009	Make:	Kia	Model:	Rio

*Lateral area across the cab from driver's side kick panel to passenger's side kick panel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

	Before	After	Differ.
		(inches)	
A1	67.50	67.50	0.00
A2	67.25	67.25	0.00
АЗ	67.75	67.75	0.00
B1	40.50	40.50	0.00
B2	39.00	39.00	0.00
ВЗ	40.50	40.50	0.00
B4	36.25	36.25	0.00
B5	36.00	36.00	0.00
В6	36.25	36.25	0.00
C1	26.00	22.50	-3.50
C2	0.00	0.00	0.00
СЗ	26.00	26.00	0.00
D1	9.50	8.00	-1.50
D2	0.00	0.00	0.00
D3	9.50	9.50	0.00
E1	51.50	53.00	1.50
E2	51.00	52.50	1.50
F	51.00	51.00	0.00
G	51.00	51.00	0.00
Н	37.50	37.50	0.00
I	37.50	37.50	0.00
J*	51.00	50.00	-1.00

D.3.2 Sequential Photographs

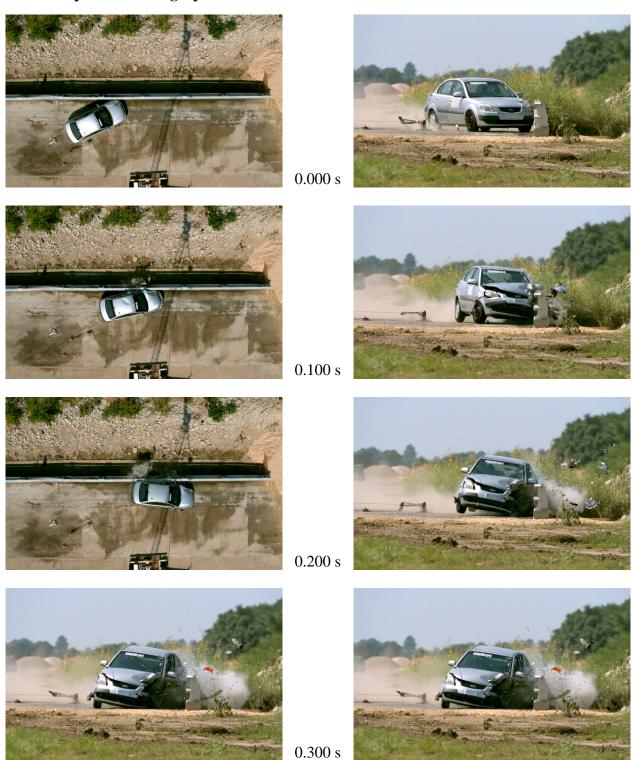


Figure D.1. Sequential Photographs for Test No. 469468-4-1 (Gut and Overhead Views).

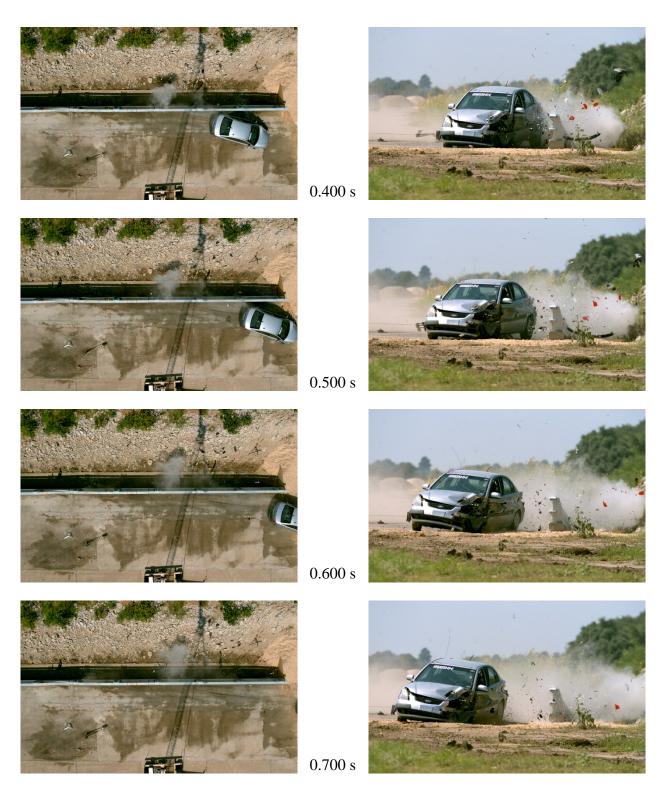


Figure D.1. Sequential Photographs for Test No. 469468-4-1 (Gut and Overhead Views) (Continued).

Figure D.2. Sequential Photographs for Test No. 469468-4-1 (Rear View).

Figure D.3. Vehicle Angular Displacements for Test No. 469468-3-1.

Figure D.4. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-4-1 (Accelerometer Located at Center of Gravity).

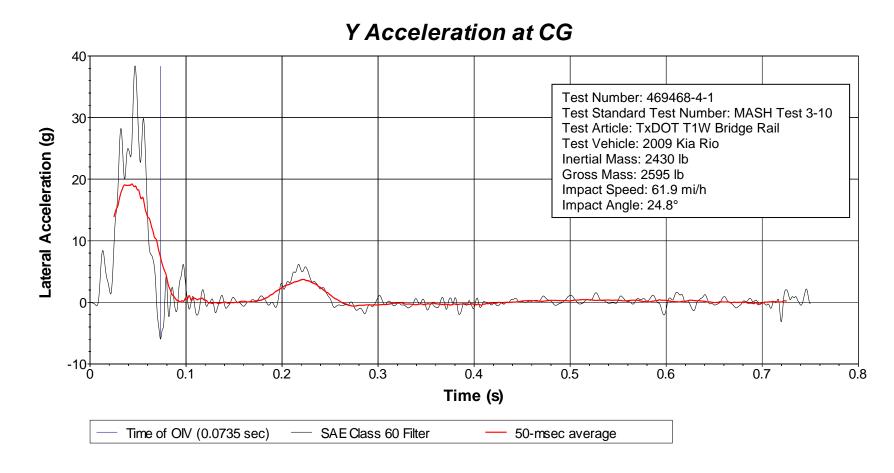


Figure D.5. Vehicle Lateral Accelerometer Trace for Test No. 469468-4-1 (Accelerometer Located at Center of Gravity).

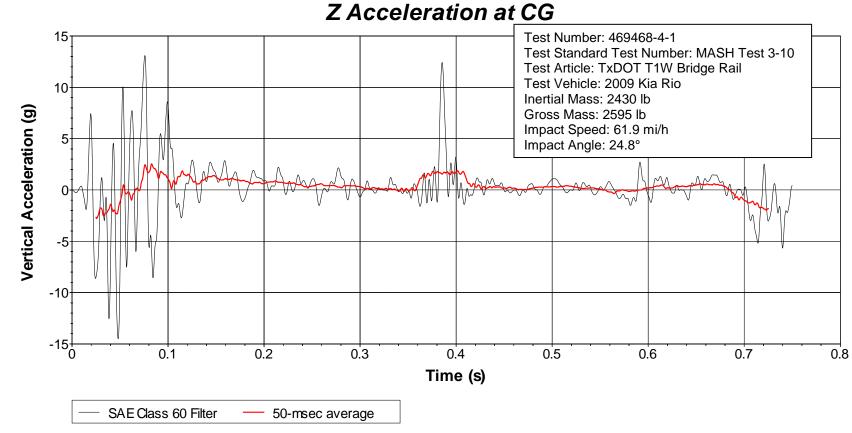


Figure D.6. Vehicle Vertical Accelerometer Trace for Test No. 469468-4-1 (Accelerometer Located at Center of Gravity).

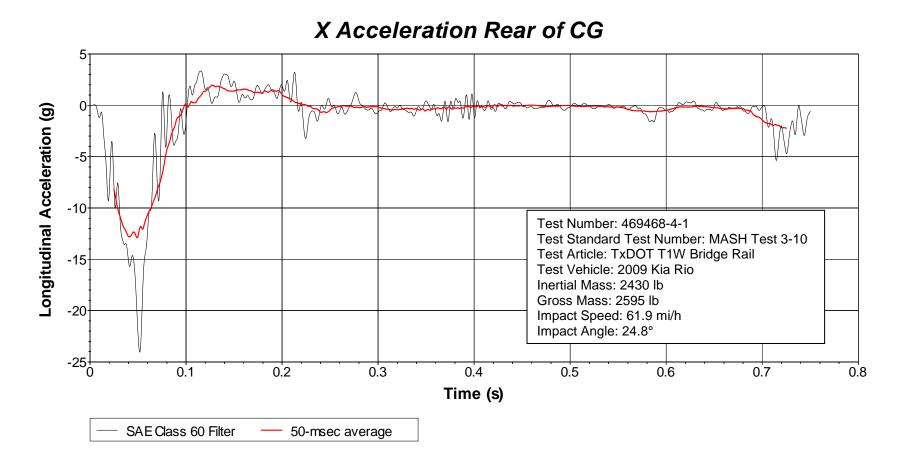


Figure D.7. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-4-1 (Accelerometer Located Rear of Center of Gravity).

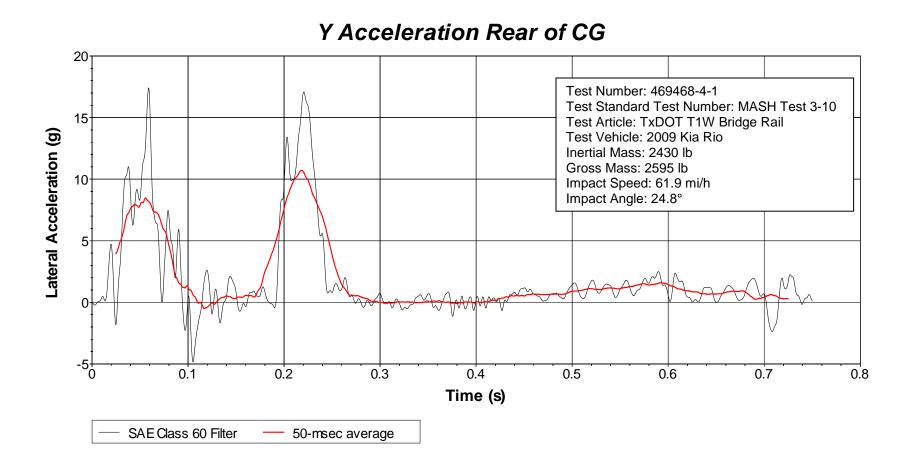


Figure D.8. Vehicle Lateral Accelerometer Trace for Test No. 469468-4-1 (Accelerometer Located Rear of Center of Gravity).

Z Acceleration Rear of CG

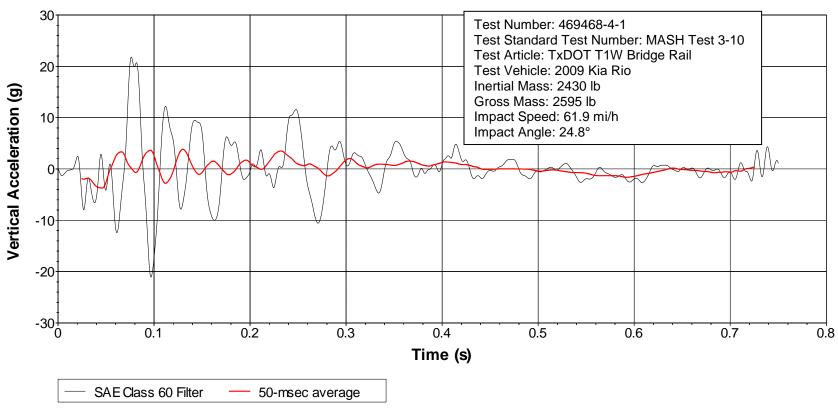


Figure D.9. Vehicle Vertical Accelerometer Trace for Test No. 469468-4-1 (Accelerometer Located Rear of Center of Gravity).

D.4 *MASH* TEST 3-11 (CRASH TEST NO. 469468-4-2)

D.4.1 Vehicle Properties and Information

Table D.4. Vehicle Properties for Test No. 469468-3-2.

Date:2	018-08-01	Test No.:	469468	-4-2	VIN No.:	1C6RE	6GP6CS	255320
Year:	2012	Make:	Dodg	je	_ Model:		RAM 1500)
Tire Size:	265/70 R 1	7		Tire I	Inflation Pre	ssure:	35	psi
Tread Type:	Highway				Odo	meter: <u>24</u> 9	622	
Note any dar	nage to the v	ehicle prior to	test: None					
• Denotes a	ccelerometer	location.			- X -	1		
NOTES: No	one		_ 1 1	*	711			1
Engine Type Engine CID:	: V-8 4.7 liter		A M					N T
Transmission Auto FWD	n Type: or <u>[</u> RWD	☐ Manual ☐ 4WD	D	R P Q		TE	ST INERTIAL C. M.	
Optional Equ None	ipment:		-					
Dummy Data Type: Mass: Seat Positio	None	0 lb	- - - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F F	U H	V Ls	D-	TK L
Geometry:	inches			4	FRONT	- c	REAR	-
	.50 F	40.00	_ K	20.00	- P -	3.00	_ U.	26.50
B 74		28.00	_ L	30.00	_ Q _	30.50	_ V	30.25
C 227		62.41	_ M	68.50	_ R_	18.00 13.00	_ W .	62.40 79.00
	.00 I	<u>11.75</u> 27.00	- N —	68.00 46.00	_	77.00	_ X -	79.00
Wheel Cer Height Fr	nter ront	4.4.75	O Wheel Well earance (Front)	40.00	_ T _ 6.00	Bottom Fra Height - Fr	ront	12.50
Wheel Cei Height R	lear		Wheel Well learance (Rear)		9.25	Bottom Fra Height - R	Rear	22.50
			2 inches; F=39 ±3 inch					
GVWR Ratin	i gs: 3700	Mass: Ib		<u>!</u> !852	<u>lest</u>	I <u>nertial</u> 2780	Gros	ss Static 2780
	3900 3900	M _{front}		2025		2222		2222
	6700 6700	M _{rear} M _{Total}		877		5002		5002
Mass Distrib		ivilulai	<u> </u>		Range for TIM and	GSM = 5000 lb ±11	10 lb)	
lp	LF	: 1400	_ RF:	1380	LR:	1107	RR:	1115

Table D.5. Measurements of Vehicle Vertical CG for Test No. 469468-4-2.

Date: 2018-	08-01 T	est No.: _	469468-4-2		VIN:	1C6RD6GP6CS255320			
Year:20^	12	Make:	Dodg	je	Model:	RAM	1 1500		
Body Style:	Quad Cab				Mileage:	249622			
Engine: 4.7 liter V-8 Transmission: Automatic							*		
Fuel Level:	mpty	Ball	last: <u>171</u>				(440) lb max)	
Tire Pressure:	Front: 3	35 ps	i Rea	ır: <u>35</u>	psi S	ize: <u>265/70 R</u> 1	17		
Measured Ve	hicle Wei	ghts: (I	b)						
LF:	1400		RF:	1380		Front Axle:	2780		
LR:	1107		RR:	1115		Rear Axle:	2222		
Left:	2507		Right:	2495		l	5002		
VVh	neel Base:	140.50	inches	Track: F:	68.50	inches R:	68.00	inches	
	148 ±12 inch	es allowed			Track = (F+R	t)/2 = 67 ±1.5 inches	allowed		
Center of Gra	vity, SAE	J874 Sus	pension M	ethod					
X:	62.41	inches	Rear of F	ront Axle	(63 ±4 inches	allowed)			
Y:	-0.08	inches	Left -	Right +	of Vehicle	Centerline			
Z:	28.00	inches	Above Gr	ound	(minumum 28	3.0 inches allowed)			
Hood Heig	jht:	46.00	inches	Front	Bumper H	eight:	27.00 i	nches	
	43 ±4 i	nches allowed							
Front Overha	ng:	40.00	inches	Rear	Bumper H	eight:	30.00 i	nches	
	39 ±3 i	nches allowed							
Overall Leng			-0						
	237 +1	3 inches allow	ed						

Table D.6. Exterior Crush Measurements of Vehicle for Test No. 469468-4-2.

VIN No.:

1C6RD6GP6CS255320

Year:	2012 Make:	Dodge	_ Model:	RAM 1500
	VEHICLE CF	RUSH MEASUREM	IENT SHEET	1
	C	omplete When Applicab	ole	
	End Damage		Side :	Damage
	Undeformed end width		Bowing: B1 _	X1
	Corner shift: A1		В2 _	X2
	A2	41		
	End shift at frame (CDC)	Воч	wing constant	
	(check one)		<i>X</i> 1+ <i>X</i> 2 _	
	< 4 inches	n	=	8
	> 1 inches			

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

g .g		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C_1	C_2	C ₃	C ₄	C ₅	C ₆	±D
1	AT FT BUMPER	20	11	36	11	8	4.5	2.75	2	1	-10
2	ABOVE FT BUMPER	20	12	52	1	2	3	4	6	12	+67
											,
	Measurements recorded										
	✓ inches or ☐ mm										
6											

¹Table taken from National Accident Sampling System (NASS).

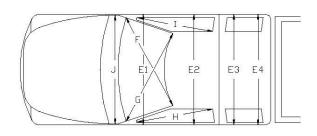
2018-08-01

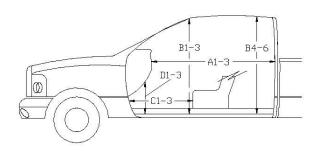
Test No.:

Date:

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.


^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

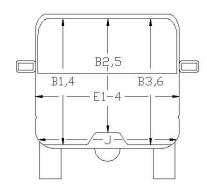

^{***}Measure and document on the vehicle diagram the location of the maximum crush.

Table D.7. Occupant Compartment Measurements of Vehicle for Test No. 469468-4-2.

Date: _	2018-08-01	_ Test No.: _	469468-4-2	VIN No.: _	1C6RD6GP6CS255320
Year:	2012	Make:	Dodge	Model:	RAM 1500

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

=3. ==HE	Before	After	Differ.
		(inches)	
A1	65.00	65.00	0.00
A2	63.00	63.00	0.00
А3	65.50	65.50	0.00
B1	45.00	45.00	0.00
B2	38.00	38.00	0.00
В3	45.00	45.00	0.00
B4	39.50	39.50	0.00
B5	43.00	43.00	0.00
B6	39.50	39.50	0.00
C1	26.00	23.00	-3.00
C2	0.00	0.00	0.00
C3	26.00	26.00	0.00
D1	11.00	11.00	0.00
D2	0.00	0.00	0.00
D3	11.50	11.50	0.00
E1	58.50	58.75	0.25
E2	63.50	63.50	0.00
E3	63.50	63.50	0.00
E4	63.50	63.50	0.00
F	59.00	59.00	0.00
G	59.00	59.00	0.00
Н	37.50	37.50	0.00
Ī	37.50	37.50	0.00
J*	25.00	24.75	-0.25

D.4.2 Sequential Photographs

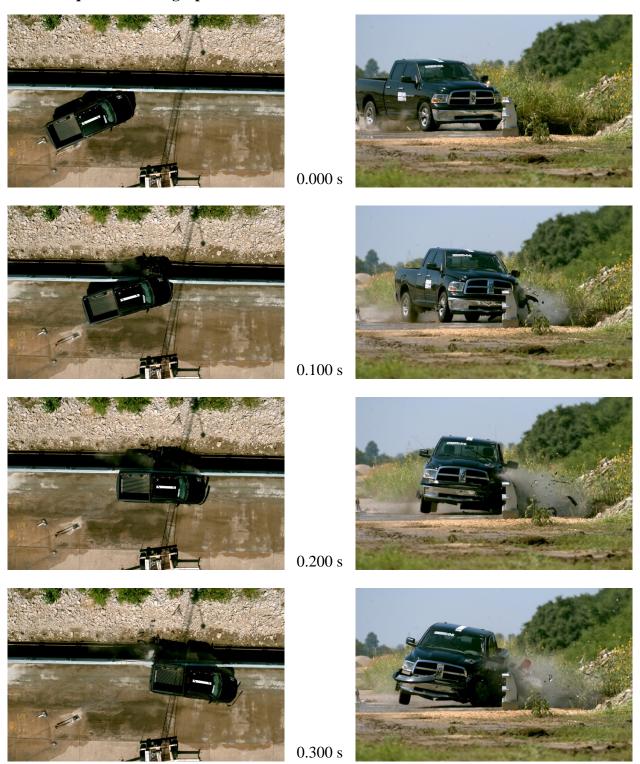


Figure D.10. Sequential Photographs for Test No. 469468-4-2 (Gut and Overhead Views).

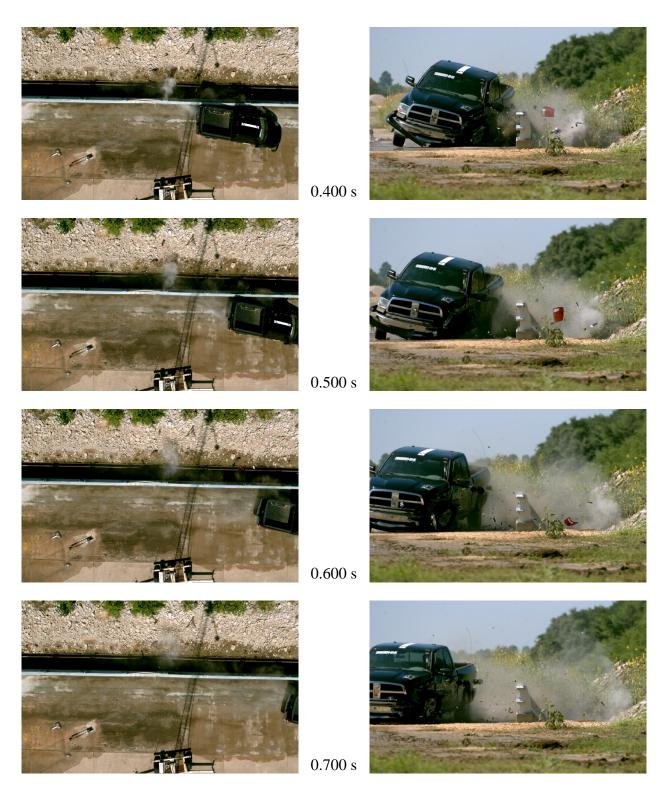


Figure D.10. Sequential Photographs for Test No. 469468-4-2 (Gut and Overhead Views) (Continued).

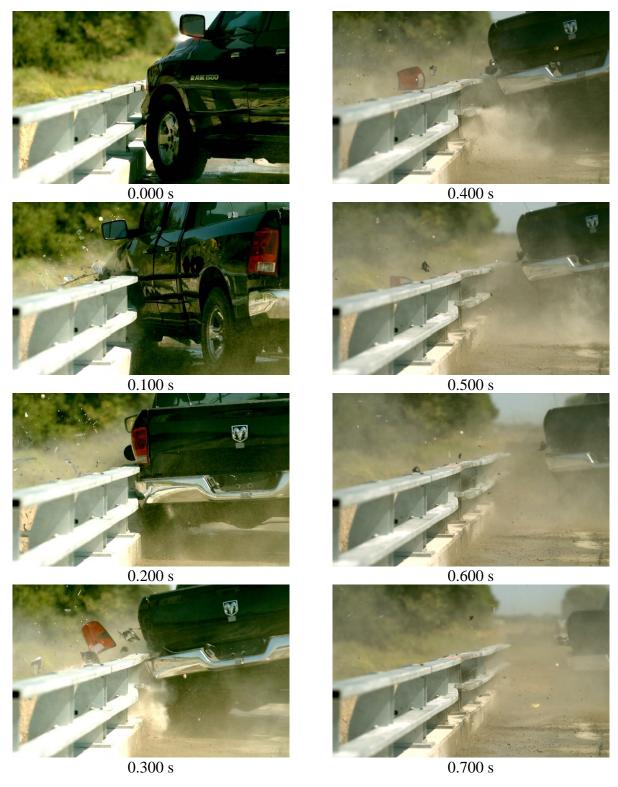
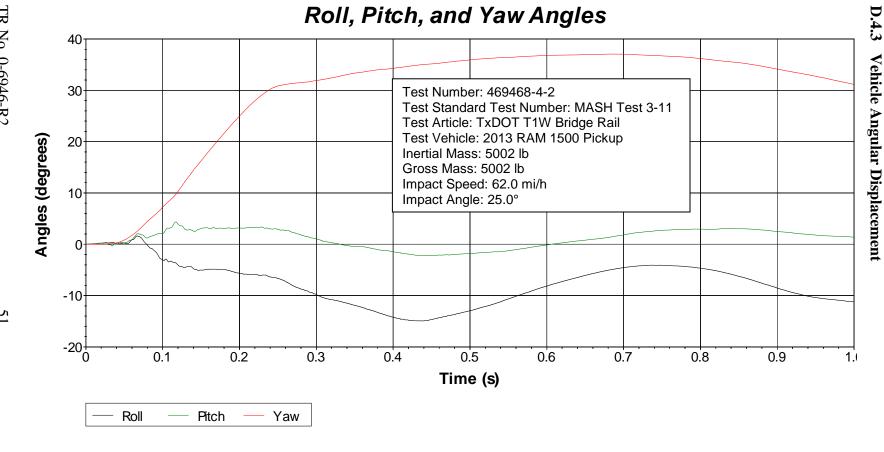



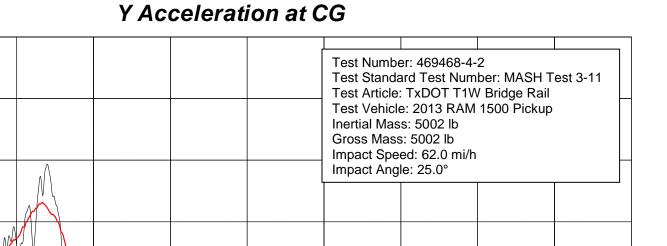
Figure D.11. Sequential Photographs for Test No. 469468-4-2 (Rear View).

Axes are vehicle-fixed. Sequence for determining orientation:

- 1. Yaw.
- Pitch. 2.
- Roll. 3.

Figure D.12. Vehicle Angular Displacements for Test No. 469468-4-2.

Figure D.13. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-4-2 (Accelerometer Located at Center of Gravity).


20

15

0.1

0.2

Lateral Acceleration (g)

0.6

0.7

8.0

0.9

1.0

Time (s)

— Time of OIV (0.1003 sec) — SAE Class 60 Filter — 50-msec average

0.4

0.3

Figure D.14. Vehicle Lateral Accelerometer Trace for Test No. 469468-4-2 (Accelerometer Located at Center of Gravity).

0.5

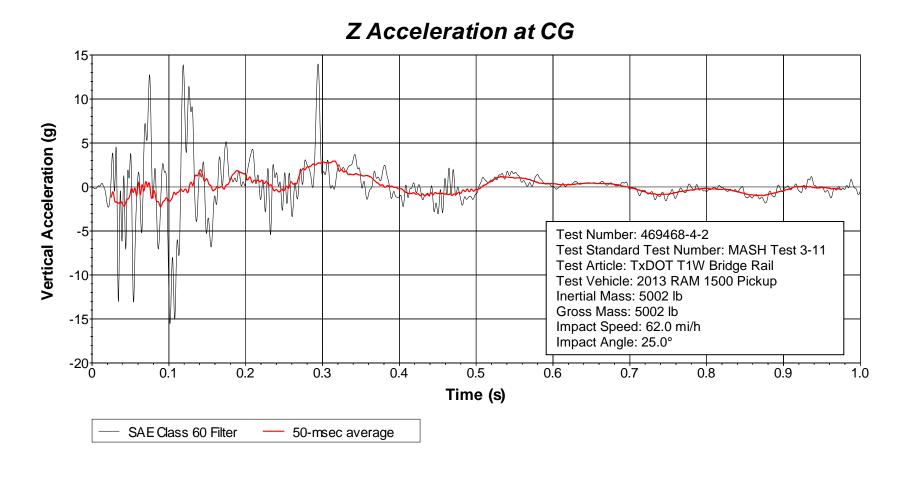


Figure D.15. Vehicle Vertical Accelerometer Trace for Test No. 469468-4-2 (Accelerometer Located at Center of Gravity).

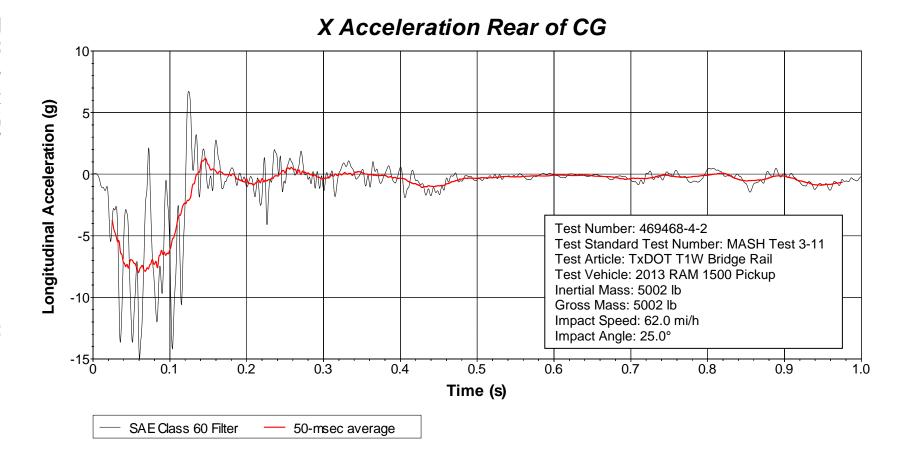
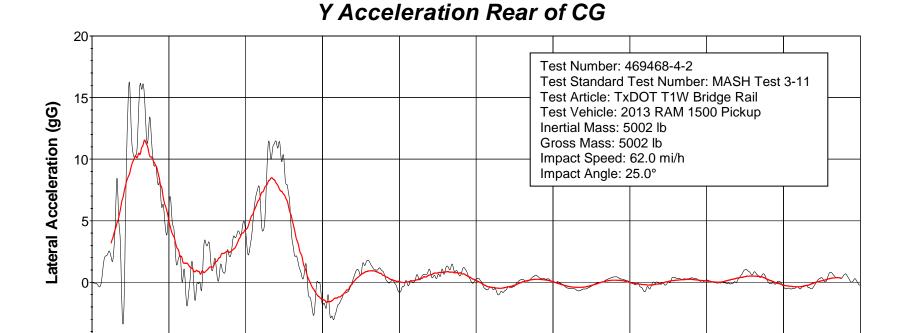


Figure D.16. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-4-2 (Accelerometer Located Rear of Center of Gravity).

0.1


SAE Class 60 Filter

0.2

0.3

50-msec average

0.4

0.5

Time (s)

0.6

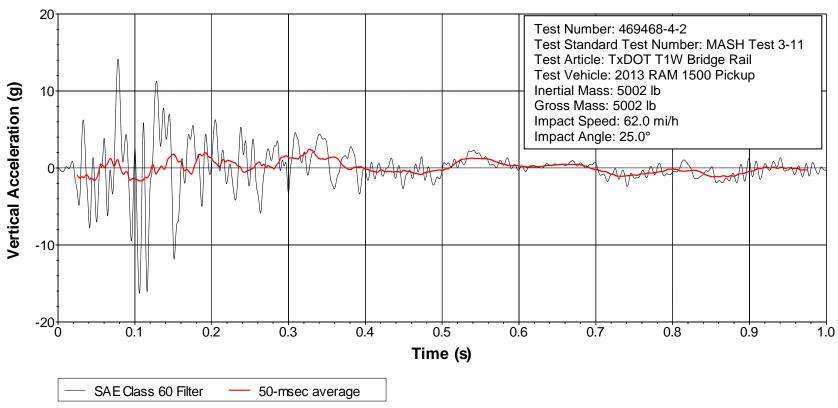
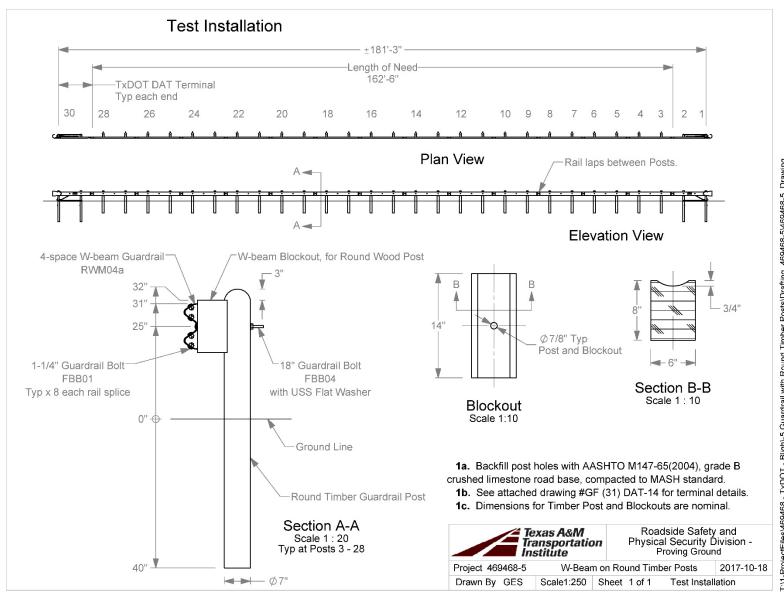
0.7

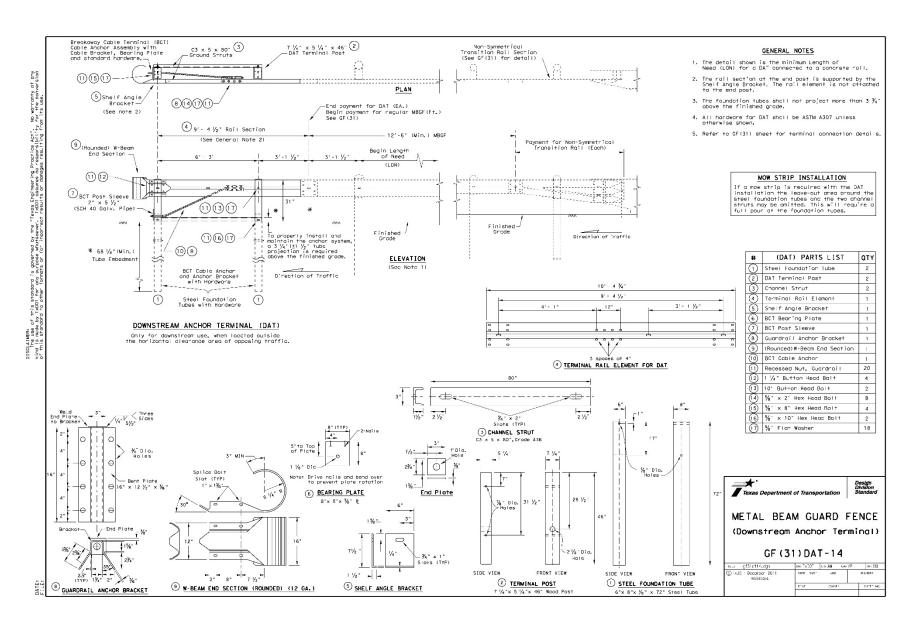
8.0

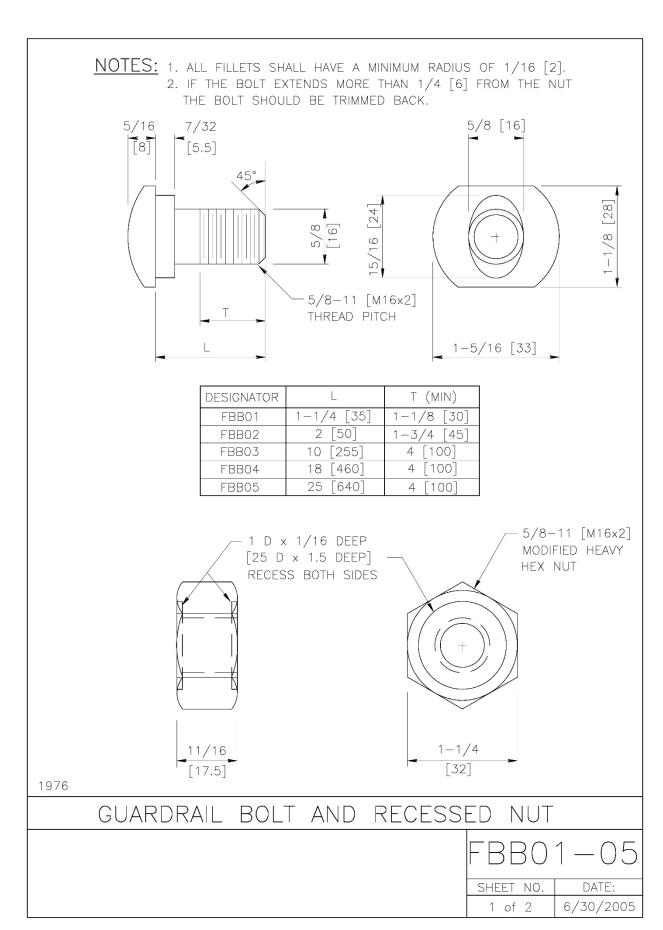
0.9

1.0

Figure D.17. Vehicle Lateral Accelerometer Trace for Test No. 469468-4-2 (Accelerometer Located Rear of Center of Gravity).


Figure D.18. Vehicle Vertical Accelerometer Trace for Test No. 469468-4-2 (Accelerometer Located Rear of Center of Gravity).


2019-03-26

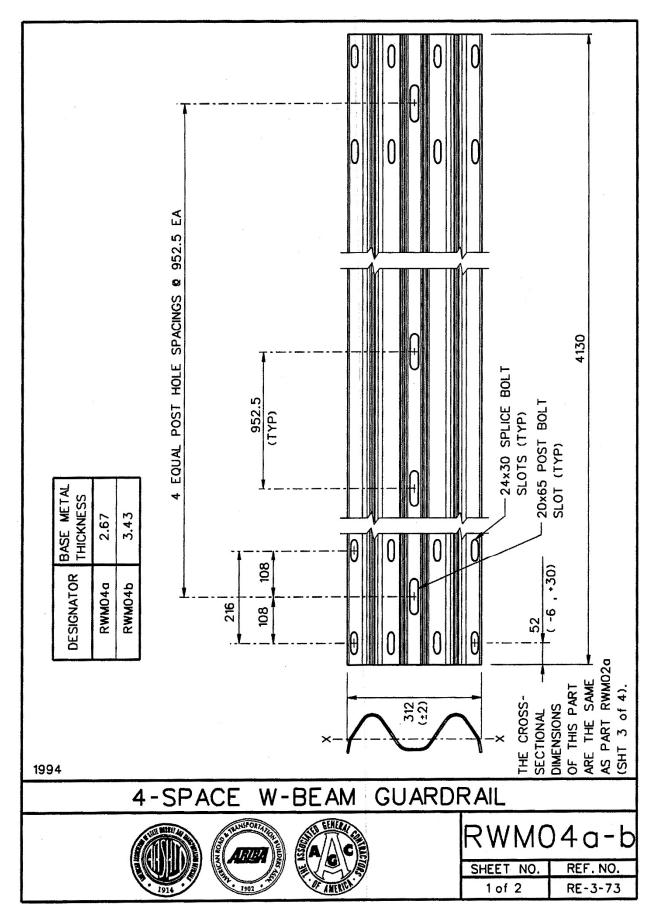
E.1

SPECIFICATIONS

The geometry and material specifications for this oval shoulder button-headed bolt and hex nut are found in AASHTO M 180. The bolt shall have 5/8-11 [M16x2] threads as defined in ANSI B1.1 [ANSI B1.13M] for Class 2A [6g] tolerances. Bolt material shall conform to ASTM A307 Grade A [ASTM F 568M Class 4.6], with a tensile strength of 60 ksi [400 MPa] and yield strength of 36 ksi [240 MPa]. Material for corrosion-resistant bolts shall conform to ASTM A325 Type 3 [ASTM F 568M Class 8.8.3], with tensile strength of 120 ksi [830 MPa] and yield strength of 92 ksi [660 MPa]. This bolt material has corrosion resistance comparable to ASTM A588 steels. Metric zinc-coated bolt heads shall be marked as specified in ASTM F 568 Section 9 with the symbol "4.6."

Nuts shall have ANSI B1.1 Class 2B [ANSI B1.13M Class 6h] 5/8-11 [M16x2] threads. The geometry of the nuts, with the exception of the recess shown in the drawing, shall conform to ANSI B18.2.2 [ANSI B18.2.4.1M Style 1] for zinc-coated hex nuts (shown in drawing) and ANSI B18.2.2 [ANSI B18.2.4.6M] for heavy hex corrosion-resistant nuts (not shown in drawing). Material for zinc-coated nuts shall conform to the requirements of AASHTO M 291 (ASTM A 563) Grade A [AASHTO M 291M (ASTM A 563M) Class 5], and material for corrosion-resistant nuts shall conform to the requirements of AASHTO M 291 (ASTM A 563) Grade C3 [AASHTO M 291M (ASTM A 563M) Class 8S3].

When zinc-coated bolts and nuts are required, the coating shall conform to either AASHTO M 232 (ASTM A 153/A 153M) for Class C or AASHTO M 298 (ASTM B 695) for Class 50. Zinc-coated nuts shall be tapped over-size as specified in AASHTO M 291 (ASTM A 563) [AASHTO M 291M (ASTM A 563M)], except that a diametrical allowance of 0.020 inch [0.510 mm] shall be used instead of 0.016 inches [0.420 mm].


	Stress Area of	Min. Bolt
Designator	Threaded Bolt Shank	Tensile Strength
C	$(in^2 [mm^2])$	(kips [kN])
FBB01-05	0.226 [157.0]	13.6 [62.8]

Dimensional tolerances not shown or implied are intended to be those consistent with the proper functioning of the part, including its appearance and accepted manufacturing practices.

INTENDED USE

These bolts and nuts are used in numerous guardrail and median barrier designs.

GUARDRAIL BOLT AND RECESSED NUT						
FBB0	1-05					
SHEET NO.	DATE					
2 of 2	6/30/2005					

SPECIFICATIONS

Corrugated sheet steel beams shall conform to the current requirements of AASHTO M180. The section shall be manufactured from sheets with a nominal width of 483 mm. Guardrail RWM04a shall conform to AASHTO M180 Class A and RWM04b shall conform to Class B. Corrosion protection may be either Type II (zinc-coated) or Type IV (corrosion resistant steel). Corrosion resistant steel should conform to ASTM A606 for Type IV material and shall not be zinc-coated, painted or otherwise treated. Inertial properties are calculated for the whole cross-section without a reduction for the splice bolt holes.

Designator	Area (10 ³ mm ²)	(10^6 mm^4)	(10^6 mm^4)	S_x (10^3 mm^3)	S _y (10 ³ mm ³)		
RWM04a-b	1.3	1.0		23			

Dimensional tolerances not shown or implied are intended to be those consistent with the proper functioning of the part, including its appearance and accepted manufacturing practices.

INTENDED USE

This corrugated sheet steel beam is used as a rail element in transition systems STB02 and STB03 or when a reduced post spacing is desired in the SGR02, SGR04a-b, SGM02, and SGM04a-b.

4-SPACE W-BEAM GUARDRAIL

RWM04a-b

SHEET NO.	DATE
2 of 2	04-01-95

E.2 SUPPORTING CERTIFICATION DOCUMENTS

PROPOSAL

TRICON PRECAST CONCRETE TRAFFIC BARRIER

November 17	7, 2016
-------------	---------

Re:

F Shape Barrier for Crash Testing Texas A&M Transportation Institute

Bryan, Texas

Brazos County, Texas

TPL#1611026

We are pleased to offer for your consideration, the following quotation prepared in accordance with specifications and drawings / information provided to us:

ITEM	DESC	TPL PART	ITEM DESCRIPTION	QTY	UNIT	UNIT PRICE	EXTENSION
512	6005	7	Port CTB 30' - 32" F Shape JJ Connections	120	LF	\$57.80	\$6,936,0
.,			To be anchored to concrete paving				
	1	/	4 each f shape barrier for crash testing		1		
		X-/	w/ diagonal holes and pins on one side only:	1/7			
		17	1.25' x 20.5" anchor pins ASTM A36 w/ 2.25"	1/	* /		at and the first and the second of a state of the second of the se
		y	washer all galvanized. Certified papers for	1/	\rightarrow		
			reinforcing, UJ Hooks Batch Tickets, and		!		ic .
			break test results on all barrier.				
.,,					to the state of		

INCLUSIONS / EXCLUSIONS

Drain Slots	Xin	cluded	1	excluded
Diag Anchor Holes / Pins 4	X in	cluded	ĺ	excluded
Connecting Hardware	X in	cluded		excluded
Freight	X in	cluded	1	excluded
Officading / Installation	i	cluded	X	excluded
8.25% Sales Tax	in	cluded	Х	excluded
Lifting Hardware	i In	cluded	X	excluded
Epoxy Coated Reinforcing	In	cluded	X	excluded
Galvanized Reinfording	in	cluded	X	excluded
			j	
	1 (9	}	

Page 1 of 3

June 16, 2017

K-T Bolt Manufacturing Company, Inc.®

1150 Katy Fort-Bend Road Katy, Texas 77494 Ph: 281-391-2196 Fax: 281-391-2673

certs@k-tbolt.com

Original Mill Test Report

Company:

Tricon Precast, LTD

Part Description:

100 pcs 1 1/4" x 20 1/2" Washer Head Drive Pin

Material Specification:

ASTM A36 - '12

Coating Specification:

Galvanized per ASTM F2329 / A153

Purchase Order Number: Lot Number:

8291 46590-3

Comments:

None

Material Heat Number:

3064788

Chemical Analysis

C	Cb	Cr	Cu	Mn	Mo	V	Ni
.19%	.001%	.11%	.23%	.75%	.019%	.015%	.07%
P	S	Si	Sn	Al	44.1 A	_	-
.016%	.041%	.22%	.009%	.002%	1 1.44		

100% Melted and Manufactured in the USA - Values reflect original mill test report

Tensile and Hardness Test Results

Property Tensile: Proof/Yield: 54.3 Elongation %: 27% ROA %: 56% Hardness: 183BHN

Comments

Test results reflect the original mill test report

K-T Bolt Manufacturing Co., Inc.

Quality Representative

All reports are the exclusive property of K-T Bolt Manufacturing Company, Inc.®. Any reproduction must be in their entirety and at the permission of same.

						CEDT	memers back	שית דגדמים	· CT DEBORT							Page 1/1
	ക	F6 D GER	DAU	CUSTOMER SHIP		C ATIONAL R	USTOMER I	BILL TO	ST REPORT NATIONAL		RADE 0 (420)		SHAPE / SE Rebar / #5		A SARAS	DOCUMENT ID:
	US-ML-MIDLO	THIAN		INC 207 SENTRY D MANSFIELD,T USA		9 N	NC 07 SENTRY (ANSFIELI ISA	7 DR D,TX 76063-3	1609		ENGTH 0'00"	•	WEIG 24,282			T/BATCH 27631/02
	300 WARD ROA MIDLOTHIAN, USA			SALES ORDER 4416559/00001		14.	CUSTON	ER MATER	IAL Nº		PECIFICATION / D STM A615/A615M-15		VISION			
	CUSTOMER PUI 14488	RCHASE ORDI	ER NUMBER		BILL OF L 1327-0000			DATE 11/07/2016								
-	CHEMICAL COMI C % 0.42	osition Mn % 0.98	% 0.016	\$ 0.028	Şi 0.24	Сп % 0.27	ī, 0.	Ji 12	Çr 0.27	‰ 0.032	\$n 0.013	V % 0.00)3	₩ 0.000	A1 0.003	
	CHEMICAL COME CEqyA706 0.62	POSITION														
	MECHANICAL PR YS PS 672	OPERTIES I 15	У МО 46	S Pa 53	1	UTS PSI 05845		UTS MPa 730			G/L Inch 8.000		G/L mm 200.0			
	MECHANICAL PR Elor 18.2	ıg.	Bend O			A 111111111111111111111111111111111111		75	*							
	COMMENTS / NO	TES														
							· ·									
					,						4					

BHASKAR YALAMANCHILI ___ QUALITY DIRECTOR Jour Libaring TON

TOM HARRINGTON
QUALITY ASSURANCE MGR.

		CE	RTIFIED MA	TERIAL TEST REPORT						Pit Townson Charles	Page 1/1
GO GERDAL	CUSTOMER SH REGAL META		CUSTOMER !			GRADE 60 (420)	ii.		PE/SIZE ar/#5(16MM)		DOCUMENT ID: 0000000000
US-ML-MIDLOTHIAN 300 WARD ROAD	207 SENTRY	DR FX 76063-3609	207 SENTR	207 SENTRY DR MANSFIELD,TX 76063-3609					T/BATCH 27888/02		
MIDLOTHIAN, TX 76065 USA	SALES ORDE 4543455/0000		CUSTON	ÆR MATERIAL N°	,		CATION / DATE 15/A615M-15 E1	or REVIS	ION		
CUSTOMER PURCHASE ORDER NUMBER 350221		BILL OF LADING 1327-0000218247		DATE 12/07/2016	i i	,					
CHEMICAL COMPOSITION C Min P 0.42 0.72 0.011	§ 0.039	Si Ct % 0.21 0.2	2 0	Ni Cr % % 13 0.30	M % 0.0	0 21	Sn 0.006	V 0.001	№ 0.000	A1 0.003	
CHEMICAL COMPOSITION CEQYA706 0.58											1
MECHANICAL PROPERTIES YS PSI 64501	YS MPa 445	UTS PSI 99487	N .	UTS MPa 686	200	G/L Inch 8.000		2	G/L mm 00.0		
MECHANICAL PROPERTIES Elong. 16.00	SendTest OK										
COMMENTS / NOTES											
						9					
9	•			-							

BHASKAR YALAMANCHILI QUALITY DIRECTOR

TOM HARRINGTON QUALITY ASSURANCE MGR.

Phone: (409) 769-1014 Email: Bhaskar. Yalamanchili@gerdau.com

Phone: 972-779-1872 Email: Tommy.Harrington@gerdau.com

			CERTIFIED MA	TERIAL TES	T REPORT					Page 1/1
F6 R.	CUSTOMER SH		CUSTOMER			GRADE - 60 (420)			PE / SIZE : / #5 (16MM)	DOCUMENT ID: 0000000000
GO GERDA		LS INTERNATIONA	INC	TALS INTERN	NATIONAL					TITLE OF THE STATE
US-ML-MIDLOTHIAN	207 SENTRY I MANSFIELD,			Y DR D,TX 76063-36	609	LENGTE 40'00"	I,		WEIGHT 24,032 LB	HEAT/BATCH 58027889/03
300 WARD ROAD	. SALES ORDE	R	USA	MER MATERL	AL Nº	SPECIFI	CATION / DA	TE or REVISI	ON	
MIDLOTHIAN, TX 76065 USA	4538466/0000		,			ASTM AS	15/A615M-15 E	51		
CUSTOMER PURCHASE ORDER NUMBE YARD 53	R.	BILL OF LADING 1327-0000218461	-	DATE 12/09/2016						
CHEMICAL COMPOSITION	g	Si	Сп	Vi W	Cr	Mo	Şņ.	%	Nb %	%
C Mn P % 0.42 0.76 0.012	% 0.026	\$) 0.27 0	Сц % 1.27 0	% .16	0.24	0.035	0.007	0.003	0.000	0.003
CHEMICAL COMPOSITION CEQyA706 0.58						,				
MECHANICAL PROPERTIES	Ve	TETE		TTTS		G/I.		G	HL im	
YS PSI 65467	YS MPa 451	UTS PSI 100277	1,5275	UTS MPa 691		G/L Inch 8.000		n 20	im 00.0	
MECHANICAL PROPERTIES Elong.	BendTest .									
15.00	OK				/45					
COMMENTS / NOTES										
							4,			
		y .								
									*	
									ži.	
					0.					

BHASKAR YALAMANCHILI
QUALITY DIRECTOR

Phone: (409) 769-1014 Email: Bhaskar. Yalamanchili@gerdau.com

Jonik Hainton :

TOM HARRINGTON
QUALITY ASSURANCE MGR.

Phone: 972-779-1872 Email: Tommy.Harrington@gerdau.com

		CE	RTIFIED MATERIAL TEST REPO	ימו				Page 1/1	
F5.2	CUSTOMER SHIP		CUSTOMER BILL TO	GR 60	ADE (420)		PE / SIZE - / #4 (13MM)	DOCUME 00000000	NT ID:
GO GERDAU	INC	S INTERNATIONAL	REGAL METALS INTERNATION. INC	AL					
US-ML-MIDLOTHIAN	207 SENTRY DI MANSFIELD, TO		207 SENTRY DR MANSFIELD,TX 76063-3609		NGTH .		WEIGHT 12,024 LB	HEAT/BATCH 58028862/02	
300 WARD ROAD	USA SALES ORDER		USA CUSTOMER MATERIAL N°	SP	ECIFICATION / DATE	or REVISIO	ON		
MIDLOTHIAN, TX 76065 USA	4938978/000010)		AS	TM A615/A615M-15 E1	4			
CUSTOMER PURCHASE ORDER NUMBER RL3/28		BILL OF LADING 1327-0000230265	DATE 03/29/2017		(4)	100		120000	
CHEMICAL COMPOSITION		0. 0	NE C	Μ-	Çn.	V	Nh	A1	
C Mn P 0.47 0.86 0.016	8 0.029	Si Cu 0.23 0.33	Ni Çr 0.11 0.19	Mo 0.021	\$ <u>n</u> 0.006	0.002	Nb 0.000	A1 % 0.004	
CHEMICAL COMPOSITION CEqyA706 0.64				2					
MECHANICAL PROPERTIES PSI M	S Pa	ŲĮS VSI	UTS MPa		G/L Inch	G	H/L im		
66970 44	52	105260	726	A	8.000	20	0.0		
%	iTest								
COMMENTS / NOTES					-				
		n v							
		75							
			¥		W.				
,									
	13.00							To annual Control of the Control of	100

hackay Quality Director

Oom LIJain TOM HARRINGTON QUALITY ASSURANCE MGR.

Phone: 972-779-1872 Email: Tommy.Harrington@gerdau.com

Phone: (409) 769-1014 Email: Bhaskar. Yalamanchili@gerdau.com

			א מפוופרופים	TERIAL TEST	рерорт						Page 1/1
FSR.	CUSTOMER SHI	P TO	CUSTOMER	BILL TO		GRADE 60 (420)			APE / SIZE par / #5 (16MM)		DOCUMENT ID: 0000000000
GO GERDAU	INC	LS INTERNATIONAL	INC	TALS INTERNA	MONAL						BEAT/BATCH
US-ML-MIDLOTHIAN	207 SENTRY D MANSFIELD,T USA		207 SENTR MANSFIEL USA	Y DR D,TX 76063-3609	ı	LENGTH 40'00"			WEIGHT 10,514 LB		8027890/03
300 WARD ROAD MIDLOTHIAN, TX 76065 USA	SALES ORDE: 4564328/00001		CUSTO	MER MATERIAL	Nº		ATION / DATE /A615M-15 E1	or REVI	SION		
CUSTOMER PURCHASE ORDER NUMBER 709567		BILL OF LADING 1327-0000218889	¥	DATE 12/14/2016				*			
CHEMICAL COMPOSITION											
C Mn P 0.42 0.80 0.017	S 0.035	\$i Ç 0.21 0.3	12 0	Ni (29	Mo 0.034	§n 0.007	0.002	0.000	Al 0.00	3
CHEMICAL COMPOSITION CEGYA706 0.59									-	27	
MECHANICAL PROPERTIES									*		
PSI M 65456 4.	'S Pa 51	UTS PSI 99907		UTS MPa 689		G/L Inch 8.000			G/L mm 200.0		
MECHANICAL PROPERTIES Elong. Bene	iTest				5						
15.40 C	K										2
COMMENTS/NOTES	12							13			
,											4
		,									
	1000										

BHASKAR YALAMANCHILI

QUALITY DIRECTOR

TOM HARRINGTON QUALITY ASSURANCE MGR.

Phone: (409) 769-1014 Email: Bhaskar. Yalamanchili@gerdau.com

Phone: 972-779-1872 Email: Tommy.Harrington@gerdau.com

JJE w/24" Rebar

Rebar Ref.#74084 A706 #5 Heat #2055671

JJE Ref.# 74320 Plate 3/8" x 12" Heat # 55045644/02 Ang. 2x2x 3/16" Heat # 54153180/05

02/21/17

			CERTIFIE	D MATERIA	L TEST REPORT	r					Page 11	_
GO GERDAL	CUSTOMER SH ALLED CRA	WFORD LAKE	CUST	OMER BILL TO ED CRAWFOR	ID LAKFLAND I		GRADE GGMUL			HAPE SIZE ngle 2X2X3 (6	DOCUMENT II 0000015922).
US-ML-CHARLOTTE	1590 FISH HA LAKELANDA USA			FISH RATCHE ELAND.FL 338			1.IENGT1 20'00"	í	40	WEIGHT 9.564 LB	1854 53 180/05	
6601 LAKEVIEW ROAD CHARLOTTE, NC 28269 USA	SALES ORDI 4293759 0000		C	USTOMER MA	TFRIAL Nº		ASIM A	CATION DA \$29-14, A\$72-15 \$-14,A\$6-14, A\$	ME: 5A-30	ISION		
CUSTOMER PURCHASE ORDER NUMBER 114320		BILL OF LA 1321-00000		DATE 01 05 1				709-15, AASH 0 (20-13 G40,21-1				
CHEMICAL COMPOSITION \$\begin{cases} \chi_o & M_n & \beta_o & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	5 0.029	Şî 0.21	ξ'μ 0.34	Ni 0.09	ζτ 0.11	N 0.0	10	v.016	%b 0.003	Şn 0.024		_
MECHANICAL PROPERTIES Elgng. 25.00	GAL Inch 8,000	[7-	TS PSI 178	i N	res 1Pa 116		YS PSI 54200	1		YS MPa 374		
GROMETRIC CHARACTERISTICS R.R. 35.00		E					Miller G					
COMMENTS NOTES This grade meets the requirements for the following g ASTM Gradust A36: A529-50: A572-50: A709-36: A CSA Grades: 44W: 50W AASHTO Grades: M270-36: M270-50 ASMI: Grades: SA36												
					*							

BRASKAR YALAMANCIBI I

Phone; (409) 769-1014 Frigil, Blaskar Valananchilia gerdau eum

JORDAN POSILIR

QUALITY ASSURANCE MGR.

Phone: (704) 596-0361 FX3708 Umail: Jordan Fosteria gerdan.com

GĐ GERD	AU	CUSTOMER SH ALLIED CRA' 1500 FISH HA	WFORD LAKE	LAND INC.	TIFIED MATERIAL CUSTOMER BILL TO ALLIED CRAWFORD	LAKELAND INC		GRADE GGMULTI		SHAPE Flat Bar	/ SIZE / 3/8 X [2	· · · · · · · · · · · · · · · · · · ·	Page 1/1 - DOCUMENT 0000035337
US-ML-CARTERSVILLE 384 OLD GRASSDALE ROAD NE		LAKELAND.FL 33801-9543 USA			1500 FISH HATCHER LAKELAND,FL 33801 USA			LENGTH 20'00"			EIGHT 590 LB		EAT / BATCH 045644/02
CARTERSVILLE, GA 30121 USA	24	\$ALES ORDE 3780634/00122			CUSTOMER MATE	erial n°		SPECIFICATION / DA ASTM A529-14, A572-15 ASTM A6-14, A36-14, AS					
CUSTOMER PURCHASE GRDER NO 1(3610-11	UMBER		BILL OF LA 1323-000007		DATE 03/12/201			ASTM A709-15, AASHTO CSA G40.20-13/G49.21-13		•			
CHEMICAL COMPOSITION G Mn 0.17 0.89	P 0.017	Ş 0.018 .	Şi 0.19	Çu 0.29	8.00 Mi	Çr 0.14	Mo 0.027	V 0.016	0 00		Ņ 0.0068	Pb % 0.0030	
CHEMICAL COMPOSITION ST 0.010													
MECHANICAL PROPERTIES Elong. 23.10 24.90	G/L inci 8.00 8.00	0	U7 P5 759 750	00	UTS MP2 523 517		,	YS 0.2% PSI 54700 53700	2	MPa 377 370			
COMMENTS / NOTES This grade meets the requirements for the following for the following the following for the following for the following for five following for five for for formers of formers for for formers f	owing grades: 19-36; A709-50				3	,				370			
			e			-		:					

Mackey QUALITY DIRECTOR

YAN WA

QUALITY ASSURANCE MGR.

THEON.

CONCRETE SUMMARY

	·	COME	Tested By:	K. Mai	Willia-		•
Cast Date:	6-15-17		Days:	T. MAR	MATE.		
Break Däte:	· 6-16-17 5:56 AM.		Days				
fime:	5:56 AM.		ļ			·	
					<u>Cone</u>	Amb.	ec
Mix#	<u>Load</u>	<u>Cyl#</u>	<u>PSI</u>	<u>Avg.</u>	Temp	<u>Temp</u>	Flow
777.5	MSE						
	53,490	1	.4,260		* .		<u>, </u>
	53,940	: 2	4,290				
	SW/Columns/Caps	1.5			· ·		
· :	62,100 .	7'	4,940	,			
	61,510	2	4,960	,		is consissed	
•	· · Ċoping						•
•	76,406 73,310		.6080. 5,840				21
•.	73,310	2	5,840			•	
	MSE-Exposed	1 3					
	•			,		<u> </u>	
			•				,
	SW-Exposed	<i>i</i>					
	·						
		<u> </u>	-				
	MSE-Color			· ·			
						•	-, -
	•			:-"			
•	. Coping-Color		1		• • • • • • • • • • • • • • • • • • • •		1
,							
F-Shape	CTB .		<u> </u>	,	⊕ * s		
- i .	86,970	• 1	6,900				
<u> </u>	86,970 86,680 Bridge	2	6,900.				
, , ,	Bridge .	, .					
<u> </u>	•				•		
· ·				*			
			, ·				511

Job: BARRIER1 Date: Jun 15, 2017 Start:11:29 Disch:11:36 Ref#: 7092 Operator: JULIO Duration/Wait: 8:05/0:05 Batch#:153633 Mixer#: 1

Mix: H-70135GCPT Mix Name: TRUCK Required: 999999.00 Batched: 55350.85 Amount: 3.50 CY

PreWet: 70%

			9			
Material	Bin	Moist/ABS%	Design	Target	Actual	%Err *Note Jogs
3/4	2	1.38/0.00	1620	5691:5806	5752 Lb	0.1 -P 2
Liberty	3	4.86/0.00	1483	5388:5497	5410 Lb	-0.6 -P 5
HOLCIM	1		455	1577:1624	1584 Lb	-0.6 5
POZZO	4		245	849:870	854 Lb	-0.5 2
ADVA575	2		7.75	184.18:195.57	192.00 Oz	1.1
RECOVER	1		3.00	71,30:75,70	74.00 Oz	0.7
VMAR-3	. 5		3.00	63.50:83.50	75.00 Oz	2.0
Prewet				36.5:37.1	36.9 Ga	0.5
Water				15.5:15.7	16.1 Ga	3.2
Dry Mixing			0:30		0:30 s	
Wet Mixing		58.	1:45		1:51 s	*8
Total Mixing			3:13		·3:13 s	
Total Moistu	re:		26.3	92.0	92.4 Ga	0.4
Water/Cement	:		0.313	0.316		

CONCRETE	SUMMARY
CALLES A COLOR OF THE	-36-34 ASTA 12-73F F

Cast Date:	16-16-17		Tested By:	Dr.			
Break Dáte:	10-17-17	-	Days:	/			
Time:	6:00 Am.						
					Cone	Amb.	
•		0.11	. pgi	۸۰۰-۰ .	2. 2.	Temp	Elou.
Mix#	Load	Cyl#	PSI	Avg.	<u>Temp</u>	Temp	Flow
	MSE	(67070	5340	756	10	. ` .
			.13 180	5870:	1.10 4	7.7	
0.00		<u>.</u>					
	SW/Columns/Caps				,		
•:			71090	5660	756	70	
		1:2	771340	5690	100	70	
	· · Coping					ς.	
·.' .		1	.67080	5340		170	
		1.2	7.5260	5990	100	5 (,)	
	MSE-Exposed	1 3					
		,	., ,				2
				•		•	
	SW-Exposed						•
	344 Explosed						
		. :		:			
•	MSE-Color						
	IVI3L-COIOI		· · · · · · · · · · · · · · · · · · ·				
						•	
			e .		,		
	0 : 0:10						
<u> </u>	Coping-Color		. ,	<u> </u>	 	,	
							-
			•				
,	СТВ		6.662.0	E220	·		
F-Shapes		<u> </u>	66920	5330	7.5	340	
T		1	67160	,5350	/	7 (0	
,	Bridge .						
*			٠,		`		
<u>`</u>			·				
					,		,

Job: BARRIER1 Date: Jun 16, 2017 Start:11:24 Disch:11:34 Ref#: 7139 Operator: TRICON Duration/Wait: 10:42/1:55 Batch#:153680 Mixer#: 2

Mix: H-70135GCPT Mix Name: TRUCK Required: 999999.00 Batched: 55395.85

Amount: 3.50 CY PreWet: 70%

Material	Bin	Moist/ABS%	Design	Target	Actual		%Err	*Note	Jogs
3/4	2	1.38/0.00	1620	5691:5806	5784	Lb	0.6	-P	3
Liberty	3	3.92/0.00	1483	5340:5448	5366	Lb	-0.5	-P	5
HOLCIM	1		455	1577:1624	1598	Lb	0.3		3
POZZO	4		245	849:870	862	Lb	0.5		1
ADVA575	2		7.75	184,18:195.57	192.00	Oz	1.1		
RECOVER	1		3.00	71.30:75.70	74.00	Oz	0.7		•
VMAR-3	5		3.00	63.50:83.50	74.00	0z	0.7		19
Prewet				40.6:41.2	40.9	Ga	0.2	, , , , , , , , , , , , , , , , , , ,	
Water				17.3:17.6	18.1	Ga	4.0		
Dry Mixing			0:30		0:30	S			
Wet Mixing			1:45		3:44	s	¥		
Total Mixing	(2)	60	5:13		5:13	s			-
Total Moistur	re:	72	26.3	92.0	92.7	Ga	0.7		
Water/Cement:	:		0.313	0.314					

Table E.1. Summary of Strong Soil Test Results for Establishing Installation Procedure.

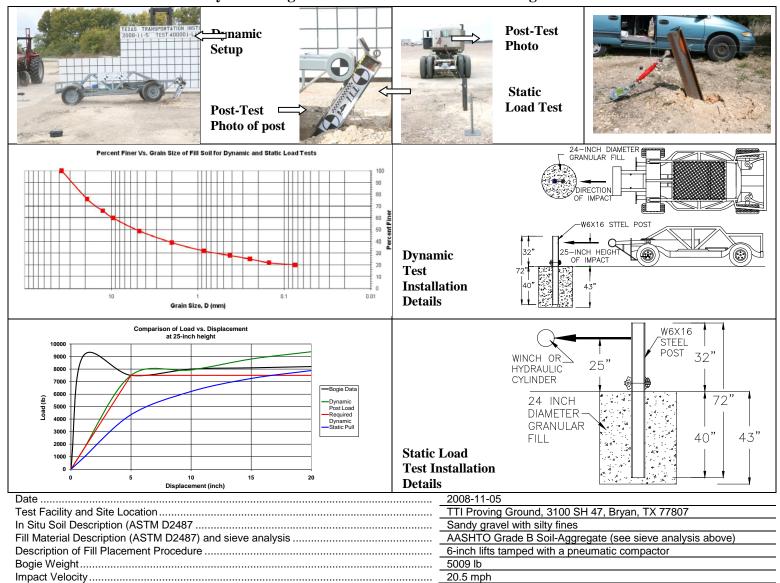
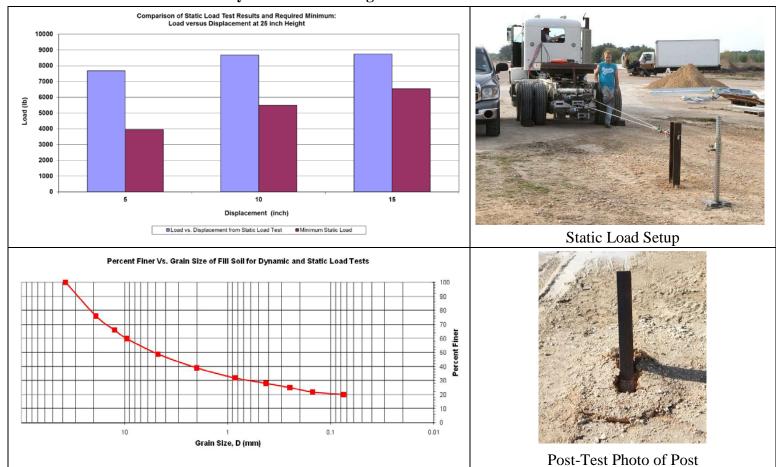



Table E.2. Test Day Static Soil Strength Documentation for Test No. 469468-5-1.

Date..... Test Facility and Site Location In Situ Soil Description (ASTM D2487) Fill Material Description (ASTM D2487) and sieve analysis .. AASHTO Grade B Soil-Aggregate (see sieve analysis) Description of Fill Placement Procedure

2017-11-27

TTI Proving Ground – 3100 SH 47, Bryan, Tx Sandy gravel with silty fines 6-inch lifts tamped with a pneumatic compactor

E.4 VEHICLE PROPERTIES AND INFORMATION

Table E.3. Vehicle Properties for Test No. 469468-5-1.

Date	e: <u>2017</u>	7-11-27		Test No.:	469468	3-5-1	VIN No.:	1C6RD6FT6	6CS235	745
Yea	r: <u>2012</u>	2		Make:	Dodge		Model	RAM 1500		
Tire	Size:	265/70	R17			Tire	Inflation Pre	essure: 35 ps	i	
Trea	ad Type:	Highwa	ay				Odo	meter: 17599	93	
Note	e any dam	age to th	ie veh	nicle prior to	test:	None				
	•				_		X -	-		
• D	enotes ac	celerome	eter lo	cation.			W			
ГОИ	TES: No	one			- 1				<u> </u>	
_	ine Type: ine CID:	V-8 5.7 I	iter		A M	WHEEL TRACK				N T
Trar _x	nsmission Auto o FWD	r	WD	_ Manual 4WD	•	R	Q. *	TEST IN	ERTIAL C. M.	
	onal Equi _l Ione	pment:				P			<u> </u>	B B
Тур		Non	e		∫ J-	I +	U	L _V L _S		K L
Mas	ss: at Position	: NA : NA			=	← F →	H—H	∟ _G -E	↓ D −	-
OCC	it i osition				_	4	M	3	M	
Geo	metry: in	ches				4	FRONT	- c	REAR	-
Α	78.50)	F _	40.00	_ K	20.00	_ P _	3.00	U _	27.25
В	74.00		G _	29.00	_ L	30.00	_ Q _	30.50	٧ _	30.00
С	227.50		Н_	61.30	_ M	68.50	_ R _	18.00	W _	61.30
D .	44.00		Ι_	11.75	_ N	68.00	_ S _	12.75	Χ_	77.50
E .	140.50 Wheel Cent Height Fro	ter	J _	27.00 14.75 Cle	O Wheel \ arance (Fr		T _ 6.00	77.00 Bottom Frame Height - Fron		12.00
	Wheel Cent	ter			Wheel \	Well	9.25	Bottom Frame	•	25.50
RA	Height Re		C=237 ±1		earance (R ! inches; F=39			Height - Real ches; O=43 ±4 inches; M		
GVV	VR Rating	as:		Mass: lb	(Curb	Test	<u>Inertial</u>	Gros	s Static
Fron	_	3700		M_{front}	-	2878		2834		
Back	-	3900		M _{rear}	-	2058		2195		
Tota		6700		M _{Total}		4936		5029		
Mas	s Distribi	ution:				(Allowabl	e Range for TIM and	GSM = 5000 lb ±110 lb)	
lb			LF:	1394	RF:	1440	LR:	1117 F	RR:	1078

Table E.4. Measurements of Vehicle Vertical CG for Test No. 469468-5-1.

Date: 2017-	11-27	Test No.:	469468-	5-1	VIN: _	1C6RD	SFT6CS	3235745	
Year: 2012		Make:	Dodge		_ Mode	l: RAN	<i>I</i> 1500		
Body Style: _	Quad Cal	0			Mileage	e: <u>175</u>	993		
Engine: <u>5.7</u>	liter V-8			Tra	ansmissior	n: <u>Auto</u>	omatic		
Fuel Level:	Empty	Ва	allast:	13	3 lb				(440 lb max)
Tire Pressure	: Front:	35_ p	osi R	ear: <u>3</u>	<u>5</u> psi	Size:	265/70)R17	
Measured Ve	hicle Wei	ghts: (l	b)						
LF:	1450		RF:	1410		Fron	t Axle:	2860	
LR:	1073		RR:	1087		Rea	r Axle:	2160	
Left:	2523		Right:	2497			Total:	5020	
						:	5000 ±110) lb allow ed	
Wh	eel Base:	140.5	inches	Track: F:	68.5	inches	R:	68	inches
	148 ±12 inch	es allow ed			Track = (F+R	$2)/2 = 67 \pm 2$	1.5 inches	allow ed	
Center of Gra	avity, SAE	J874 Sus	spension N	/lethod					
X:	60.45	inches	Rear of F	ront Axle	(63 ±4 inches	s allow ed)			
Y:	-0.18	inches	Left -	Right +	of Vehicle	Center	line		
Z:	29	inches	Above Gr	ound	(minumum 28	3.0 inches	allow ed)		
Hood Hei	ght:	46.00	o inches	Fro	nt Bumper	· Height	:	27.00) inches
	43 ±4	inches allow	ed						
Front Overha		40.00 s inches allow		Rea	ar Bumper	· Height	:	30.00	o_ inches
Overall Len									
	23/ ±	:13 inches allo	owea						

Table E.5. Exterior Crush Measurements of Vehicle for Test No. 469468-5-1.

Date:	2017-11-27	Test No.:	469468-5-1	VIN No.:	1C6RD6FT6CS235745
Year:	2012	Make:	Dodge	Model:	RAM 1500

VEHICLE CRUSH MEASUREMENT SHEET¹

VEHICLE CICERTIVE IS CICERTED IN								
Complete When Applicable								
End Damage	Side Damage							
Undeformed end width	Bowing: B1 X1							
Corner shift: A1	B2 X2							
A2								
End shift at frame (CDC)	Bowing constant							
(check one)	X1+X2							
< 4 inches	=							
≥ 4 inches								

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

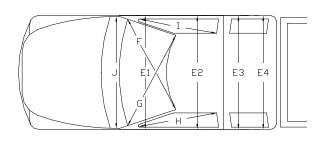
		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C_1	C_2	C ₃	C_4	C ₅	C ₆	±D
1	Side plane at bumper ht	20	10	24	10	7	4	2	11	0	16
	Measurements recorded										
	in inches										
								·	·		·

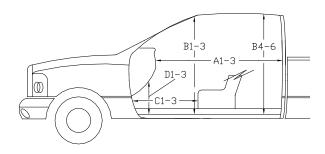
¹Table taken from National Accident Sampling System (NASS).

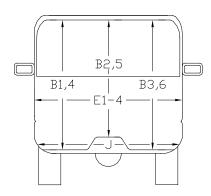
Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).


^{***}Measure and document on the vehicle diagram the location of the maximum crush.


Table E.6. Occupant Compartment Measurements of Vehicle for Test No. 469468-5-1.

Date: <u>2017-11-27</u> Test No.: <u>469468-5-1</u> VIN No.: <u>1C6RD6FT6CS235745</u>

 Year:
 2012
 Make:
 Dodge
 Model:
 RAM 1500

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

	Before	After (inches)	Differ.
A1	65.00	65.00	0.00
A2	62.50	62.50	0.00
А3	65.50	65.50	0.00
B1	45.00	45.00	0.00
B2	38.00	36.00	-2.00
В3	45.00	40.00	-5.00
B4	39.50	35.00	-3.50
B5	43.00	40.00	-3.00
B6	39.50	36.00	-3.50
C1	26.00	26.00	0.00
C2			0.00
C3	26.00	26.00	0.00
D1	11.00	11.00	0.00
D2			0.00
D3	11.25	11.25	0.00
E1	58.00	58.00	0.00
E2	63.50	63.50	0.00
E3	63.50	64.50	+1.50
E4	63.50	64.50	+1.50
F	59.00	59.00	0.00
G	59.00	59.00	0.00
Н	37.50	37.50	0.00
	37.50	37.50	0.00
J*	23.25	23.25	0.00

E.5 SEQUENTIAL PHOTOGRAPHS

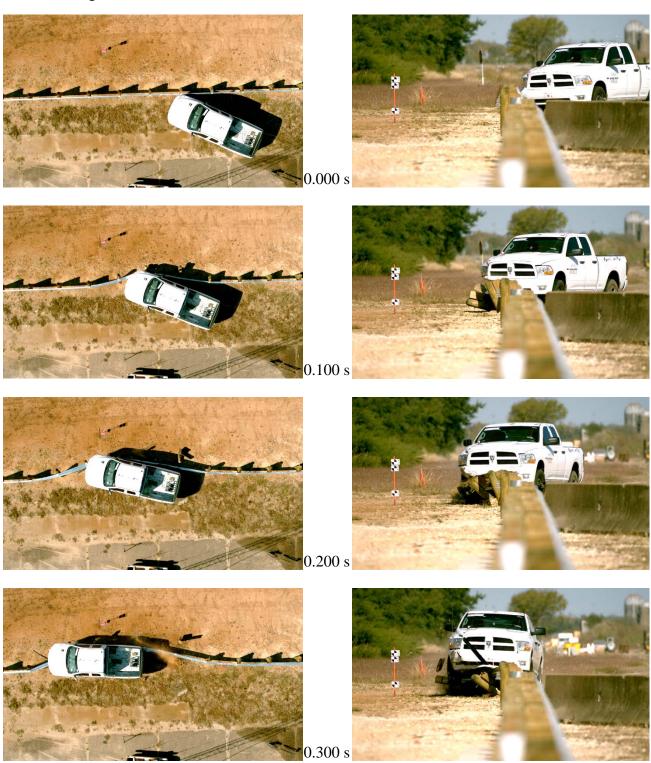


Figure E.1. Sequential Photographs for Test No. 469468-5-1 (Overhead and Frontal Views).

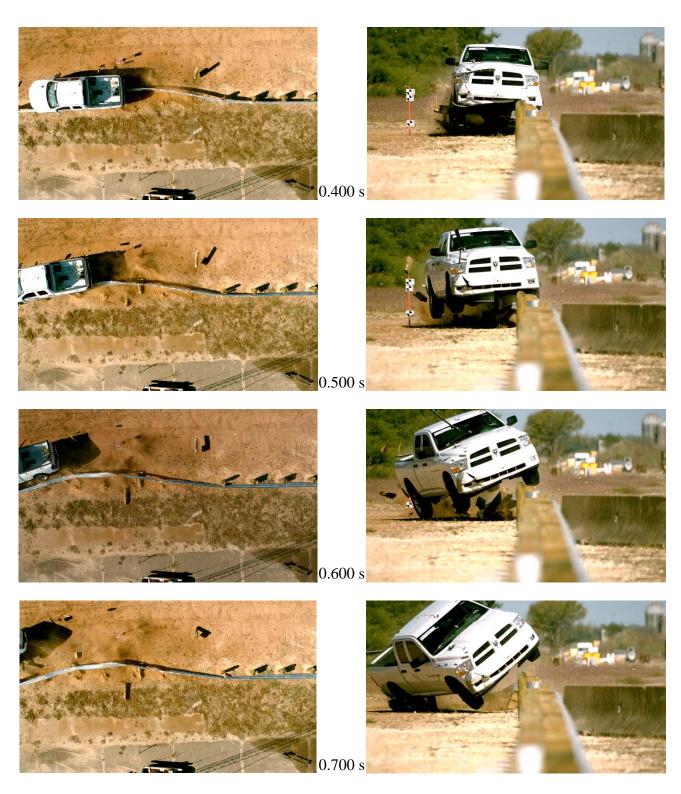
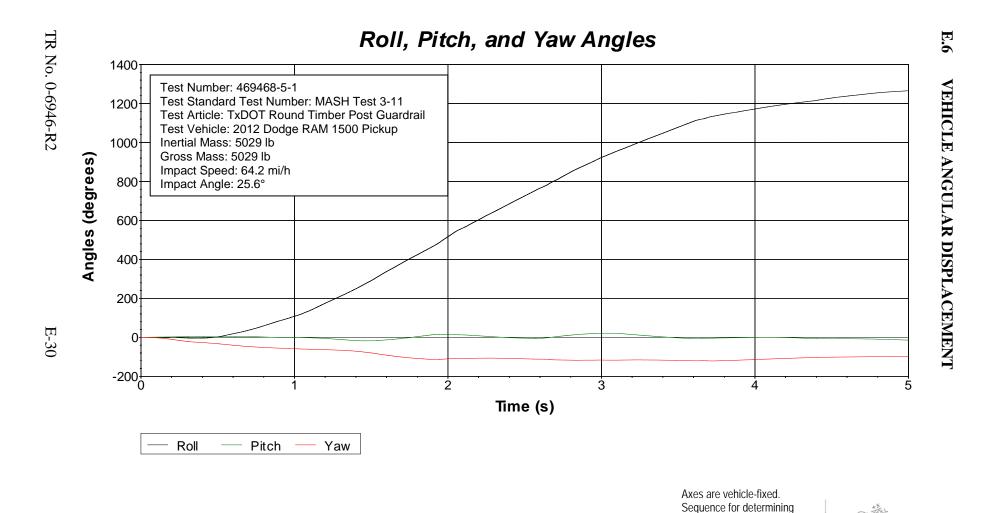



Figure E.1. Sequential Photographs for Test No. 469468-5-1 (Overhead and Frontal Views) (Continued).

Figure E.2. Sequential Photographs for Test No. 469468-5-1 (Rear View).

orientation:

1.

2.

Yaw.

Pitch.

3. Roll.

Figure E.4. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-5-1 (Accelerometer Located at Center of Gravity).

Impact Speed: 64.2 mi/h Impact Angle: 25.6°

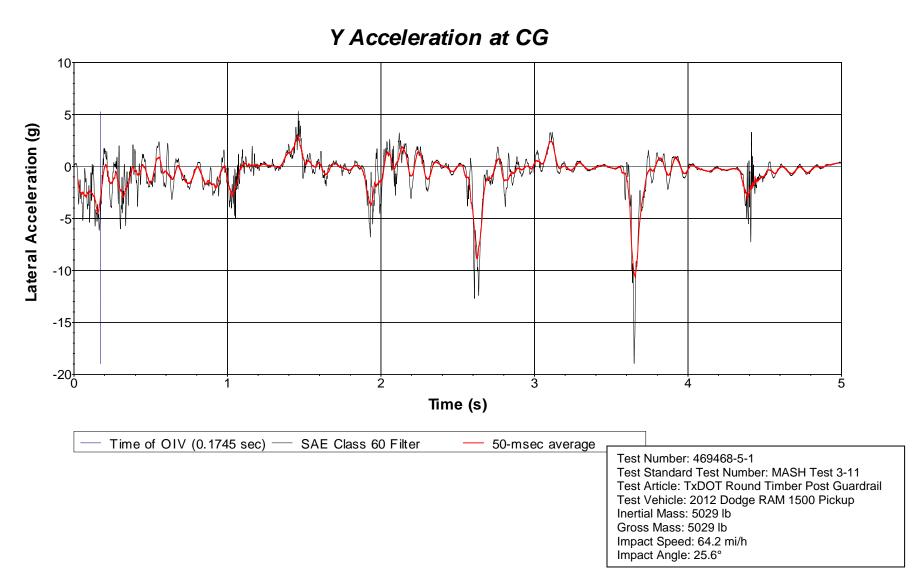


Figure E.5. Vehicle Lateral Accelerometer Trace for Test No. 469468-5-1 (Accelerometer Located at Center of Gravity).

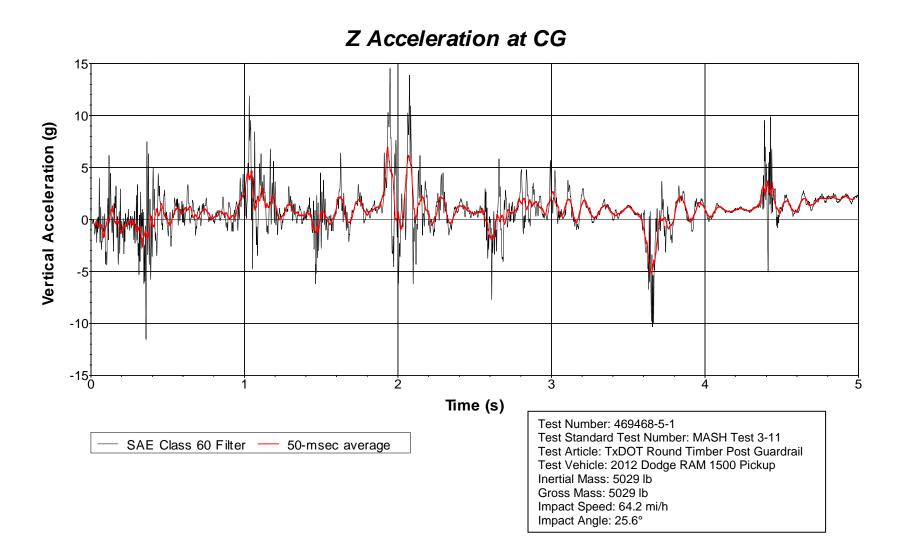


Figure E.6. Vehicle Vertical Accelerometer Trace for Test No. 469468-5-1 (Accelerometer Located at Center of Gravity).

X Acceleration Rear of CG

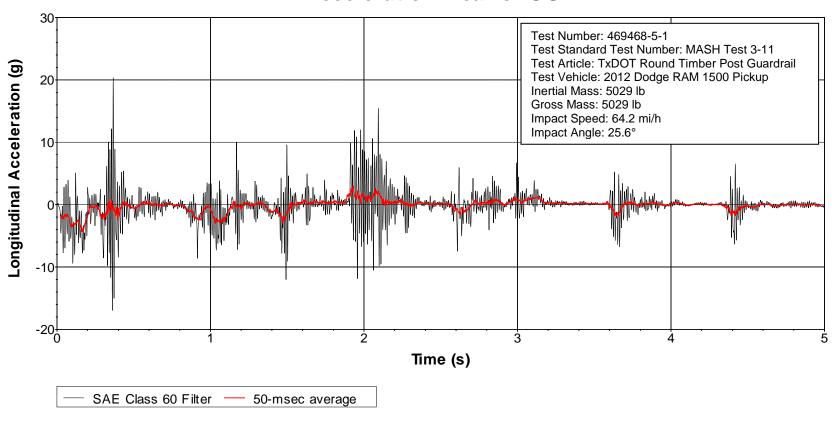


Figure E.7. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-5-1 (Accelerometer Located Rear of Center of Gravity).

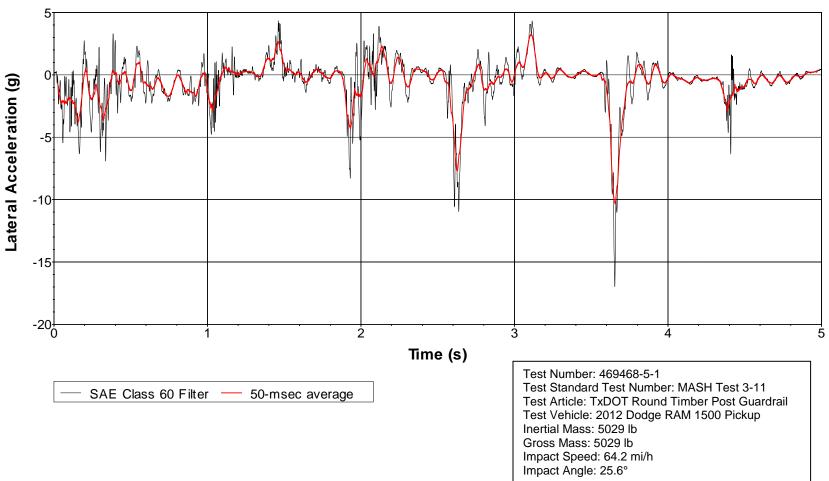
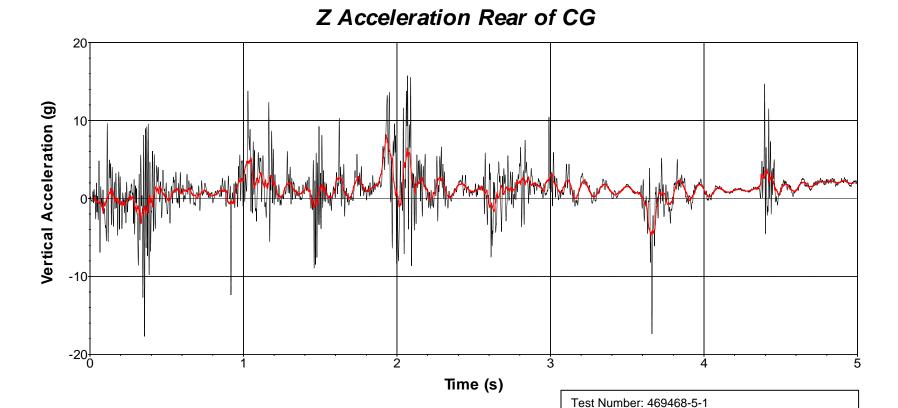



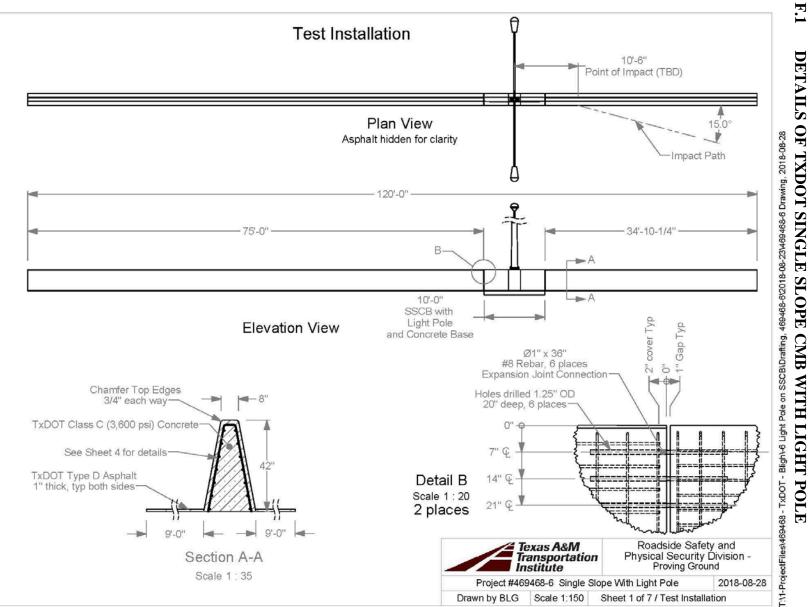
Figure E.8. Vehicle Lateral Accelerometer Trace for Test No. 469468-5-1 (Accelerometer Located Rear of Center of Gravity).

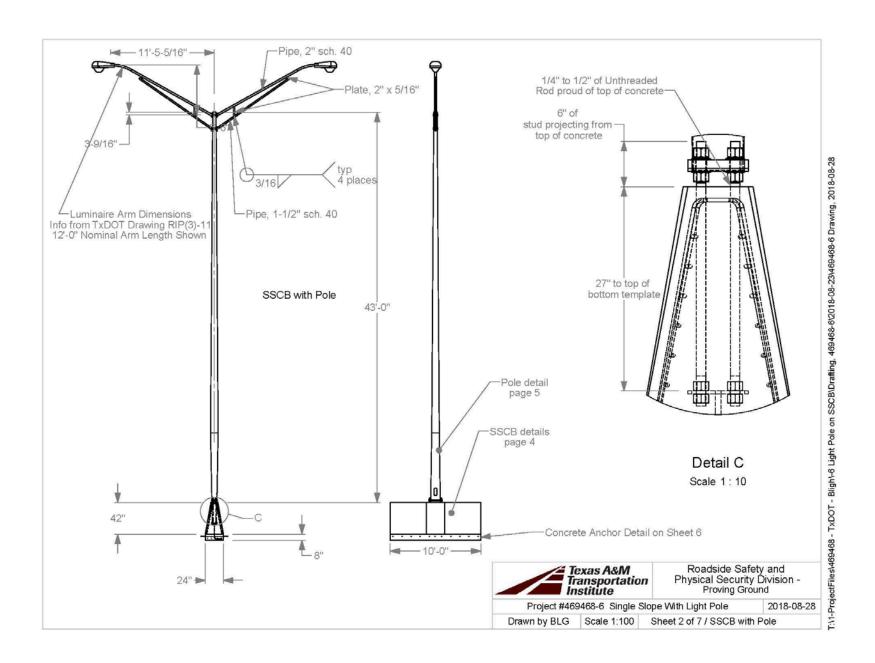
SAE Class 60 Filter —

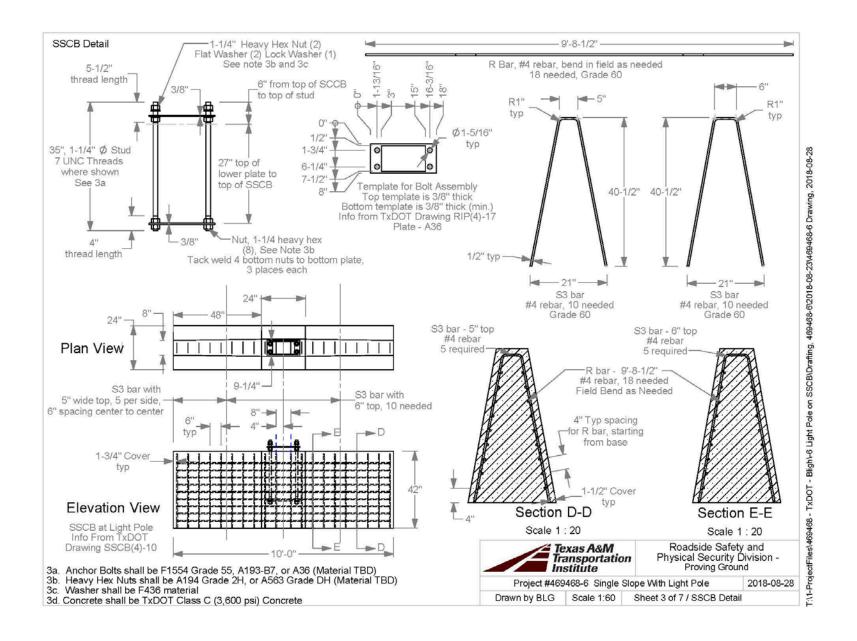
50-msec average

Impact Speed: 64.2 mi/h Impact Angle: 25.6°

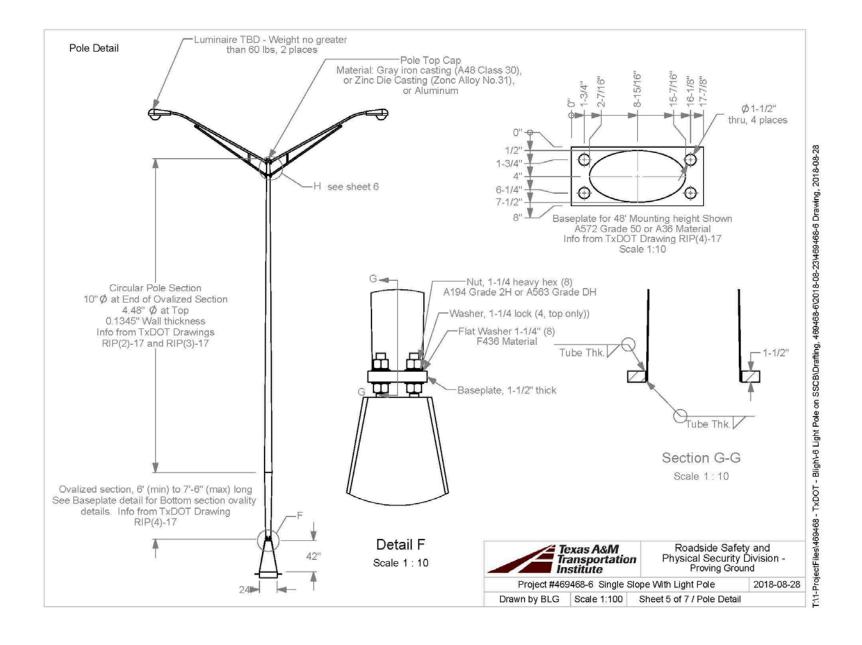
Test Standard Test Number: MASH Test 3-11

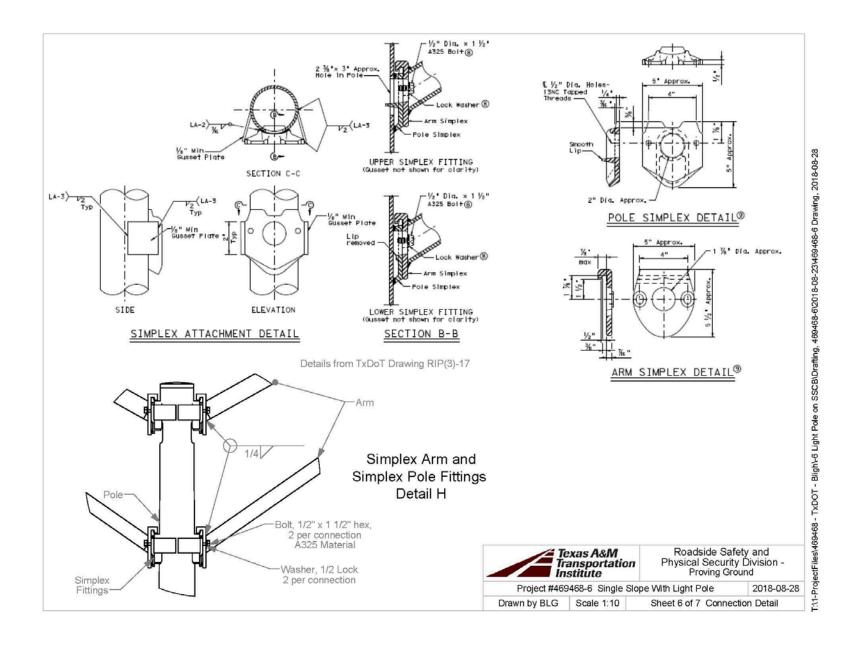

Inertial Mass: 5029 lb Gross Mass: 5029 lb

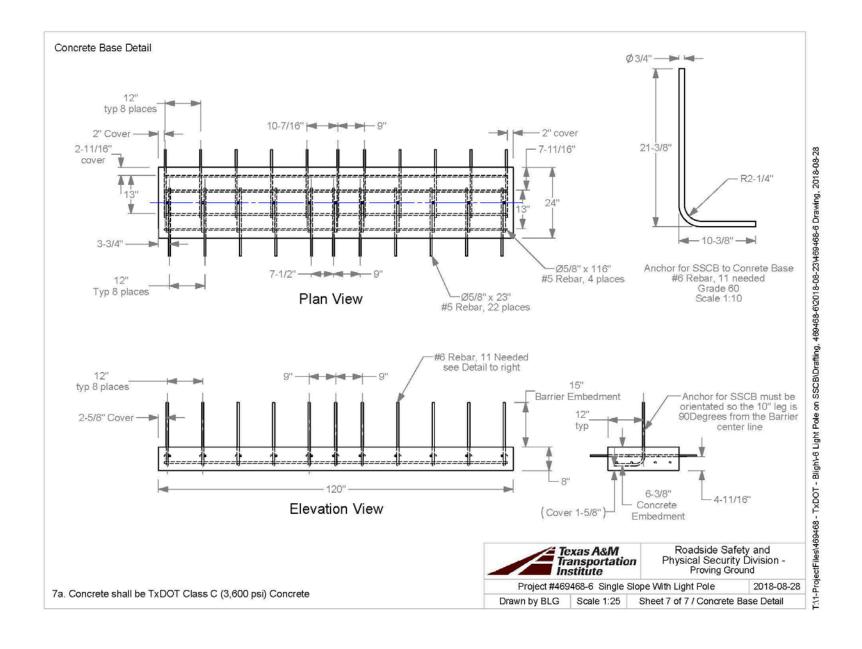

Test Article: TxDOT Round Timber Post Guardrail Test Vehicle: 2012 Dodge RAM 1500 Pickup


Figure E.9. Vehicle Vertical Accelerometer Trace for Test No. 469468-5-1 (Accelerometer Located Rear of Center of Gravity).

APPENDIX F. TXDOT 42-INCH SINGLE-SLOPE CONCRETE MEDIAN BARRIER WITH LIGHT POLE


DETAILS OF TXDOT SINGLE SLOPE CMB WITH LIGHT POLE





F.2

SUPPORTING CERTIFICATION DOCUMENTS

CMC STEEL TEXAS 1 STEEL MILL DRIVE SEGUIN TX 78155-7510

CERTIFIED MILL TEST REPORT For additional copies call

830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

*Contains no weld repair

of the plant quality manual

*Contains no Mercury contamination

*Manufactured in accordance with the latest version

*Meets the "Buy America" requirements of 23 CFR635.410

									TOMMY HEWITT	
HEAT NO.:3078548 SECTION: REBAR 25MM (#8) 20'0" 420/60 GRADE: ASTM A615-16 Gr 420/60 ROLL DATE: 03/18/2018 MELT DATE: 03/14/2018 Cert. No.: 82436007 / 078548A041		D L	O L 10650 State Hwy 30 D College Station TX US 77845-7950 T 979 774 5900			S H I P T O	CMC Construction Svcs 10650 State Hwy 30 College Station TX US 77845-7950 979 774 5900	Quality Assu College Stati	Delivery#: 82436007 BOL#: 72550550 CUST PO#: 787032 CUST P/N: DLVRY LBS / HEAT: 21360.000 LI DLVRY PCS / HEAT: 400 EA	
Characteristic	Value				Characteristic	Value	•	Chara	L	
С	0.41%							Chara	cteristic Value	
Mn	1.07%									
P	0.011%									
S	0.039%									
Si	0.25%									
Cu	0.33%									
Cr	0.15%									
Ni	0.12%									
Мо	0.045%									
V Cb	0.002%				55 B					
Sn	0.003% 0.011%									
Al	0.011%								rue of the material represented by this MTR:	
Yield Strength test 1	64.6ksi							* 100% m	elted and rolled in the USA	
Tensile Strength test 1	104.8ksi								1:2004 3.1 compliant	

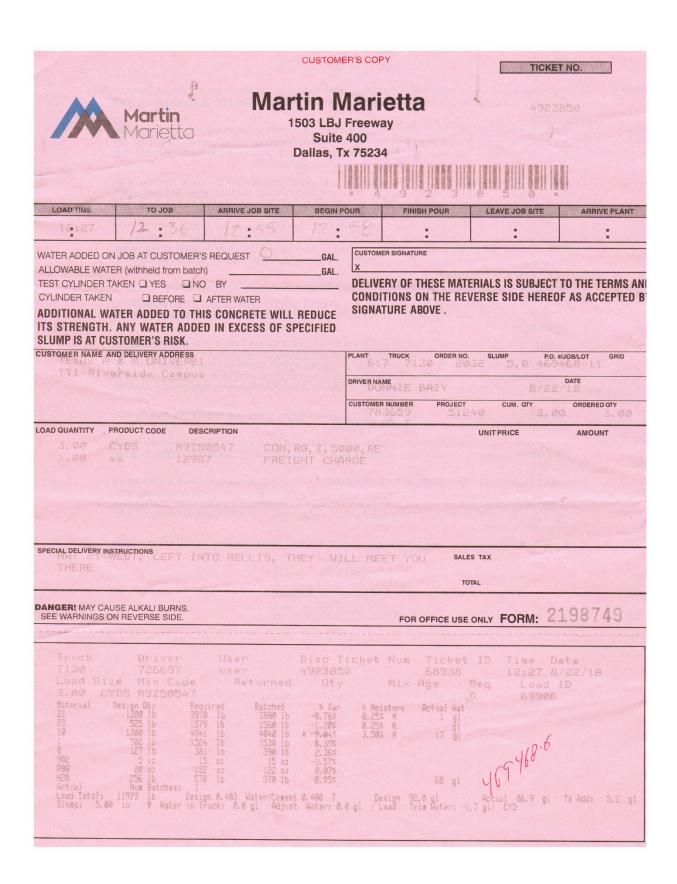
REMARKS:

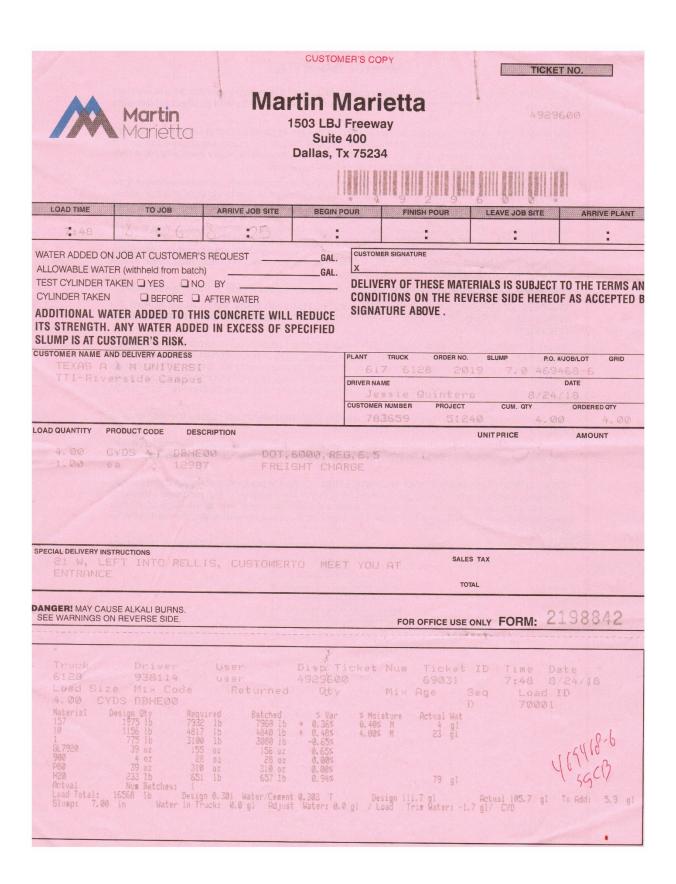
Elongation test 1

Bend Test 1

Bend Test Diameter

Elongation Gage Lgth test 1


15%


5.000IN

Passed

8IN

07/06/2018 16:16:08 Page 1 OF 1

F.3 VEHICLE PROPERTIES AND INFORMATION

Table F.1. Vehicle Properties for Test No. 469468-6-1.

Da	ate: 2018-08-	28 Tes	st No.:	469468-6	VIN No.: _		3HAMMAAN3DL237432	
Ye	ear:2013		Make:	INTERNATION	VAL_	Model: _	4300	
0	dometer: 9453			Front: 275/80		Tire Size	e Rear: 275/80	DR22.5
X	T N N N N N N N N N N N N N N N N N N N	B O I	P → J → I → I → I → I → I → I → I → I → I	Z - R H	W Y D	- C	B	
Vel A B	nicle Geometry: [Front Bumper Width:	✓ inches 95.00		mm Rear Bumper Bottom: Rear Frame Top:	37.0	_ U V	Cab Length: Trailer/Box Length:	106.00
С	Overall Length:	324.75	М	Front Track Width:	80.0	v v	Gap Width:	4.00
D	Rear Overhang:	84.00	Ν	Roof Width:	71.0		Overall Front Height:	98.50
Е	Wheel Base:	204.75	0	Hood Height:	59.0		Roof-Hood Distance:	30.00
F	Front Overhang:	36.00	Р	Bumper Extension:	1.0	Z 00 AA	Roof-Box Height Difference:	50.00
G	C.G. Height: C.G. Horizontal		Q	Front Tire Width:	39.0		Rear Track Width:	73.00
H	Dist. w/Ballast:	126.55	R	Front Wheel Width:	23.5	0	Ballast Center of Mass:	63.25
L	Front Bumper Bottom:	16.25	S	Bottom Door Height:	37.0	00	Cargo Bed Height:	50.00
J	Front Bumper Top:	33.25	Т	Overall Width:	96.0	0	<u>-</u>	
	Allowable Range:	C = 394 inches	max.; I	E = 240 inches max.; Co	C = 51 ±2 inc	hes; BB = 63	±2 inches above ground;	
	Wheel Center Height Front	19.00		Wheel Well Clearance (Front)		9.00	Bottom Frame Height (Front)	25.50
1	Wheel Center Height Rear	19.00		Wheel Well Clearance (Rear)		4.50	Bottom Frame Height (Rear)	27.00

Table F.1. Vehicle Properties for Test No. 469468-6-1 (Continued).

Date:	2018-08-28	_ Test No.:	469468-6	VIN No.:	3HAMMAAN:	3DL237432					
Year:	2013	_ Make: _	INTERNATIONAL	Model: _	430	0					
	V.	kg) front axle /rear axle VTOTAL	CURB 7140 6840 13980 13,200 ±2200 lb Allowable R	TEST INERTIAL 8440 13660 22100 Range for TIM = 22,046 ±660 lb							
Ballast: 8000 (as-needed) (See MASH Section 4.2.1.2 for recommended ballasting)											
	Mass Distribution (☑ lb or ☐ kg): LF: 4320										
Engine Engine	005		Acceleroi -	meter Location x 1	ns(☑inches d y	or □mm) z²					
-	nission Type:		Front:			-					
2	Auto or Г] Manual	Center:	126.50	0.00	50.00					
П	FWD RWD	4WD	Rear:	204.75	0.00	50.00					
Describ	be any damage to th	e vehicle prior	to test: NONE								
attach			mensions, mass, loc	ation, center	of mass, and n	nethod of					
0	ITERED IN MIDDLE	7.4									
63.2	5" FROM CENTER	OF BLOCK TO	O GROUND								
4 5/1	16" TIE DOWN CAB	LES PER BLC	OCK								
Perfor	med by: SCD			Date	e:2018-	08-28					

¹ Referenced to the front axle ² Above ground

F.4 SEQUENTIAL PHOTOGRAPHS

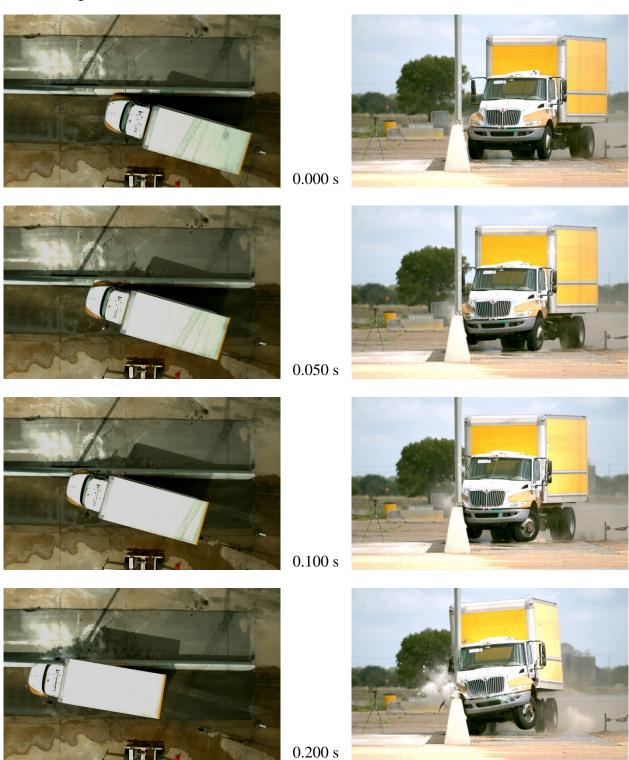


Figure F.1. Sequential Photographs for Test No. 469468-6-1 (Overhead and Gut Views).

Figure F.1. Sequential Photographs for Test No. 469468-6-1 (Overhead and Gut Views) (Continued).

Figure F.2. Vehicle Angular Displacements for Test No. 469468-6-1.

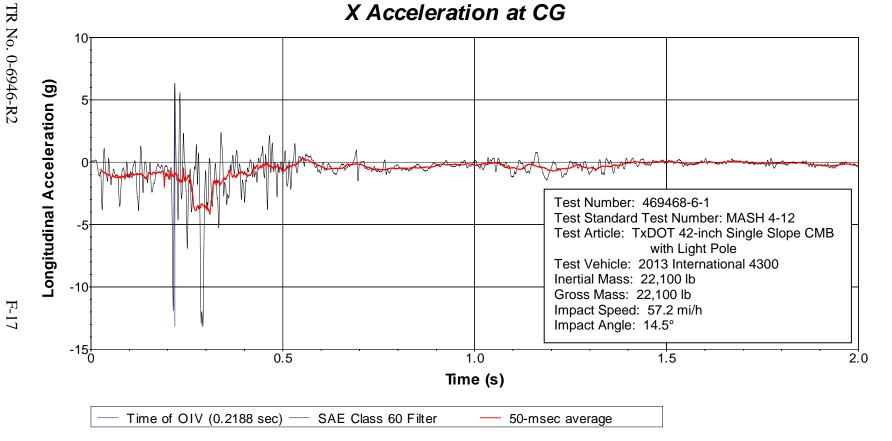


Figure F.3. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-6-1 (Accelerometer Located at Center of Gravity).

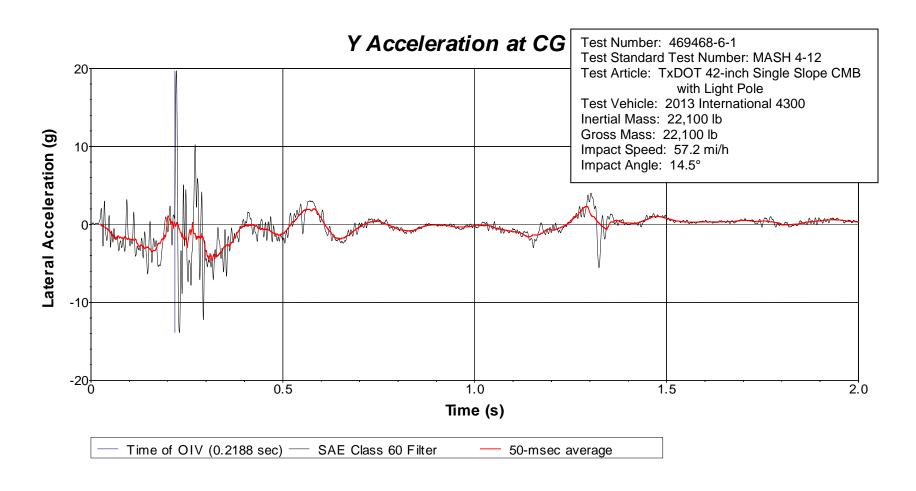


Figure F.4. Vehicle Lateral Accelerometer Trace for Test No. 469468-6-1 (Accelerometer Located at Center of Gravity).

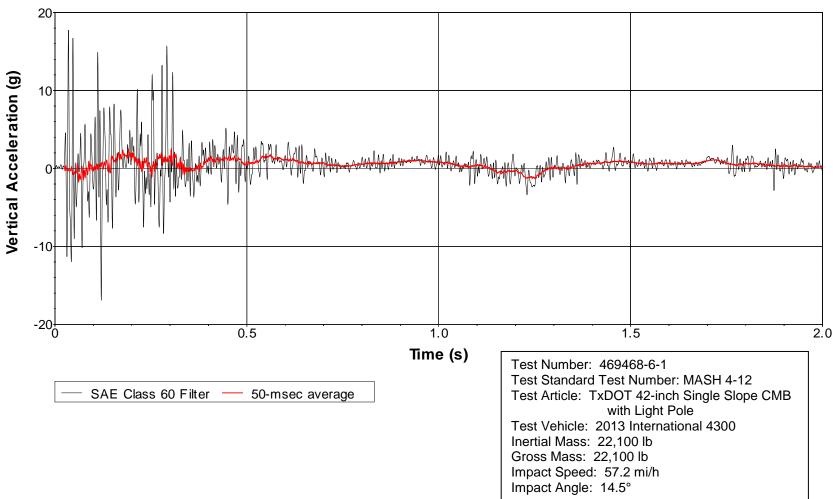


Figure F.5. Vehicle Vertical Accelerometer Trace for Test No. 469468-6-1 (Accelerometer Located at Center of Gravity).

X Acceleration Rear of CG

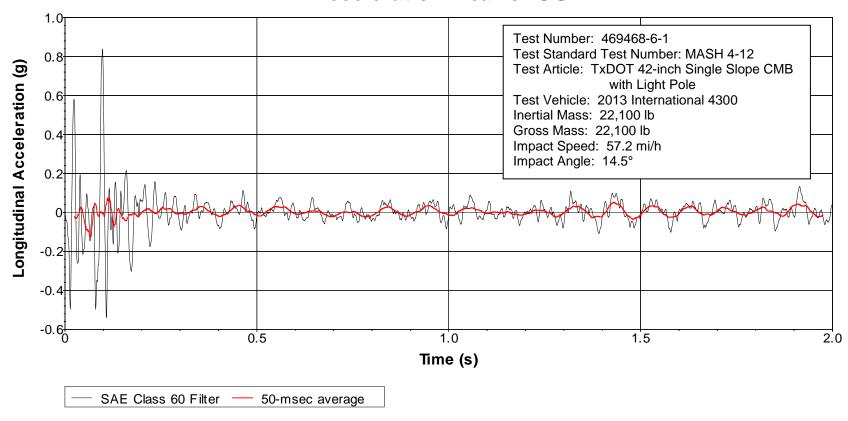


Figure F.6. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-6-1 (Accelerometer Located at Rear of Center of Gravity).

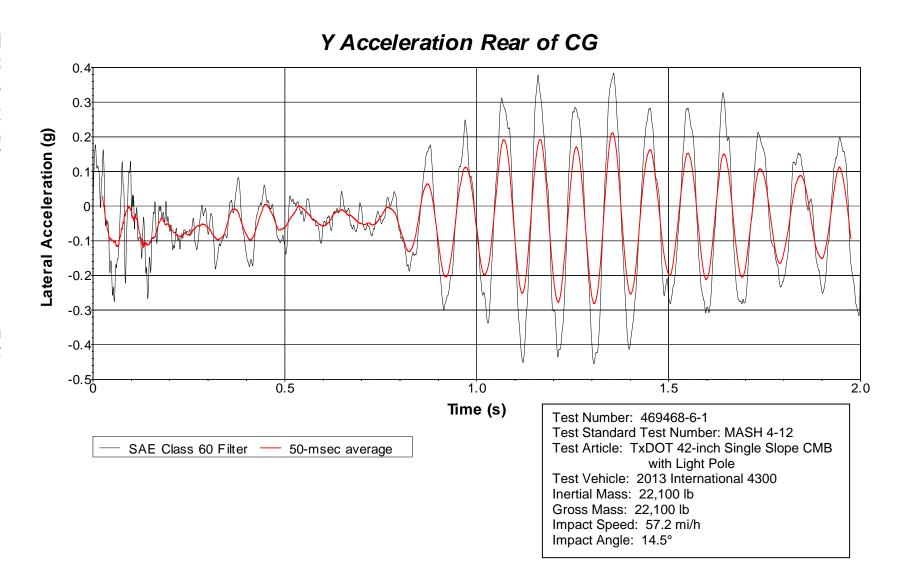


Figure F.7. Vehicle Lateral Accelerometer Trace for Test No. 469468-6-1 (Accelerometer Located Rear of Center of Gravity)

Z Acceleration Rear of CG

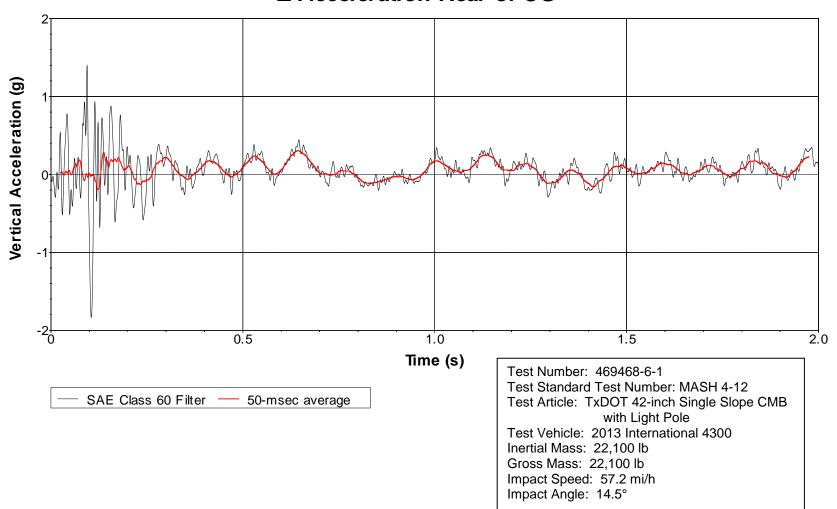


Figure F.8. Vehicle Vertical Accelerometer Trace for Test No. 469468-6-1 (Accelerometer Located Rear of Center of Gravity).

APPENDIX G. SKID-MOUNTED SINGLE PERFORATED STEEL TUBE SIGN SUPPORT SYSTEM

G.1 *MASH* TEST 3-72 AT 0° (CRASH TEST NO. 469468-7-1)

G.1.1 Vehicle Properties and Information

Table D.1. Vehicle Properties for Test No. 469468-7-1.

Date: _	2018-2	-19	_ Test No.:	4694	468-7-1	VIN No.:	1C6RD6F	10CS15	9827
Year: _	2012		_ Make:	DC	DDGE	Model:	RAN	Л 1500	
Tire Size:	265/7	70 R 1	17		Tire In	flation Pre	ssure: 35 PS	l	
Tread Typ	e: HIGH	IWAY	,			Odor	meter: 14952	3	
Note any	damage to	the ve	hicle prior to to	est: N	ONE				
• Denote:	s acceleror	neter l	ocation.			- ₩ -	1		
NOTES:				1 1	*	71			1
Engine Ty Engine CI		3 ' L		A M	WHEEL TRACK				- N T
Transmiss Au FV	ito or	 RWD	_ Manual _ <u> </u>		R P Q	•	TEST IN	ERTIAL C. M.	†
Optional E NONE	quipment:			†					B 3 ——— I
Dummy D Type: Mass: Seat Pos	NC	NE] J	I F	U H —	V S	-D-	K L
Geometry	/: inches				Ψ.	M FRONT	10	M REAR	
Α	78.50	F	40.00	K	20.00	Р _	3.00	U _	-
В	74.00	G	28.50	L _	30.00	Q	30.50	V	
C2	227.50	Н	62.10	Μ _	68.50	R _	18.00	W	
D	44.00	١ _	9.50	Ν _	68.00	s _	13.00	Х	
4 -3	140.50	J	27.00	0	46.00	т _	77.00		
	Center nt Front		14.75 Clea	Wheel Warance (Fro		6.00	Bottom Frame Height - Front		12.00
	Center ht Rear		14.75 _{Cle}	Wheel Warance (Re		9.25	Bottom Frame Height - Rear		25.50
RANGE LIM	IT: A=78 ±2 inche	es; C=237	±13 inches; E=148 ±12	2 inches; F=39	±3 inches; G = > 28 in	nches; H = 63 ±4	inches; O=43 ±4 inches;	M+N/2=67 ±1.	5 inches
GVWR R	Ratings:		Mass: Ib	9	<u>Curb</u>	<u>Test</u>	Inertial	Gross	Static
Front _	370	00	M_{front}		2870		2808		
Back _	390		M_{rear}		2000		2226		
Total _	670	00	M_{Total}		4870	Dance for TIM	5034		
Mass Dis	tribution:					range for Hivi an	d GSM = 5000 lb ±110 lb		
lb		LF:	1403	RF: _	1405	LR:	1129 RI	R:1	097

Table G.2. Measurements of Vehicle Vertical CG for Test No. 469468-7-1.

Date: 2018-2	2-19 Te	est No.: _	469468	3-7-1	VIN: 1C6RD6FT0CS159827						
Year:201	2	Make: _	DOD	GE	Model	RA	M 1500				
Body Style: Q	UAD CAE	3			Mileage	149523					
Engine: 4.7L	V-8			Tran	smission	AUTO					
Fuel Level: E	MPTY	Ball	ast: _120	LBS			(4-	40 lb max)_			
Tire Pressure:	Tire Pressure: Front: 35 psi Rear: 35 psi Size: 265/70 R 17										
Measured Vehicle Weights: (lb)											
LF:	1403		RF:	1405		Front Axle	2808				
LR:	1129		RR:	1097		Rear Axle	2226				
Left:	2532		Right:	2502			5034				
						5000 ±1	10 lb allow ed				
	nestrae mouse es	140.50	inches	Track: F:		inches R		inches			
	148 ±12 inch	es allow ed			Track = (F+	R)/2 = 67 ±1.5 inch	es allow ed				
Center of Gra	vity, SAE	J874 Sus	pension N	/lethod							
X:	62.13	inches	Rear of F	ront Axle	(63 ±4 inch	es allow ed)					
Y:	-0.20	inches	Left -	Right +	of Vehicl	e Centerline					
Z·	28.50	inches	Above Gr	ound	(minumum 2	28.0 inches allow ed	1)				
Hood Heigh	200700 00000000	46.00	-	Front	Bumper	Height:	27.00	inches			
Front Overhan	g:		inches	Rear	Bumper	Height:	30.00	inches			
Overall Lengt	h:		inches								

Table G.3. Exterior Crush Measurements of Vehicle for Test No. 469468-7-1.

Date:	2018-2-19	_ Test No.:	469468	3-7-1	VIN No.:	1C6RD6F10CS159827								
Year:	2012	_ Make:	DOD	GE	Model:	RAM 1500								
an All Marine		VEHICLE C	RUSH ME.	ASUREN	MENT SHE	ET ¹								
	Complete When Applicable													
	End D	amage		Side Damage										
	Undeforme	ed end width		Bowing: B1 X1										
	Con	ner shift: A1		B2 X2										
		A2												
	End shift at fra	me (CDC)		Bowing constant										
	(check o	one)		X1+X2										
		< 4 inches	12)											
		≥ 4 inches												

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

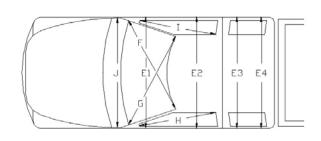
- · · ·		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C ₁	C ₂	C ₃	C4	C ₅	C ₆	±D
	None Measureable										
	inches										
						-					

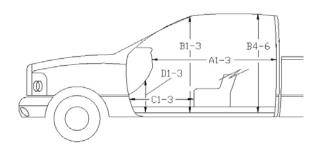
¹Table taken from National Accident Sampling System (NASS).

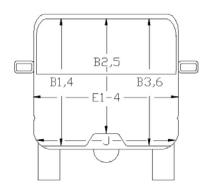
*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).


***Measure and document on the vehicle diagram the location of the maximum crush.


Note: Use as many lines/columns as necessary to describe each damage profile.


Table G.4. Occupant Compartment Measurements of Vehicle for Test No. 469468-7-1.

 Date:
 2018-2-19
 Test No.:
 469468-7-1
 VIN No.:
 1C6RD6FT0CS159827

 Year:
 2012
 Make:
 DODGE
 Model:
 RAM 1500

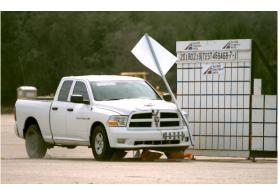
*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

	Before	After inches	Differ.
A1	65.00	65.00	0.00
A2	63.00	63.00	0.00
А3	65.50	65.50	0.00
B1	45.00	45.00	0.00
B2	38.00	38.00	0.00
В3	45.00	45.00	0.00
B4	39.50	39.50	0.00
B5	43.00	43.00	0.00
B6	39.50	39.50	0.00
C1	6.00	6.00	0.00
C2	0.00	0.00	0.00
C3	26.00	26.00	0.00
D1	11.00	11.00	0.00
D2	0.00	0.00	0.00
D3	11.50	11.50	0.00
E1	58.50	58.50	0.00
E2	63.50	63.50	0.00
E3	63.50	63.50	0.00
E4	63.50	63.50	0.00
F	59.00	59.00	0.00
G	59.00	59.00	0.00
Н	37.50	37.50	0.00
I	37.50	37.50	0.00
J*	25.00	25.00	0.00

G.1.2 Sequential Photographs

0.000 s



0.025 s

0.050 s

0.075 s

Figure G.1. Sequential Photographs for Test No. 469468-7-1 (Perpendicular and Oblique Views).

0.150 s

0.200 s

0.250 s

Figure G.1. Sequential Photographs for Test No. 469468-7-1 (Perpendicular and Oblique Views) (Continued).

G2. *MASH* TEST 3-72 AT 90° (CRASH TEST NO. 469468-7-2)

G.2.1 Vehicle Properties and Information

Table G.5. Vehicle Properties for Test No. 469468-7-2.

Date: _	2018-2-	19	Test No.:	469468	3-7-2	VIN No.:	1C6RR6F	rxds	500539
Year: _	2013		Make:	DOD	GE	Model:	RAN	/ 150	0
Tire Size:	265/7	0 R 1	7		Tire In	nflation Pres	ssure: 35 PS	l	
Tread Ty	_{pe:} HIGH	WAY				Odor	neter: 19265	8	
Note any	damage to t	he veh	nicle prior to te	est: NON	E				
Denote	es accelerom	neter Ic	ocation.			-	-		
NOTES:				1		711) ——	1
									<u> </u>
Engine T		L		A M					WHEEL TRACK
Transmis	sion Type:			1				<i></i>	
	uto or	П	Manual		⊢ Q	-	TEST IN	ERTIAL C. M.	
☐ F\	WD 🔽 F	RWD	4WD		R				
Optional	Equipment:			P -				- 10	=)
NONE				Ť	6				
Dummy [)ata:]]-[I-j			+ + + + + + + + + + + + + + + + + + + +	$\mathcal{D}_{\mathcal{T}}$	P _K L,
Type:	NO	NE		* * * * * * *		~ "	LvFs		_ + - + -
Mass:					← F →	← Н →	LG	- -D-	-
Seat Po	sition:					4	-E	7.16	
Geometr	y: inches				Ť	M FRONT		M REAR	
A	78.50	F	40.00	K	20.00	Р	_c	U	-
В	74.00	G -	28.50	L	30.00	Q	30.50	V -	
С	227.50	н –	60.76	Μ	68.50	R	18.00	w	
D	44.00	1	12.00	Ν	68.00	s	13.00	X	
Ε	140.50	J –	26.50	0	46.00	т _	77.00	_	
	l Center ht Front		14.75 _{Clea}	Wheel Well arance (Front)		6.00	Bottom Frame Height - Front		12.00
Whee	Center		1175	Wheel Well		9.25	Bottom Frame		25.50
	ght Rear MIT: A=78 +2 inches			arance (Rear) _ 2 inches: E=39 +3 inc	ches: G = > 28 ii		Height - Rear inches; O=43 ±4 inches;	M+N/2=67	100 100 100
	Ratings:	, 0 201 2	Mass: lb	Cur			Inertial		ss Static
Front	370	0	M _{front}		<u>~</u> 2934	<u>1001</u>	2854	<u> </u>	<u> </u>
Back	390		M_{rear}		2092	-	2175	-	
Total	670		M_{Total}	-	5026		5029		
Mass Dis	stribution:	_			(Allowable	Range for TIM and	GSM = 5000 lb ±110 lb	.)	
lb		LF:	1425	RF:	1429	LR:	1083 RI	₹:	1092

Table G.6. Measurements of Vehicle Vertical CG for Test No. 469468-7-2.

Date: 2018-	2-19 T	est No.: _	469468	3-7-2	VIN: 1C6RR6FTXDS500539				
Year:201	13	Make: _	DOD	GE	Model:	RAN	/I 1500		
Body Style: Q	UAD CA	3			Mileage:	192658			
Engine: 4.7L	V-8			Tran	smission:	AUTO			
Fuel Level: <u>E</u>	MPTY	Ball	ast:				(4-	40 lb max)	
Tire Pressure:				ar: <u>35</u>	_ psi	Size: 265/70	R 17		
Measured Ve	hicle Wei	ghts: (l	b)						
LF:	1425		RF:	1429		Front Axle:	2854		
LR:	1083		RR:	1092		Rear Axle:	2175		
Left:	2508		Right:	2521		Total:	5029		
						5000 ±1	10 lb allow ed		
Wh	eel Base:	140.50	inches	Track: F:	68.50	inches R:	68.00	inches	
	148 ±12 inch	nes allow ed			Track = (F+F	R)/2 = 67 ±1.5 inche	s allow ed		
Center of Gra	avity, SAE	J874 Sus	pension N	/lethod					
X:	60.77	inches	Rear of F	ront Axle	(63 ±4 inche	s allow ed)			
Y:	0.09	inches	Left -	Right +	of Vehicle	e Centerline			
Z [.]	28.50	inches	Above Gr	ound	(minumum 28	3.0 inches allow ed)			
225 27 28 28 28		200 993300	8 8				900000 00000		
Hood Heig	10000 100000	46.00 nches allowed		Front	Bumper I	Height:	26.50	inches	
Front Overhar	ua.	40.00	inches	Rear	Rumper I	Height:	30.00	inches	
	· —	nches allowed	-		P				
Overall Leng	lot.		inches						
	227 ±1.	2 inches allow	od						

Table G.7. Exterior Crush Measurements of Vehicle for Test No. 469468-7-2.

Date:	2018-2-19	_ Test No.:	469468	3-7-2	VIN No.:	1C6RR6FTXDS500539		
Year:	2013	_ Make:	DOD	GE	_ Model:	RAM 1500		
		VEHICLE C				ET^1		
			Complete Wh	en Applica				
		amage				ide Damage		
Undeformed end width					Bowing: B1 X1			
	Corr	ner shift: A1 _		B2 X2				
		A2 _						
	End shift at fra	me (CDC)		В	owing constan	t		
	(check o	ne)		X1+X2				
< 4 inches					2	= 10 10 10 10 10 10 10 10 10 10 10 10 10		
		≥4 inches						

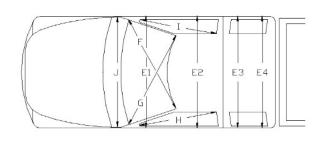
Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

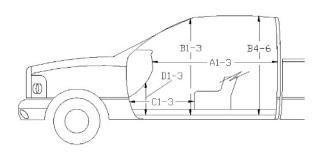
G :c		Direct Damage								200	
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C ₁	C ₂	C ₂ C ₃		C ₅	C ₆	±D
	None Measurable										
	inches					9					
						20					

¹Table taken from National Accident Sampling System (NASS).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.


^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

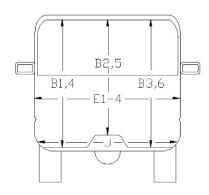

^{***}Measure and document on the vehicle diagram the location of the maximum crush.

Table G.8. Occupant Compartment Measurements of Vehicle for Test No. 469468-7-2.

Date:	2018-2-19	_ Test No.:	469468-7-2	_ VIN No.:	1C6RR6FTXDS500539
Year:	2013	Make:	DODGE	Model:	RAM 1500

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

Before	After inches	Differ.
65.00	65.00	0.00
63.00	63.00	0.00
65.50	65.50	0.00
45.00	45.00	0.00
38.00	38.00	0.00
45.00	45.00	0.00
39.50	39.50	0.00
43.00	43.00	0.00
39.50	39.50	0.00
6.00	6.00	0.00
0.00	0.00	0.00
26.00	26.00	0.00
11.00	11.00	0.00
0.00	0.00	0.00
11.50	11.50	0.00
58.50	58.50	0.00
63.50	63.50	0.00
63.50	63.50	0.00
63.50	63.50	0.00
59.00	59.00	0.00
59.00	59.00	0.00
37.50	37.50	0.00
37.50	37.50	0.00
25.00	25.00	0.00
	65.00 63.00 65.50 45.00 38.00 45.00 39.50 6.00 0.00 26.00 11.00 0.00 11.50 58.50 63.50 63.50 63.50 59.00 59.00 37.50	65.00 65.00 63.00 63.00 65.50 65.50 45.00 45.00 38.00 38.00 45.00 45.00 39.50 39.50 43.00 43.00 39.50 39.50 6.00 6.00 0.00 0.00 26.00 26.00 11.00 11.00 0.00 0.00 11.50 11.50 58.50 58.50 63.50 63.50 63.50 63.50 63.50 63.50 59.00 59.00 59.00 59.00 37.50 37.50

G.2.2 Sequential Photographs

201 802 19 TEST 463468 7/2 TES

0.000 s

20 802 19 TEST 459458-7-2

0.025 s

0.050 s

2018D219 TEST 458-7-2

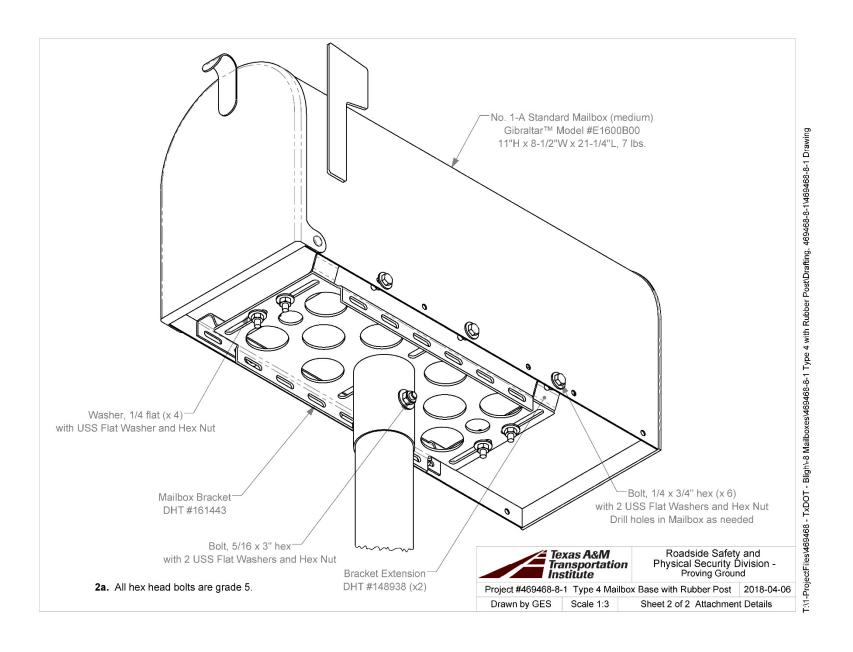
0.075 s

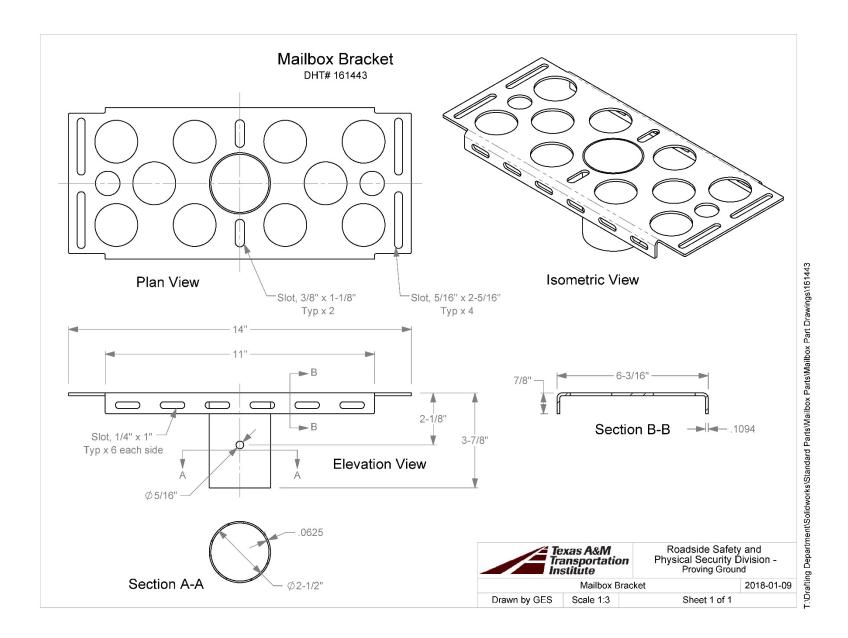
Figure G.2. Sequential Photographs for Test No. 469468-7-2 (Perpendicular and Oblique Views).

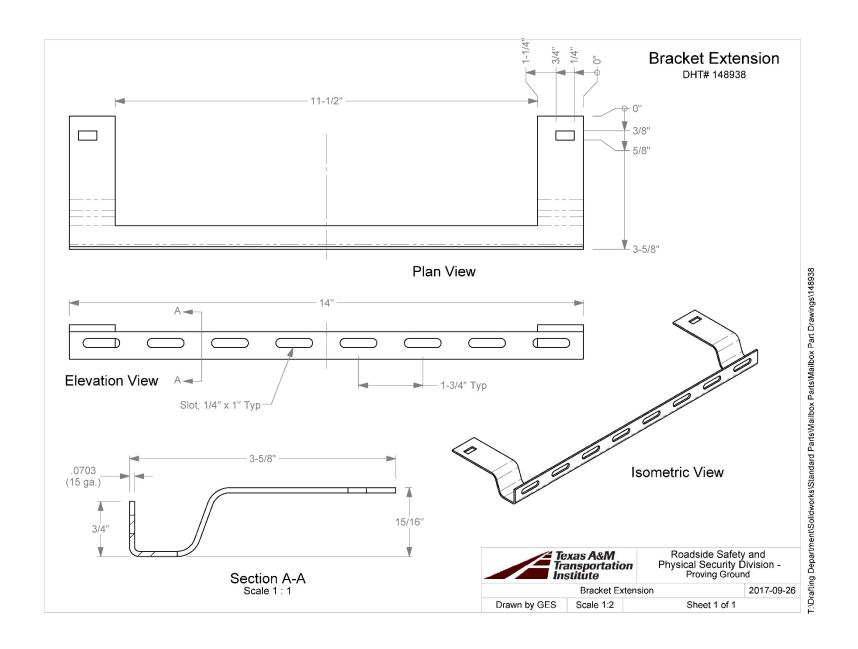
0.150 s

Figure G.2. Sequential Photographs for Test No. 469468-7-2 (Perpendicular and Oblique Views) (Continued).

0.250 s


APPENDIX H. MAILBOXES


H.1 SUPPORT IN TYPE 4 FOUNDATION MASH TEST 3-61 ON SINGLE MAILBOX WITH RECYCLED RUBBER


Test Article Details

TM-ProjectFiles/469468 - TxDOT - Bligh∿8 Mailboxes/469468-8-1 Type 4 with Rubber Post\Drafting, 469468-8-1469468-8-1 Drawing

TR No. 0-6946-R2 Test Installation No. 1-A Standard Mailbox (medium) Gibraltar™ Model #E1600B00 11"H x 8-1/2"W x 21-1/4"L, 7 lbs. 42" Plan View Wedge for Type 4 Foundation DHT #160892 Socket, Type 4 Foundation H-1 Impact DHT #160891 Recycled Rubber Post Detail A Scale 1:10 - Ø 12" 30" Roadside Safety and Physical Security Division -Proving Ground Texas A&M
Transportation
Institute 2019-03-26 **Elevation Views** Project #469468-8-1 Type 4 Mailbox Base with Rubber Post 2018-04-06 Drawn by GES Scale 1:15 Sheet 1 of 2 Test Installation

H.1.2 Supporting Certification Documents

DATE
01/23/18
5 DDC 001 L82 CCBYY125
FREIGHT BILL# CFL#77652831-7
SHIPPER 7800 O
ATHENS-TXDOT
2400 NE LOOP 7
ATHENS TX 75752 PAGE 1 OF 1 DELIVERY RECEIPT P.O. Box 847084 CENTRAL FREIGHT LINES Dallas, TX 75284-7084 (254) 772-2120 ROUTING 0653851621 FB# 776528317 CONSIGNEE 0800
TEXAS A&M TRANSPORTATION INSTI
RELLIS CAMPUS BLDG 7092 S
RRYAN TX 778070000 REF# BL SVA1802210 SCAC=CENF 0000000000 LBS WEIGHT IN LBS 0000000000

DESCRIPTION

MAILBX POSTS & HDWR 12345

BILLED FOR TERMINAL 7800

FUEL SURCHARGE

CENFD 9352 100.5000 T

@@@SYN
065 - ORIGINAL CLASS
00001 LOOSE PIECE(S)
0001 PALLET(S)
4358429005 SOUTHEAST VOCATIONAL RATE CHARGES EXTRA SERVICE PERFORMED TRFB NO _____ DRIVER 012418 EXPECTED DELIVERY * TOTAL CHARGES ---- THIRD PARTY
** THANK YOU FOR YOUR BUSINESS AND **
* CONFIDENCE, CENTRAL FREIGHT LINES * 2 216 UNITS DATE 13:58 NOTED RECEIVING CO. NAME SURCHARGE AMT. COLLECTED AMT. DUE INTACT ON RECEIPT

Report ID: INX6503

Origin:

29320

29320

8

IN

IN

0010488206

0010488206

PeopleSoft Inventory
SHIPPING DOCUMENT

Destination:

Page No: Run Date:

Contract ID

1/22/2018

Route Stop

ATHENS REGIONAL DIST. CENTER 2400 N.E. LOOP 7

ATHENS TX 75752

Austin TX 78704

58 Traffic Operations Division 118 E. Riverside Drive

Qty Shipped - Ordering UOM

Qty Shipped - Shipping UOM

1 EA ____

1 EA 4

3 EA 5

3 EA 🛂

5 EA

2 EA

9 EA

Business Unit: Shipping ID:

8

29320 0000024316

Ship Line No	Order Number/ Delivery ID 0010488206	Demand Src/ Source BU IN 29320	Order Line/	Schedule Line/ Reason Code 1.00	Ship Date/ Ship Time 01/22/2018 11:48:35 AM	Item ID/Description 45057257409 MULTIPLE SUPPORT, 54-1/2 IN. X
2	0010488206	IN 29320	2	1.00	01/22/2018 11:48:35 AM	45057252343 BRACKET, HIGH IMPACT 12 GA. A3
3	0010488206	IN 29320	3	1.00	01/22/2018 11:48:35 AM	80130571906 10 FEET STEEL TUBE, 2.375 INCH
4	0010488206	IN 29320	4	1.00	01/22/2018 11:48:35 AM	55083571053 3-1/2 IN. OD X 6 IN. L, TAPERS
5	0010488206	IN 29320	5	1.00	01/22/2018 11:48:35 AM	55083571004 2-1/2 IN. ID X 17 IN. L, W/30
6	0010488206	IN 29320	6	1.00	01/22/2018 11:48:35 AM	45057252350 BRACKET, HIGH IMPACT

1.00

1.00

01/22/2018

01/22/2018

11:48:35 AM

11:48:35 AM

14 GA, A3

45057252251 BRACKET, 14 INCH BY 6 INCH, 14

45057253002 EXTENSION, BRACKET, 14 INCH BY

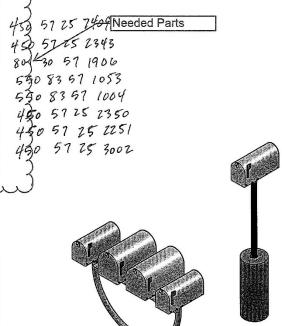
2019-03-26

Report ID: INX6503 PeopleSoft Inventory SHIPPING DOCUMENT Destination: Run Date: 1/22/2018

ATHENS REGIONAL DIST. CENTER 2400 N.E. LOOP 7

ATHENS TX 75752

AUSTIN TX 78704


Business Unit;

Shipping ID:

29320 0000024316

Part Name	DHT Number	Qty.
Multiple Mount Mailbox, white	164116	1
A 19A Bracket for Attaching Mailbox	162323	1
Mailbox Post, thin wall	143426	1
Nedge for Type 4 Foundation	160892	3
Socket, Type 4 Foundation	160891	3
Mailbox Bracket	161443	5
3 Mailbox Bracket	148939	2
AIV Bracket Extension	148938	9
Recycled Rubber Mailbox Post		1

Part Name	DHT Number	Qty.
No. 2 Standard Mailbox (large)		2
No. 1-A Standard Mailbox (medium)		5
Bolt, 3/8 x 3 1/2" hex		1
Bolt, 3/8 x 3/4" hex		4
Nut, 3/8 hex		5
Washer, 3/8 lock		5
Washer, 3/8 flat		10
Bolt, 5/16 x 3 hex		6
Washer, 1/4 lock		4
Washer, 5/16 flat		7
Nut, 5/16 hex		6
Bolt, 1/4 x 3/4" hex		42
Nut, 1/4 hex		56
Washer, 1/4 flat		98
Carriage Bolt, 1/4 x 3/4"		18

Roadside Safety and Physical Security Division -Proving Ground

Project #469468-8 TxDOT Mailbox Tests

Drawn by GES | Scale 1:30

Sheet 1 of 1 Parts List

2018-01-11

:\1-ProjectFiles\469468 - TxDOT - Bligh\-8 Mailboxes\469466-8-1 Type 4 with Rubber Post\Drafting, 469468-8-1\469468-8 Parts List

H.1.3 Vehicle Properties and Information

Table H.1. Vehicle Properties for Test No. 469468-8-1.

Date:	2018-04-	-04	Test No.:	4694	168-8-1	VIN No.:	KNAD	H4A37B6	864745
Year:	2011		Make:	ŀ	KIA	Model:		RIO	
Tire Infl	ation Pressure	e: <u>32</u>	PSI	Odomete	er: <u>127508</u>	3	Tire Size:	185/65F	214
Describ	e any damage	e to the	vehicle prior	to test:	NONE				
• Deno	tes acceleron		cation.	A M -			••		N T
<u> </u>	CID: 1.6 ilssion Type: Auto or FWD F Il Equipment: NE Data:	L RWD	Manual 4VVD			R			B B C C C C C C C C C C C C C C C C C C
Mass:	Position: 165	LBS IVER	SIDE			W —	- X C	D -	
	66.38 51.50	_	33.00 35.60 7.75 21.50 11.00 69 ±8 inches; E = 98 M+N/2 = 56 + 2	±5 inches; F =	12.25 25.25 57.75 57.70 28.25 el Center Ht	39 ±4 inches;	4.12 22.50 15.50 8.25 66.20 11.00	U V W X W-H	15.00 20.75 35.60 106.00
GVWR Front Back Total	18	18 74 38	M+N/2 = 56 ±2 Mass: Ib M _{front} M _{rear} M _{Total}	_	urb 1579 887 2466	<u>Test</u>	Inertial 1555 878 2433 Owable GSM = 2588		ss Static 1640 958 2598
Mass D lb	istribution:	LF:	777	RF: _		LR:	417	RR:	461

Table H.2. Exterior Crush Measurements of Vehicle for Test No. 469468-8-1.

Date:	2018-04-04	_ Test No.: _	469468-8-1	VIN No.:	KNADH4A37B6864745
Year:	2011	_ Make: _	KIA	Model:	RIO

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete Who	en Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2
< 4 inches	2 =
≥ 4 inches	

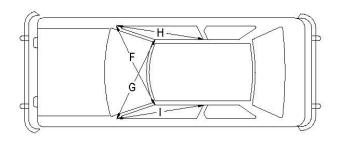
Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

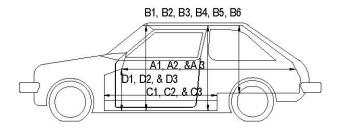
2	Plane* of C-Measurements	Direct Damage								10000	
Specific Impact Number		Width** (CDC)	Max*** Crush	Field L**	C ₁	C ₂	C3	C ₄	C5	C ₆	±D
	None measureable										
	Units in inches										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.


Note: Use as many lines/columns as necessary to describe each damage profile.


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

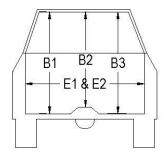

^{***}Measure and document on the vehicle diagram the location of the maximum crush.

Table H.3. Occupant Compartment Measurements of Vehicle for Test No. 469468-8-1.

Date:	2018-04-04	Test No.:	469468-8-1	VIN No.:	KNADH4A37B6864745
Year:	2011	Make:	KIA	Model:	RIO

^{*}Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

DEI ORMATION MEAGOREMENT						
	Before	After	Differ.			
		inches				
A1	67.50	67.50	0.00			
A2	67.25	67.25	0.00			
А3	67.75	67.75	0.00			
B1	40.50	40.50	0.00			
B2	39.00	39.00	0.00			
В3	40.50	40.50	0.00			
B4	36.25	36.25	0.00			
B5	36.00	36.00	0.00			
B6	36.25	36.25	0.00			
C1	26.00	26.00	0.00			
C2	0.00	0.00	0.00			
СЗ	26.00	26.00	0.00			
D1	9.50	9.50	0.00			
D2	0.00	0.00	0.00			
D3	9.50	9.50	0.00			
E1	51.50	51.50	0.00			
E2	51.00	51.00	0.00			
F	51.00	51.00	0.00			
G	51.00	51.00	0.00			
Н	37.50	37.50	0.00			
1	37.50	37.50	0.00			
J*	51.00	51.00	0.00			

H.1.4 Sequential Photographs

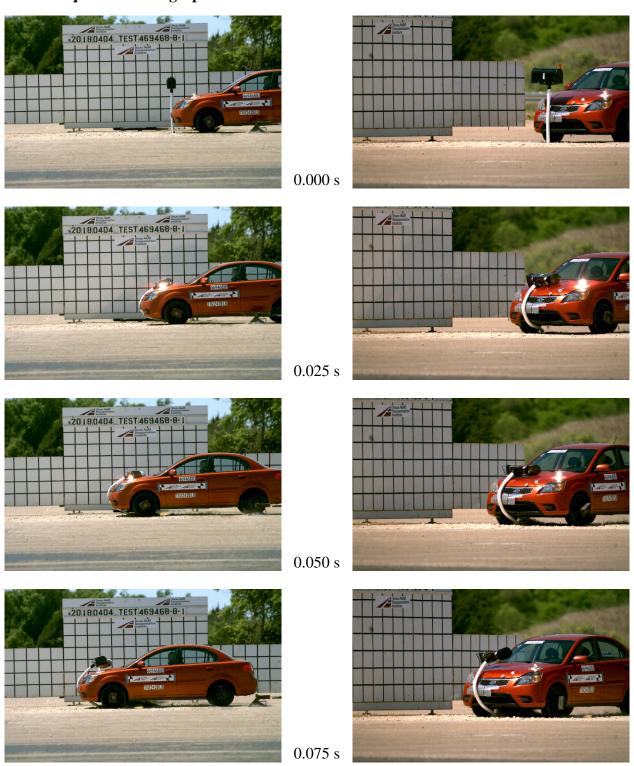
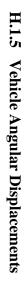



Figure H.1. Sequential Photographs for Test No. 469468-8-1 (Perpendicular and Oblique Views).

Figure H.1. Sequential Photographs for Test No. 469468-8-1 (Perpendicular and Oblique Views) (Continued).

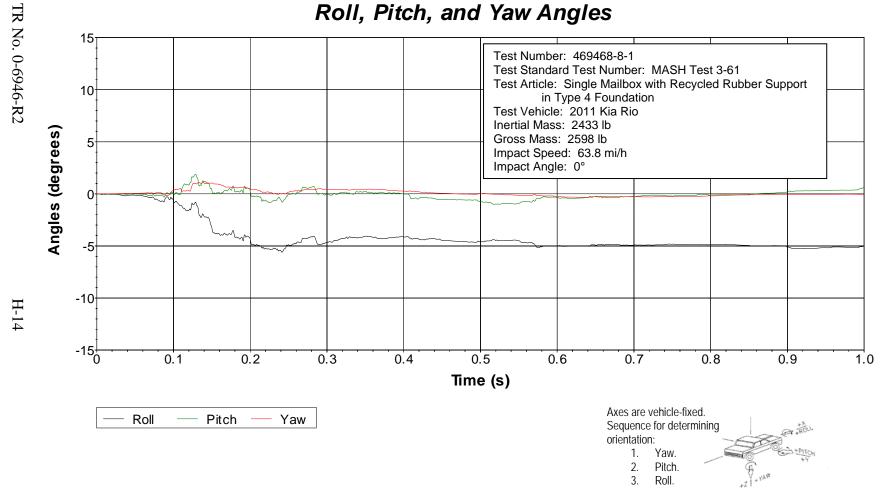


Figure H.2. Vehicle Angular Displacements for Test No. 469468-8-1.

Figure H.3. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-8-1 (Accelerometer Located at Center of Gravity).

Y Acceleration at CG

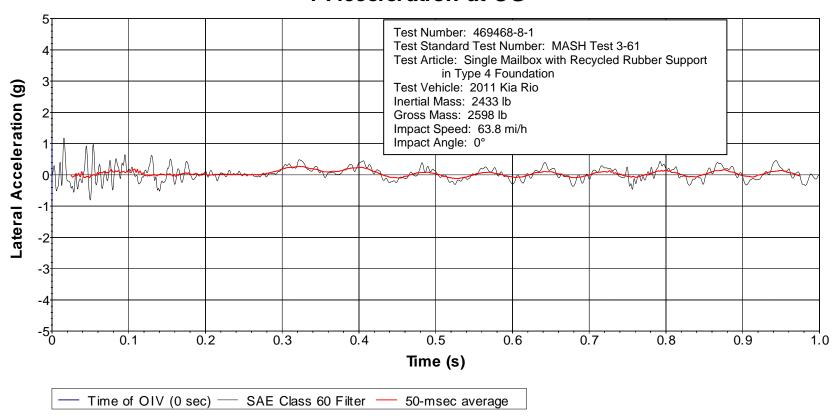


Figure H.4. Vehicle Lateral Accelerometer Trace for Test No. 469468-8-1 (Accelerometer Located at Center of Gravity).

Z Acceleration at CG

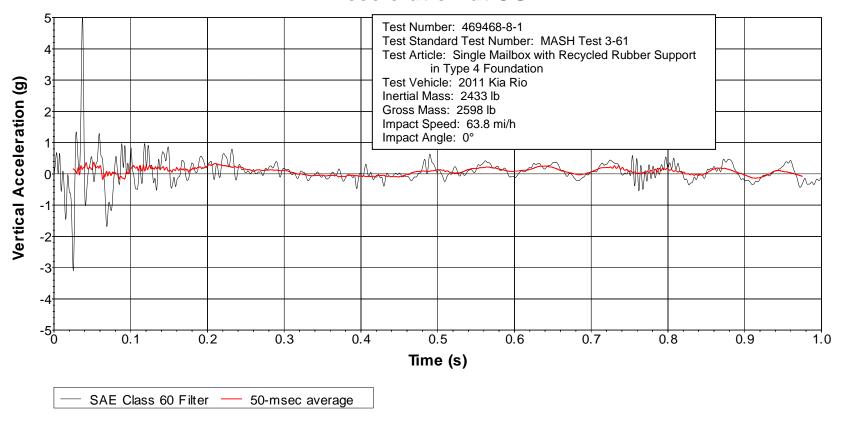


Figure H.5. Vehicle Vertical Accelerometer Trace for Test No. 469468-8-1 (Accelerometer Located at Center of Gravity).

X Acceleration Rear of CG

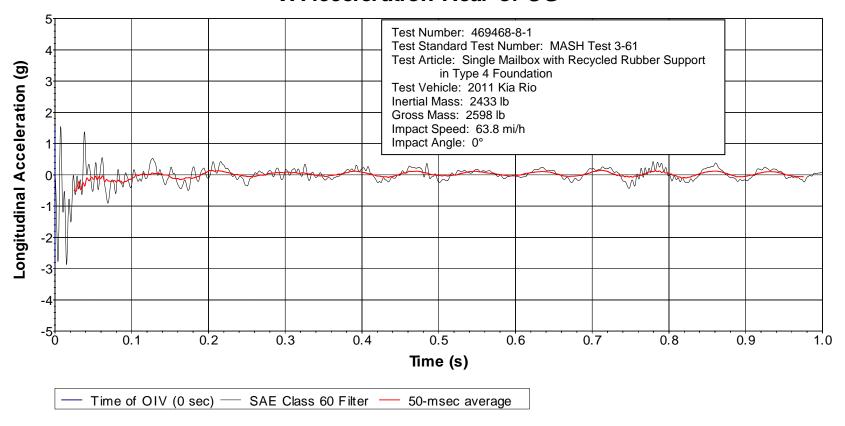


Figure H.6. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-8-1 (Accelerometer Located Rear of Center of Gravity).

Y Acceleration Rear of CG

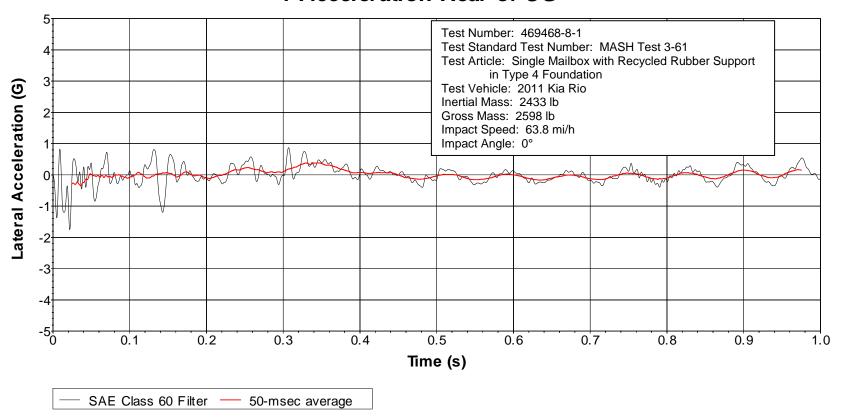
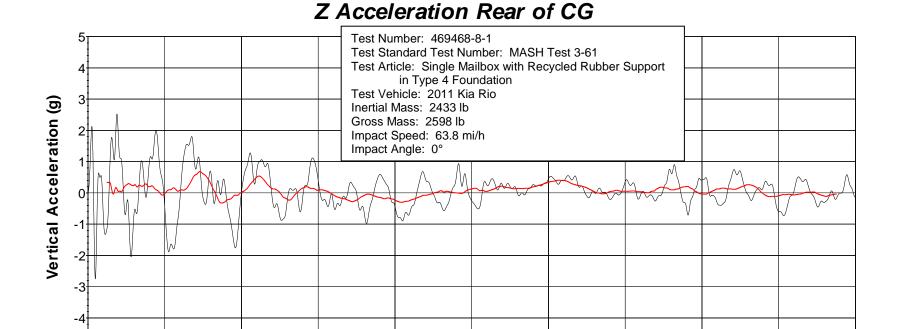


Figure H.7. Vehicle Lateral Accelerometer Trace for Test No. 469468-8-1 (Accelerometer Located Rear of Center of Gravity).

0.1


SAE Class 60 Filter

0.2

0.3

50-msec average

0.4

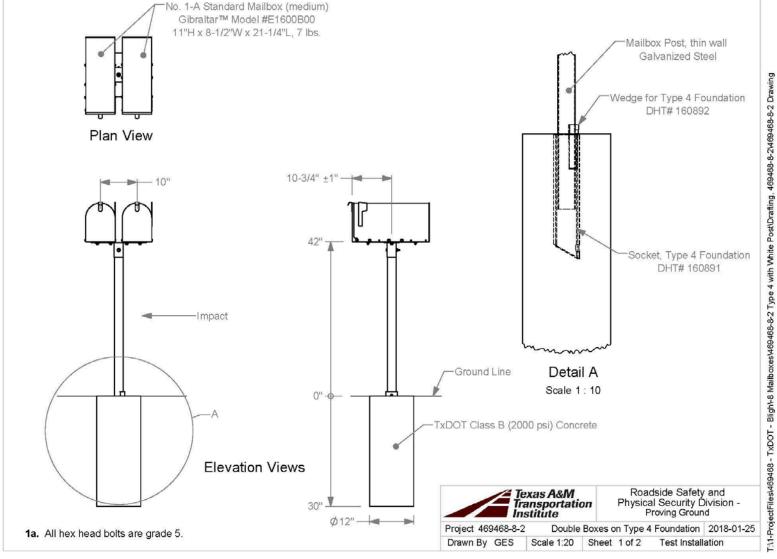
0.5

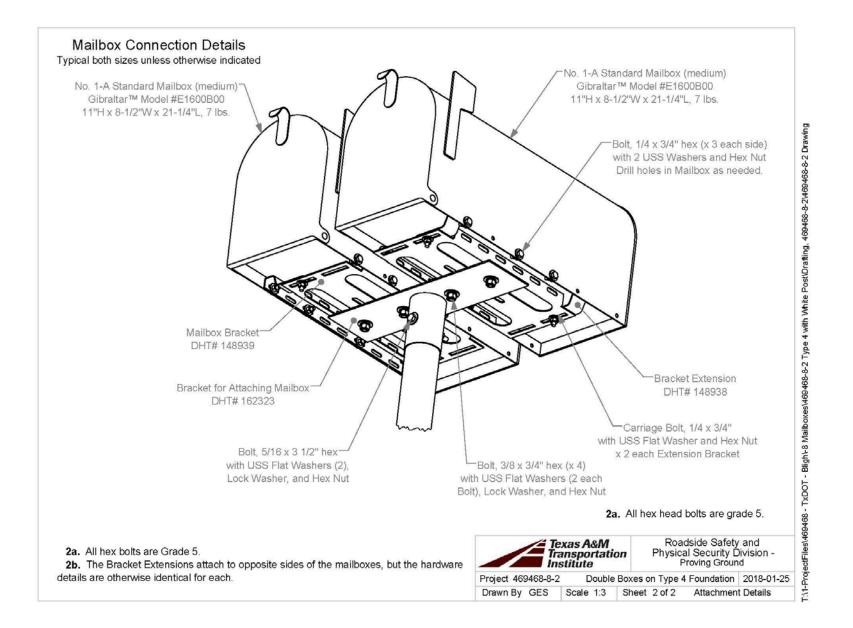
Time (s)

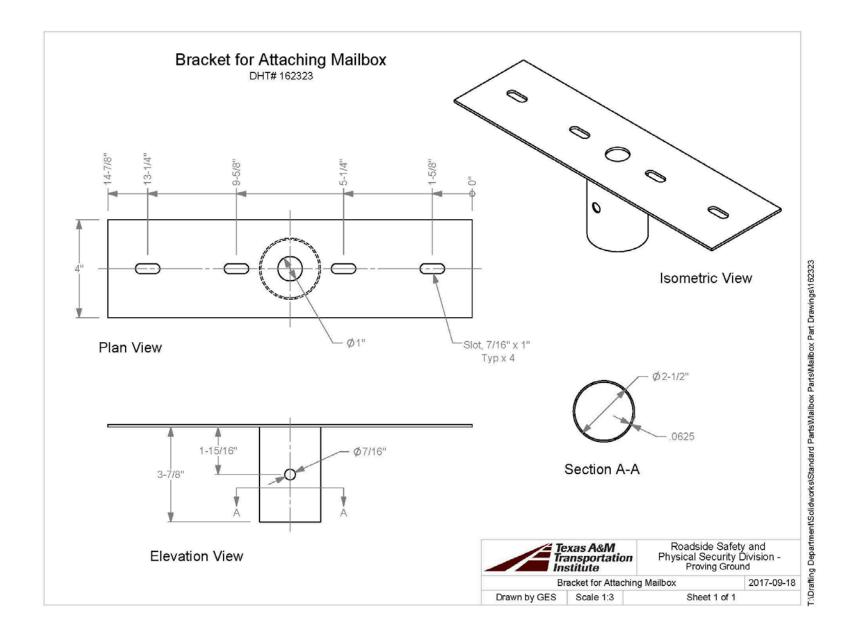
0.6

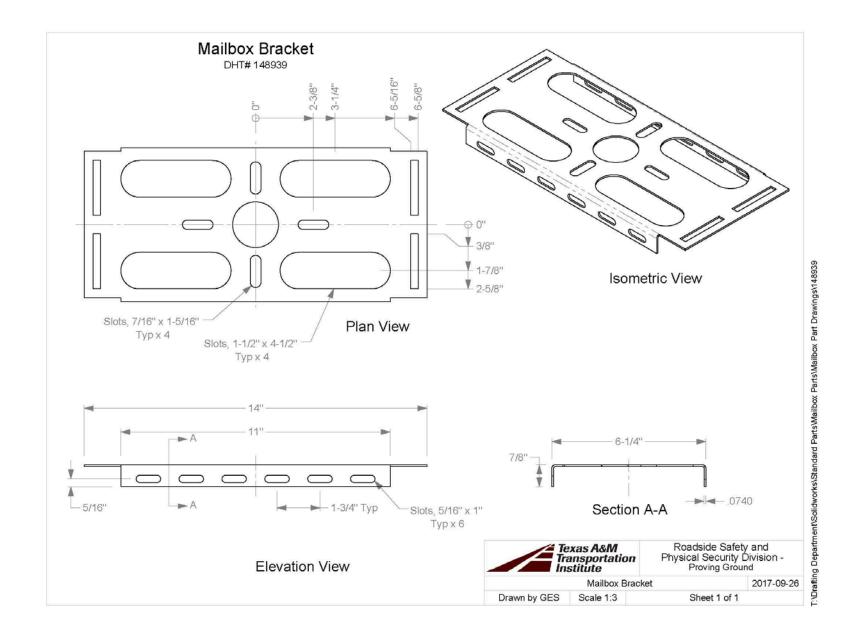
0.7

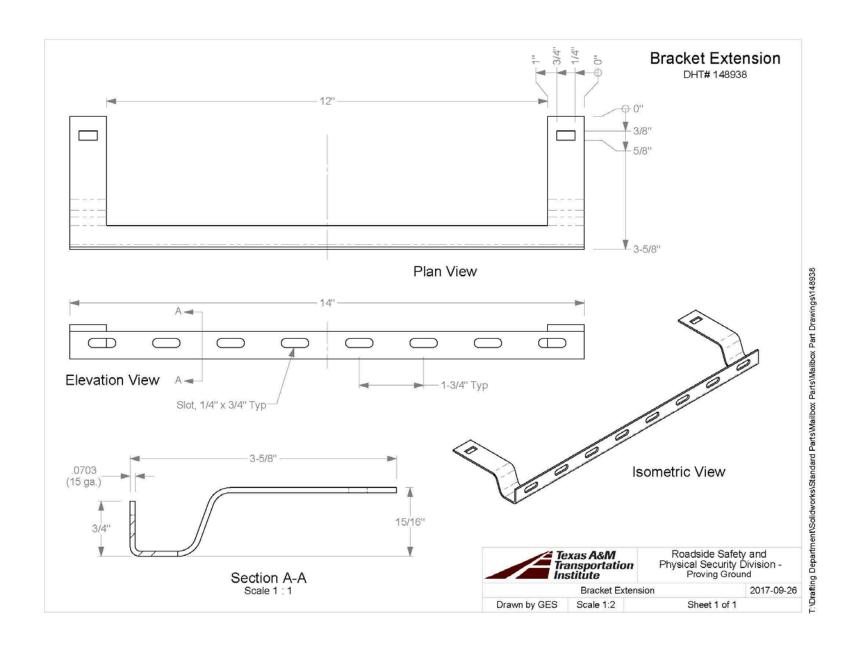
0.8


0.9


1.0


Figure H.8. Vehicle Vertical Accelerometer Trace for Test No. 469468-8-1 (Accelerometer Located Rear of Center of Gravity).


H.2 MASH TEST 3-61 ON DOUBLE MAILBOX WITH THIN-WALL GALVANIZED SUPPORT IN TYPE 4 FOUNDATION


H.2.1 Test Article Details

H.2.2 Vehicle Properties and Information

Table H.4. Vehicle Properties for Test No. 469468-8-2.

Date:	2018-04-03	Test No.:	46946	8-8-2	VIN No.:	KNAD)H430B6	731342
Year:	2011	Make:	Kl	A	_ Model:		RIO	
Tire Infl	ation Pressure: 32	PSI	Odometer:	155658	3	Tire Size:	185/65F	R14
Describ	e any damage to the	e vehicle prior	to test: N	IONE				
• Deno	otes accelerometer lo	ocation.	A M —			••		N T
<u> </u>	CID: 1.6 L ission Type: Auto or FWD RWD al Equipment:	_ Manual 4V/D	P		R	•		▼
Dummy Type: Mass: Seat P	50 PER		1_	F	-H-S	E	D -	_к
	try: inches 66.38 F 51.50 G 165.75 H 34.00 I 98.75 J el Center Ht Front GE LIMIT: A = 65 ±3 inches; C =				39 ±4 inches; 0 =		U V W X W-H _ R SUPPORT (24	15.00 20.75 36.80 107.00 0.00
GVWR Front Back Total	R Ratings: 1718 1874 3638	Mass: Ib M _{front} M _{rear} M _{Total}	Curl	2 1580 875 2455	<u>Test</u>	Inertial 1530 910 2440 wable GSM = 2585		0ss Static 1615 990 2605
Mass D lb	Distribution: LF:	780	RF:	750	LR:	430	RR:	480

Table H.5. Exterior Crush Measurements of Vehicle for Test No. 469468-8-2.

Date:	2018-04-03	_ Test No.: _	469468-8-2	VIN No.:	KNADH430B6731342	_
Year:	2011	Make:	KIA	Model:	RIO	
				- Aller Control of the Control of th		

VEHICLE CRUSH MEASUREMENT SHEET 1

a 1, we	1 1 11
Complete W.	hen Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2
< 4 inches	<u> </u>
≥ 4 inches	

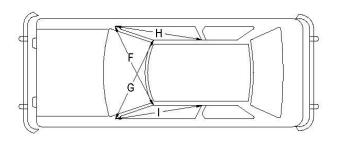
Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

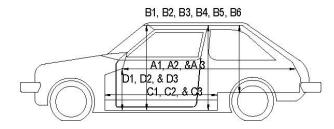
Specific Impact Number	Plane* of C-Measurements	Direct Damage				1000					
		Width** (CDC)	Max*** Crush	Field L**	C ₁	C ₂	C ₃	C4	C5	C ₆	±D
	None measureable										
		,									
). :				12.			
	Units in inches										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.


Note: Use as many lines/columns as necessary to describe each damage profile.


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

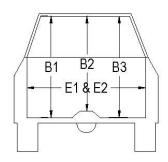

^{***}Measure and document on the vehicle diagram the location of the maximum crush.

Table H.6. Occupant Compartment Measurements of Vehicle for Test No. 469468-8-2.

Date:	2018-04-03	_ Test No.:	469468-8-2	VIN No.:	KNADH430B6731342
Year:	2011	- Make:	KIA	Model:	RIO

^{*}Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

DEI ORMATION MEAGOREMENT							
	Before	After	Differ.				
		inches					
A1	67.50	67.50	0.00				
A2	67.25	67.25	0.00				
А3	67.75	67.75	0.00				
B1	40.50	40.50	0.00				
B2	39.00	39.00	0.00				
В3	40.50	40.50	0.00				
B4	36.25	36.25	0.00				
B5	36.00	36.00	0.00				
B6	36.25	36.25	0.00				
C1	26.00	26.00	0.00				
C2	0.00	0.00	0.00				
СЗ	26.00	26.00	0.00				
D1	9.50	9.50	0.00				
D2	0.00	0.00	0.00				
D3	9.50	9.50	0.00				
E1	51.50	51.50	0.00				
E2	51.00	51.00	0.00				
F	51.00	51.00	0.00				
G	51.00	51.00	0.00				
Н	37.50	37.50	0.00				
I	37.50	37.50	0.00				
J*	51.00	51.00	0.00				

H.2.3 Sequential Photographs

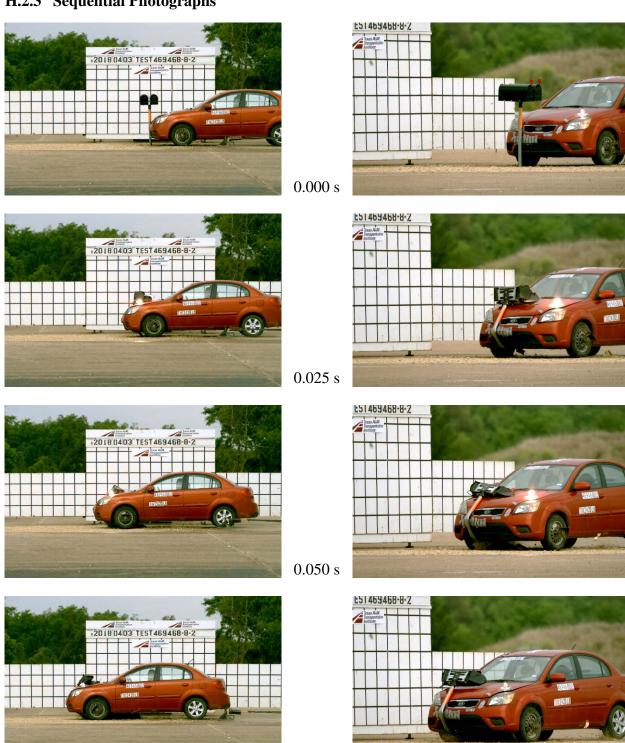


Figure H.9. Sequential Photographs for Test No. 469468-8-2 (Perpendicular and Oblique Views).

0.075 s

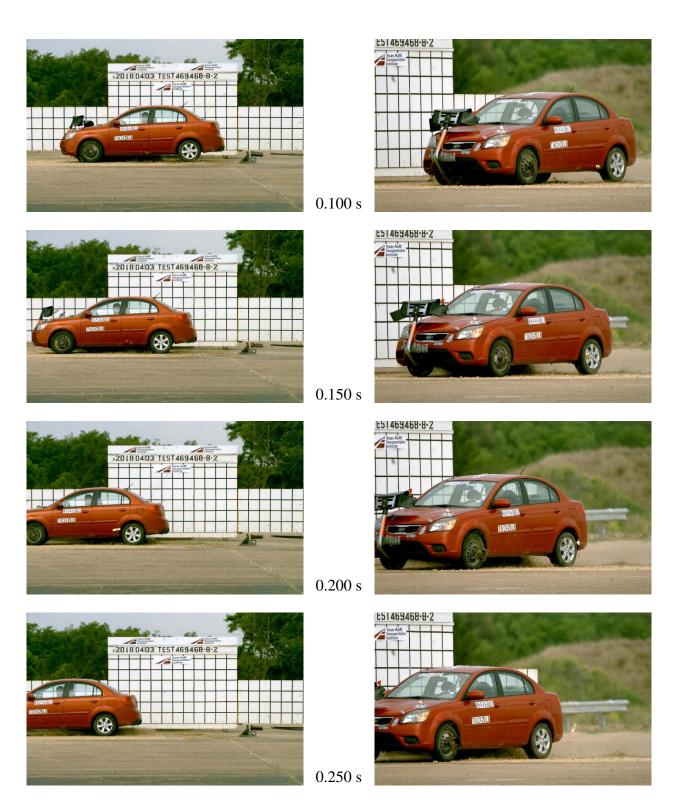
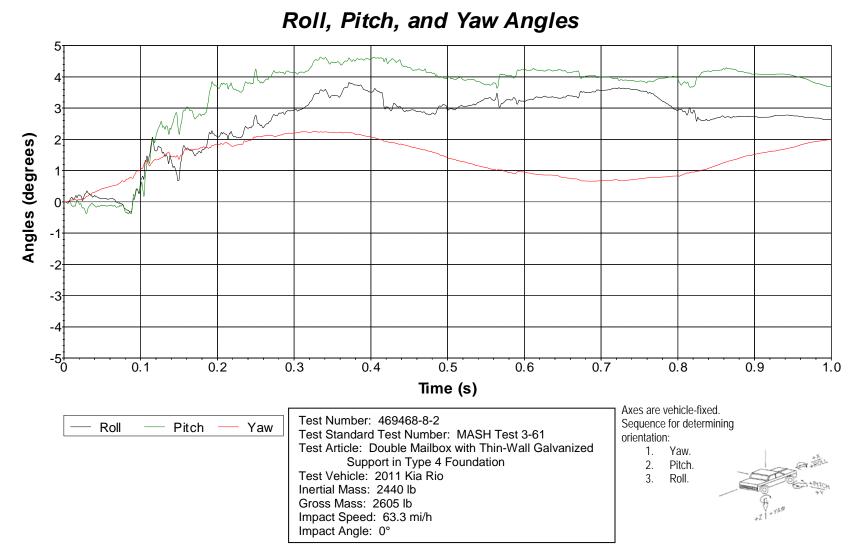



Figure H.9. Sequential Photographs for Test No. 469468-8-2 (Perpendicular and Oblique Views) (Continued).

H.2.4 Vehicle Angular Displacements

Figure H.10. Vehicle Angular Displacements for Test No. 469468-8-2.

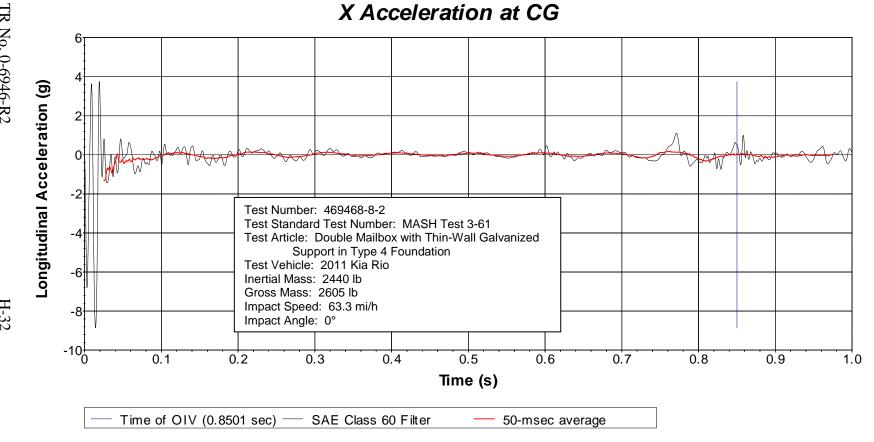


Figure H.11. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-8-2 (Accelerometer Located at Center of Gravity).

Y Acceleration at CG

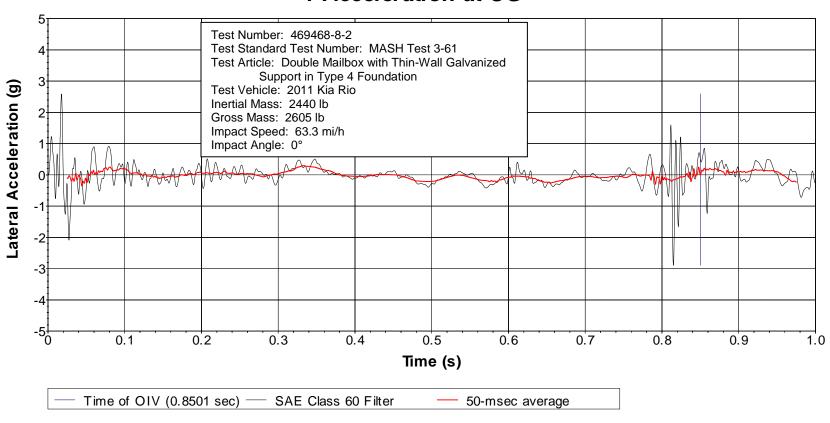


Figure H.12. Vehicle Lateral Accelerometer Trace for Test No. 469468-8-2 (Accelerometer Located at Center of Gravity).

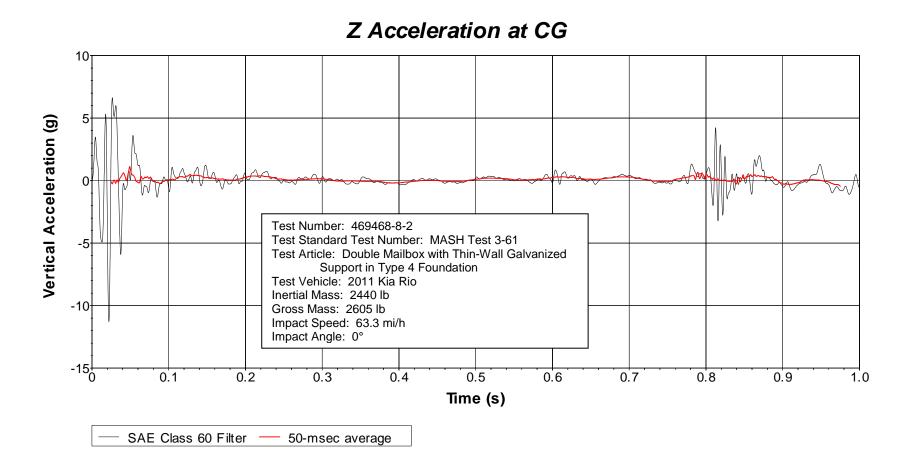


Figure H.13. Vehicle Vertical Accelerometer Trace for Test No. 469468-8-1 (Accelerometer Located at Center of Gravity).

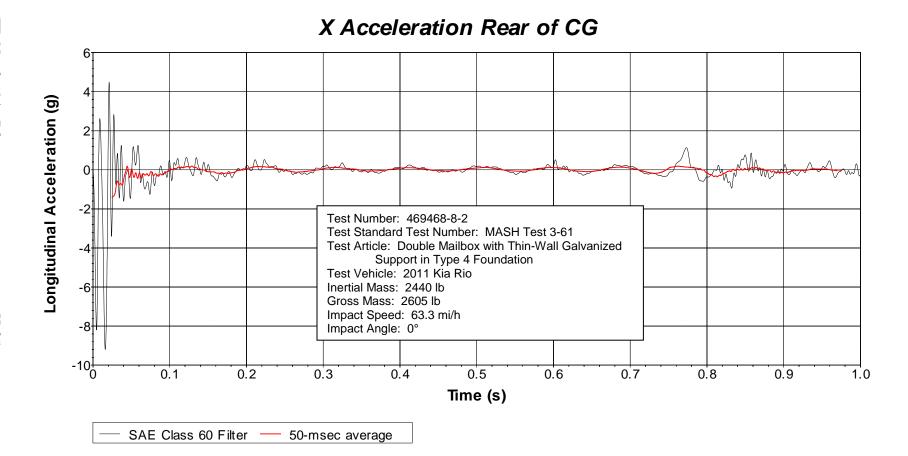


Figure H.14. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-8-1 (Accelerometer Located Rear of Center of Gravity).

Y Acceleration Rear of CG

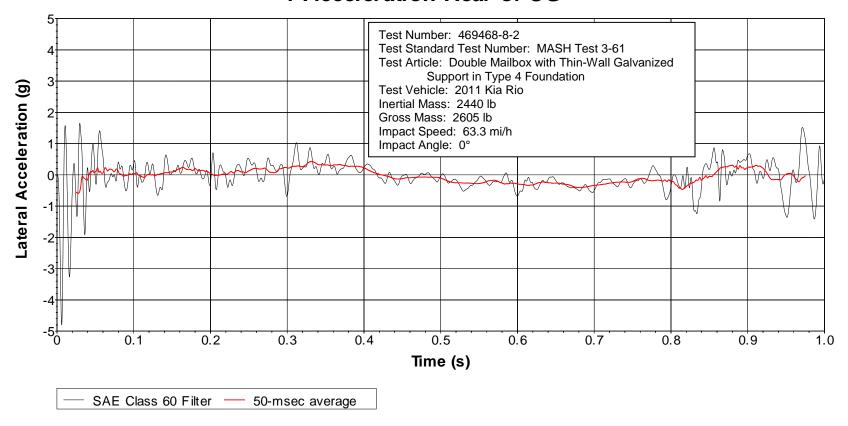


Figure H.15. Vehicle Lateral Accelerometer Trace for Test No. 469468-8-1 (Accelerometer Located Rear of Center of Gravity).

Z Acceleration Rear of CG

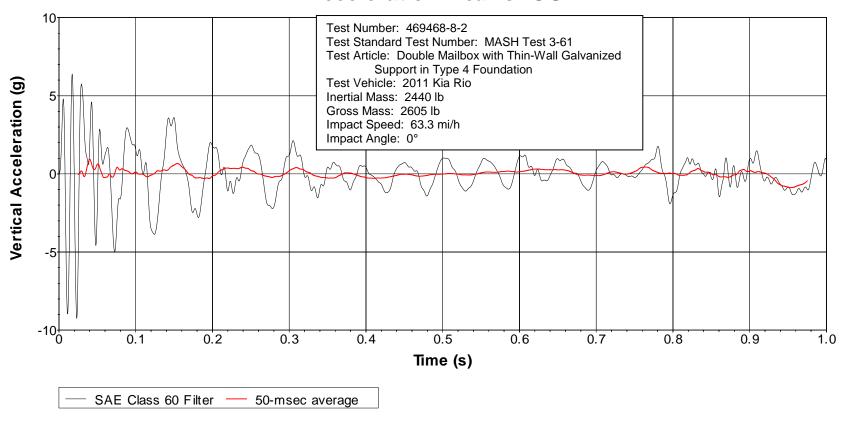


Figure H.16. Vehicle Vertical Accelerometer Trace for Test No. 469468-8-1 (Accelerometer Located Rear of Center of Gravity).

TR No. 0-6946-R2 No. 2 Standard Mailbox (large) **Test Installation** Gibraltar™ Model #ST200B00 No. 1-A Standard Mailbox (medium) Gibraltar™ Model #E1600B00 Wedge for Type 4 Foundation DHT# 160892 Plan View Socket, Type 4 Foundation DHT# 160891 41-3/4" H-38 Multiple Mount Mailbox, white DHT# 164116 Detail A 10" Scale 1:10 TxDOT Class B (2000psi) concrete 1a. All hex bolts are grade 5. Roadside Safety and Physical Security Division -Proving Ground Texas A&M Transportation Institute 2019-03-26

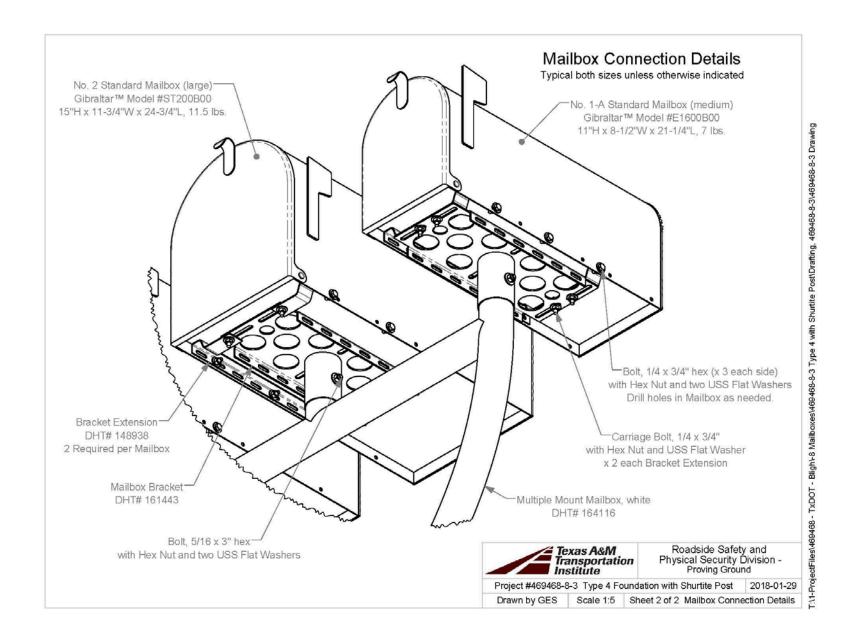
Ø12"

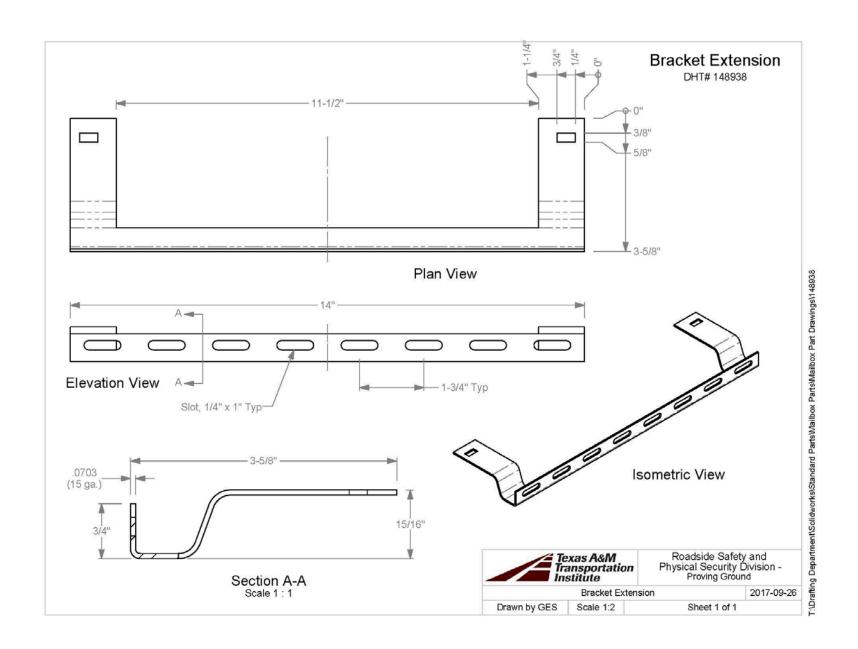
Project #469468-8-3 Type 4 Foundation with Shurtite Post

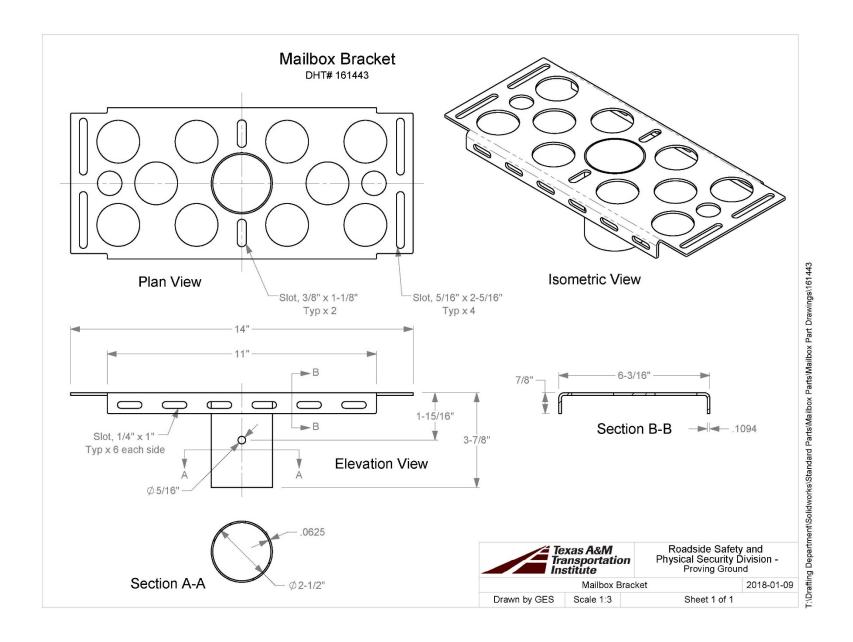
Sheet 1 of 2 Test Installation

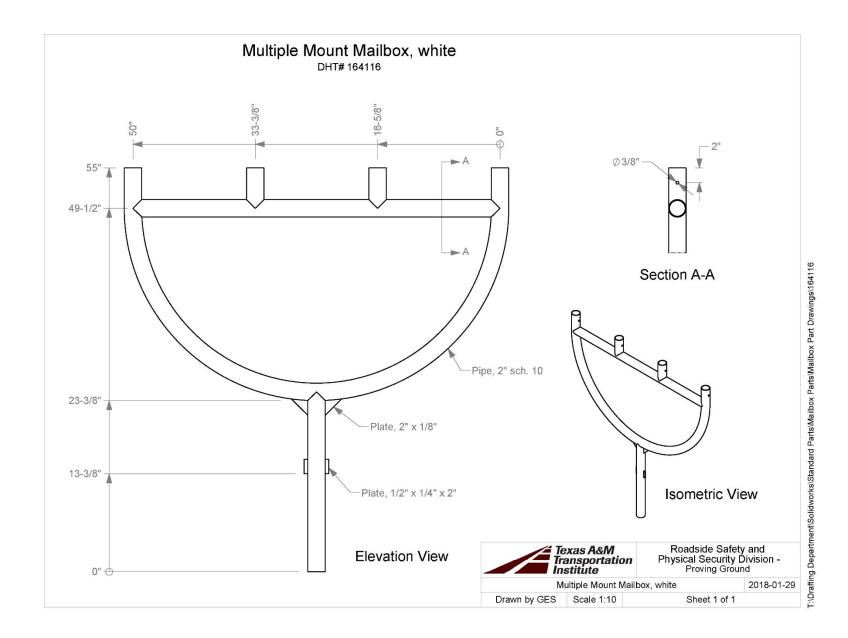
Scale 1:20

Drawn by GES


Elevation Views


H.3 MASH TEST 3-61 ON MULTIPLE MAILBOXES WITH MULTI-HANGER


SUPPORT IN TYPE 4 FOUNDATION


Test Article Details

T:/I-ProjectFiles/469468 - TxDOT - Bligh+8 Mailboxes/469468-8-3 Type 4 with Shurtite Post\Dratting, 469468-8-3/469468-8-3 Drawing

H.3.2 Vehicle Properties and Information

Table H.7. Vehicle Properties for Test No. 469468-8-3.

Date:	2018-04-	03	Test No.:	46946	3-8-3	VIN No.:	KNAE)H430B	6731342
Year:	2011		Make:	KI	4	Model:		RIO	
	lation Pressure			Odometer: to test:	155658 ONE	3	Tire Size:	185/65	R14
• Deno	otes accelerom		cation.	A M —			•		N T
<u>√</u>	CID: 1.6 nission Type: Auto or FWD F al Equipment: NE		_ Manual 4WD	P —	0	R	• • • • • • • • • • • • • • • • • • •		A B B C C C C C C C C C C C C C C C C C
Type: Mass:	50 165	LBS	SIDE	I ⊸	F	H——W——	E	D -	<u></u>
	66.38 51.50	_				9 ±4 inches; 0 =		U _ V _ W _ X _ W-H _ R SUPPORT (2	15.00 20.75 36.80 107.00 0.00
GVWF Front Back Total	R Ratings: 17 18 36		Mass: Ib M _{front} M _{rear} M _{Total}	<u>Curt</u> 1	2 580 875 2455	<u>Test</u>	Inertial 1530 910 2440 owable GSM = 2588		ross Static 1615 990 2605
Mass D	Distribution:	LF:	780	RF:	750	LR:	430	RR: _	480

Table H.8. Exterior Crush Measurements of Vehicle for Test No. 469468-8-3.

Date: _	2018-04-03	_ Test No.: _	469468-8-3	VIN No.:	KNADH430B6731342
Year: _	2011	_ Make: _	KIA	_ Model: _	RIO

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete Wh	en Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2
< 4 inches	2 =
≥ 4 inches	

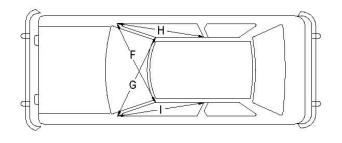
Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

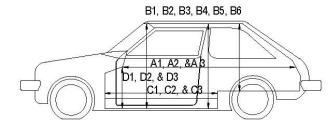
12		Direct Damage				6000		1000	475	V23	
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C1	C ₂	С3	C4	C ₅	C6	±D
1	Windshield	34	1.8	24	(<u>) 44</u>	5226	262	200	122	144	P <u>440</u>
		2 20	22 20	0		: 83					
	Units in inches	75	G 7,1				7.1	C)			
									3		

¹Table taken from National Accident Sampling System (NASS).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.


^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

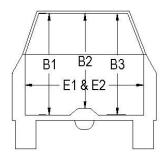

^{***}Measure and document on the vehicle diagram the location of the maximum crush.

Table H.9. Occupant Compartment Measurements of Vehicle for Test No. 469468-8-1.

Date:	2018-04-03	Test No.:	469468-8-3	VIN No.:	KNADH430B6731342
Year:	2011	Make:	KIA	Model:	RIO

^{*}Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

A1 67.50 67.50 0.00 A2 67.25 67.25 0.00 A3 67.75 67.75 0.00 B1 40.50 40.50 0.00 B2 39.00 39.00 0.00 B3 40.50 40.50 0.00 B4 36.25 36.25 0.00 B5 36.00 36.00 0.00 B6 36.25 36.25 0.00 C1 26.00 26.00 0.00 C2 0.00 0.00 0.00 C3 26.00 26.00 0.00 D2 0.00 0.00 0.00 D3 9.50 9.50 0.00 E1 51.50 51.50 0.00 E2 51.00 51.00 0.00 G 51.00 51.00 0.00		Before	After	Differ.
A2 67.25 67.25 0.00 A3 67.75 67.75 0.00 B1 40.50 40.50 0.00 B2 39.00 39.00 0.00 B3 40.50 40.50 0.00 B4 36.25 36.25 0.00 B5 36.00 36.00 0.00 B6 36.25 36.25 0.00 C1 26.00 26.00 0.00 C2 0.00 26.00 0.00 C3 26.00 26.00 0.00 D2 0.00 0.00 0.00 D3 9.50 9.50 0.00 E1 51.50 51.50 0.00 E2 51.00 51.00 0.00 G 51.00 51.00 0.00			inches	
A3 67.75 67.75 0.00 B1 40.50 40.50 0.00 B2 39.00 39.00 0.00 B3 40.50 40.50 0.00 B4 36.25 36.25 0.00 B5 36.00 36.00 0.00 B6 36.25 36.25 0.00 C1 26.00 26.00 0.00 C2 0.00 0.00 0.00 C3 26.00 26.00 0.00 D1 9.50 9.50 0.00 D2 0.00 0.00 0.00 D3 9.50 9.50 0.00 E1 51.50 51.50 0.00 E2 51.00 51.00 0.00 G 51.00 51.00 0.00	A1	67.50	67.50	0.00
B1 40.50 40.50 0.00 B2 39.00 39.00 0.00 B3 40.50 40.50 0.00 B4 36.25 36.25 0.00 B5 36.00 36.00 0.00 B6 36.25 36.25 0.00 C1 26.00 26.00 0.00 C2 0.00 0.00 0.00 C3 26.00 26.00 0.00 D1 9.50 9.50 0.00 D2 0.00 0.00 0.00 D3 9.50 9.50 0.00 E1 51.50 51.50 0.00 E2 51.00 51.00 0.00 G 51.00 51.00 0.00	A2	67.25	67.25	0.00
B2 39.00 39.00 0.00 B3 40.50 40.50 0.00 B4 36.25 36.25 0.00 B5 36.00 36.00 0.00 B6 36.25 36.25 0.00 C1 26.00 26.00 0.00 C2 0.00 0.00 0.00 C3 26.00 26.00 0.00 D1 9.50 9.50 0.00 D2 0.00 0.00 0.00 D3 9.50 9.50 0.00 E1 51.50 51.50 0.00 E2 51.00 51.00 0.00 G 51.00 51.00 0.00	А3	67.75	67.75	0.00
B3 40.50 40.50 0.00 B4 36.25 36.25 0.00 B5 36.00 36.00 0.00 B6 36.25 36.25 0.00 C1 26.00 26.00 0.00 C2 0.00 0.00 0.00 C3 26.00 26.00 0.00 D1 9.50 9.50 0.00 D2 0.00 0.00 0.00 D3 9.50 9.50 0.00 E1 51.50 51.50 0.00 E2 51.00 51.00 0.00 G 51.00 51.00 0.00	B1	40.50	40.50	0.00
B4 36.25 36.25 0.00 B5 36.00 36.00 0.00 B6 36.25 36.25 0.00 C1 26.00 26.00 0.00 C2 0.00 0.00 0.00 C3 26.00 26.00 0.00 D1 9.50 9.50 0.00 D2 0.00 0.00 0.00 D3 9.50 9.50 0.00 E1 51.50 51.50 0.00 E2 51.00 51.00 0.00 G 51.00 51.00 0.00	B2	39.00	39.00	0.00
B5 36.00 36.00 0.00 B6 36.25 36.25 0.00 C1 26.00 26.00 0.00 C2 0.00 0.00 0.00 C3 26.00 26.00 0.00 D1 9.50 9.50 0.00 D2 0.00 0.00 0.00 D3 9.50 9.50 0.00 E1 51.50 51.50 0.00 E2 51.00 51.00 0.00 G 51.00 51.00 0.00	В3	40.50	40.50	0.00
B6 36.25 36.25 0.00 C1 26.00 26.00 0.00 C2 0.00 0.00 0.00 C3 26.00 26.00 0.00 D1 9.50 9.50 0.00 D2 0.00 0.00 0.00 D3 9.50 9.50 0.00 E1 51.50 51.50 0.00 E2 51.00 51.00 0.00 G 51.00 51.00 0.00	B4	36.25	36.25	0.00
C1 26.00 26.00 0.00 C2 0.00 0.00 0.00 C3 26.00 26.00 0.00 D1 9.50 9.50 0.00 D2 0.00 0.00 0.00 D3 9.50 9.50 0.00 E1 51.50 51.50 0.00 E2 51.00 51.00 0.00 G 51.00 51.00 0.00	B5	36.00	36.00	0.00
C2 0.00 0.00 0.00 C3 26.00 26.00 0.00 D1 9.50 9.50 0.00 D2 0.00 0.00 0.00 D3 9.50 9.50 0.00 E1 51.50 51.50 0.00 E2 51.00 51.00 0.00 G 51.00 51.00 0.00	B6	36.25	36.25	0.00
C3 26.00 26.00 0.00 D1 9.50 9.50 0.00 D2 0.00 0.00 0.00 D3 9.50 9.50 0.00 E1 51.50 51.50 0.00 E2 51.00 51.00 0.00 F 51.00 51.00 0.00 G 51.00 51.00 0.00	C1	26.00	26.00	0.00
D1 9.50 9.50 0.00 D2 0.00 0.00 0.00 D3 9.50 9.50 0.00 E1 51.50 51.50 0.00 E2 51.00 51.00 0.00 F 51.00 51.00 0.00 G 51.00 51.00 0.00	C2	0.00	0.00	0.00
D2 0.00 0.00 0.00 D3 9.50 9.50 0.00 E1 51.50 51.50 0.00 E2 51.00 51.00 0.00 F 51.00 51.00 0.00 G 51.00 51.00 0.00	СЗ	26.00	26.00	0.00
D3 9.50 9.50 0.00 E1 51.50 51.50 0.00 E2 51.00 51.00 0.00 F 51.00 51.00 0.00 G 51.00 51.00 0.00	D1	9.50	9.50	0.00
E1 51.50 51.50 0.00 E2 51.00 51.00 0.00 F 51.00 51.00 0.00 G 51.00 51.00 0.00	D2	0.00	0.00	0.00
E2 51.00 51.00 0.00 F 51.00 51.00 0.00 G 51.00 51.00 0.00	D3	9.50	9.50	0.00
F 51.00 51.00 0.00 G 51.00 51.00 0.00	E1	51.50	51.50	0.00
G 51.00 51.00 0.00	E2	51.00	51.00	0.00
<u> </u>	F	51.00	51.00	0.00
н 37.50 37.50 0.00	G	51.00	51.00	0.00
	Н	37.50	37.50	0.00
37.50 37.50 0.00	1	37.50	37.50	0.00
J* 51.00 51.00 0.00	J*	51.00	51.00	0.00

H.3.3 Sequential Photographs

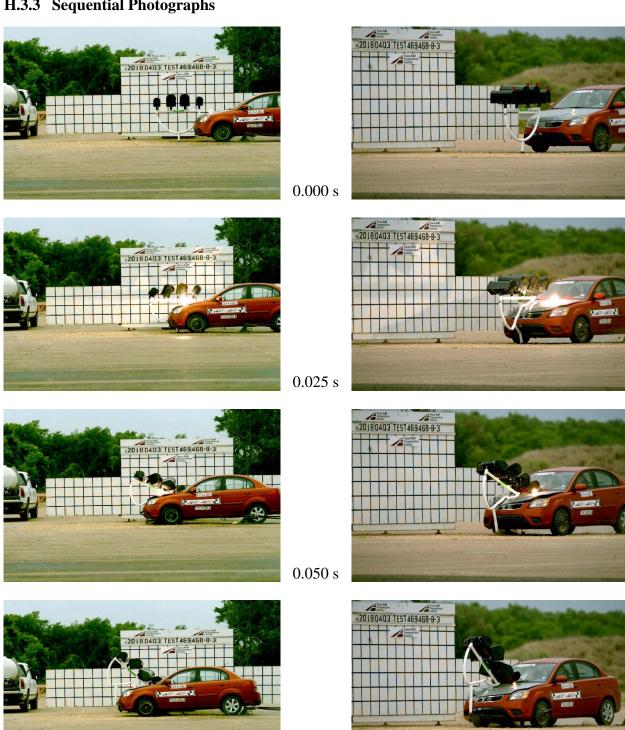


Figure H.17. Sequential Photographs for Test No. 469468-8-3 (Perpendicular and Oblique Views).

0.075 s

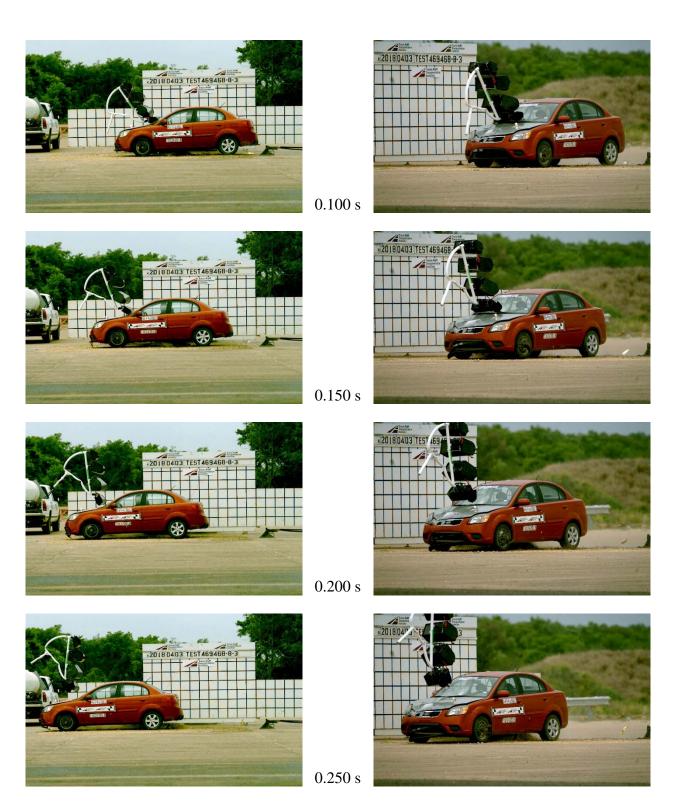


Figure H.17. Sequential Photographs for Test No. 469468-8-3 (Perpendicular and Oblique Views) (Continued).

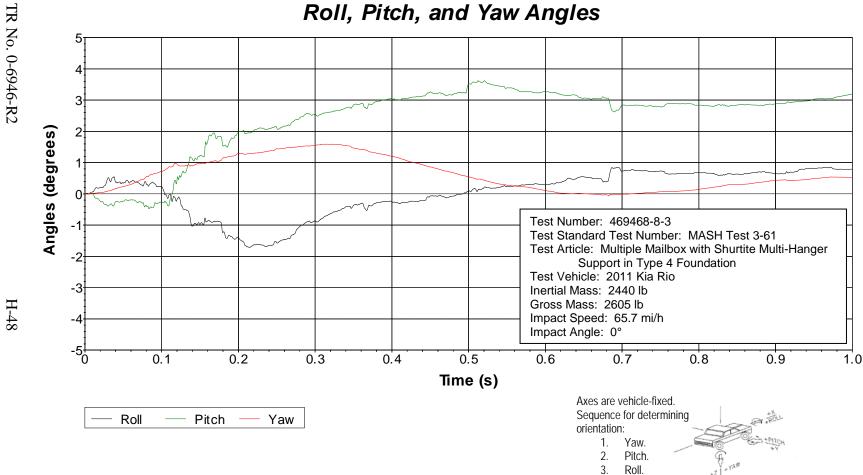
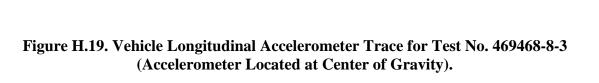


Figure H.18. Vehicle Angular Displacements for Test No. 469468-8-3.

1.0

0.9

Longitudinal Acceleration (g)


0.1

Time of OIV (0.728 sec)

0.2

0.3

TR No. 0-6946-R2

0.5

Time (s)

0.6

50-msec average

0.7

0.8

X Acceleration at CG

Test Article: Multiple Mailbox with Shurtite Multi-Hanger Support in Type 4 Foundation

Test Standard Test Number: MASH Test 3-61

Test Number: 469468-8-3

Test Vehicle: 2011 Kia Rio Inertial Mass: 2440 lb Gross Mass: 2605 lb Impact Speed: 65.7 mi/h Impact Angle: 0°

0.4

SAE Class 60 Filter

Y Acceleration at CG

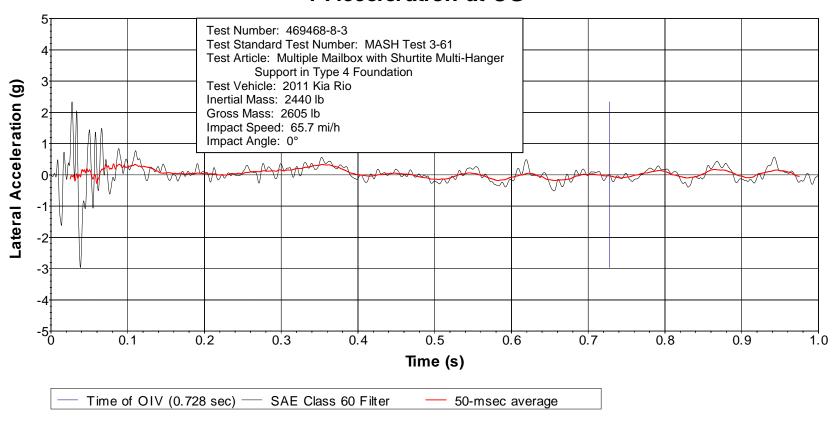


Figure H.20. Vehicle Lateral Accelerometer Trace for Test No. 469468-8-3 (Accelerometer Located at Center of Gravity).

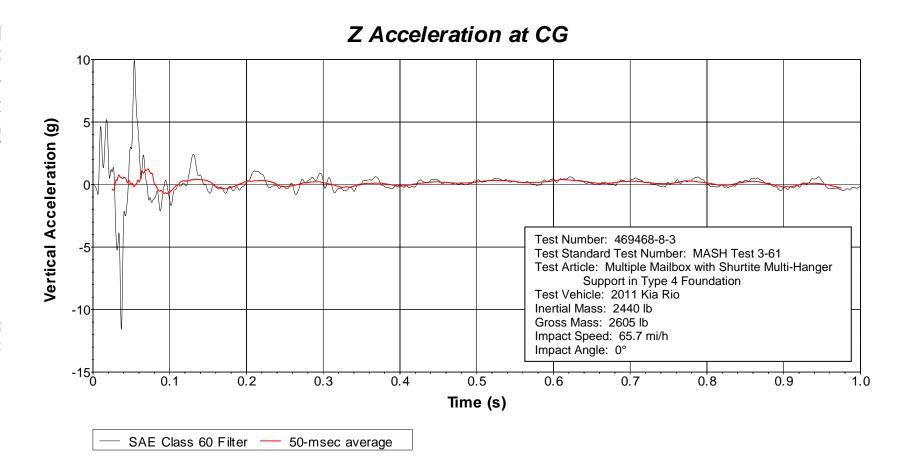


Figure H.21. Vehicle Vertical Accelerometer Trace for Test No. 469468-8-3 (Accelerometer Located at Center of Gravity).

SAE Class 60 Filter

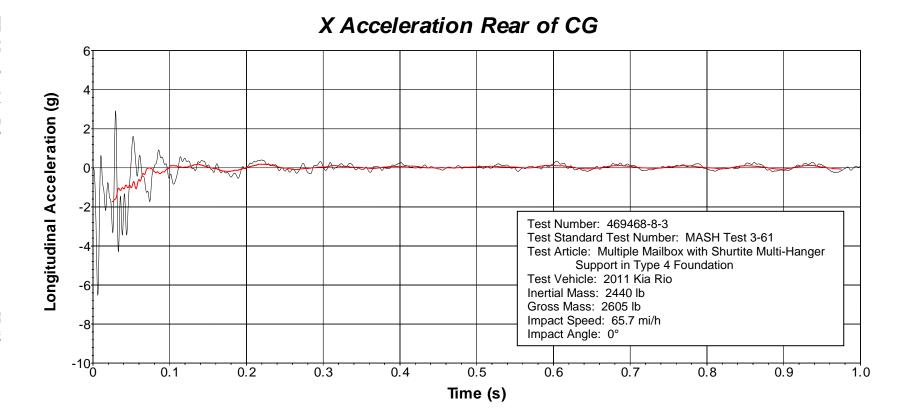


Figure H.22. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-8-3 (Accelerometer Located Rear of Center of Gravity).

50-msec average

Y Acceleration Rear of CG

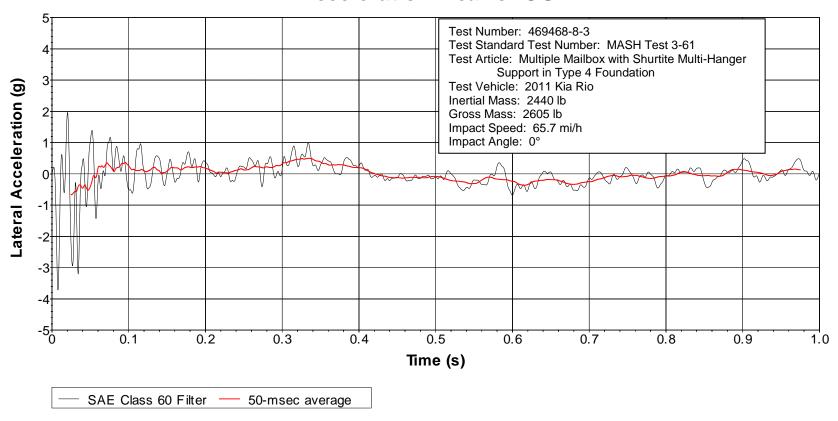


Figure H.23. Vehicle Lateral Accelerometer Trace for Test No. 469468-8-1 (Accelerometer Located Rear of Center of Gravity).

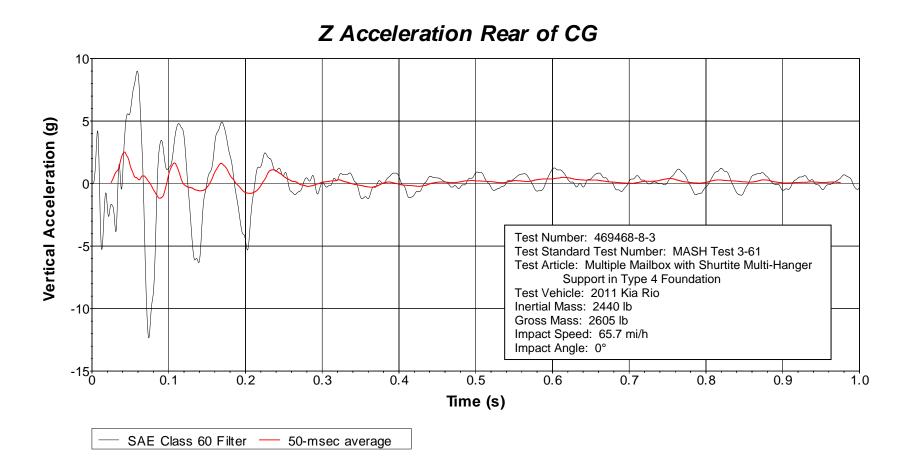
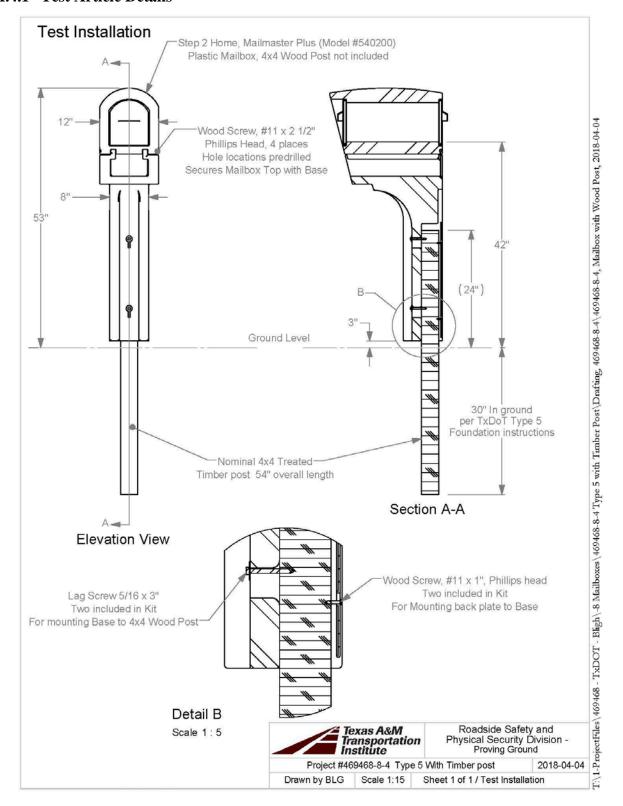



Figure H.24. Vehicle Vertical Accelerometer Trace for Test No. 469468-8-3 (Accelerometer Located Rear of Center of Gravity).

H.4 MASH TEST 3-61 ON SINGLE MOLDED PLASTIC MAILMASTER® MAILBOX WITH WOOD SUPPORT IN TYPE 5 FOUNDATION

H.4.1 Test Article Details

H.4.2 Vehicle Properties and Information

Table H.10. Vehicle Properties for Test No. 469468-8-4.

Date:	2018-04	-04	Test No.:	46946	68-8-4	VIN No.:	KNADI	H4A37B6	864745
Year:	2011		Make:	K	IA	Model:		RIO	
Tire Infl	lation Pressur	e: <u>32</u>	PSI	Odomete	127508	3	Tire Size:	185/65F	R14
Describ	oe any damag	e to the	e vehicle prior	r to test:	NONE				
Dence NOTES	otes acceleror		ocation.	A M —			• •		N T
✓	CID: 1.6 nission Type: Auto or FWD al Equipment:	Д	_ Manual 4WD	P-		R	•		A B B L V
Dummy Type: Mass: Seat F	50	5 LBS			F	H_S	EX	D -	L _K
	etry: inches 66.38 51.50 165.75 34.00 98.75 eel Center Ht F	F G H I J Front _				39 ±4 inches; O = 7		U V W X W-H R SUPPORT (24	15.00 20.75 35.60 106.00 0.00
GVWF Front Back Total	18	718 374 338	Mass: Ib M _{front} M _{rear} M _{Total}	<u>Cu</u> 	rb 1579 887 2466	<u>Test</u>	<u>Inertial</u> 1555 878 2433		1640 958 2598
Mass D lb	Distribution:	LF:	777		Allowable TIM = 2		wable GSM = 2585	RR:	461

Table H.11. Exterior Crush Measurements of Vehicle for Test No. 469468-8-4.

Date:	2018-04-04	_ Test No.: _	469468-8-4	VIN No.:	KNADH4A37B6864745
Year:	2011	_ Make: _	KIA	Model:	RIO

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete V	When Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2
< 4 inches	2 =
≥ 4 inches	

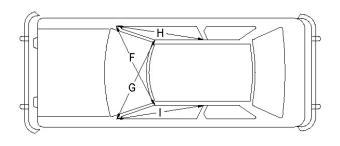
Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

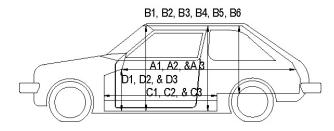
2		Direct Damage				0.000					
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C ₁	C ₂	C3	C4	C5	C ₆	±D
	Windshield	32	1-7/8	27	1200	6 <u>114</u> 6	262	250	412	122	5 <u>43.0</u>
								- t-			
	Units in inches										

Table taken from National Accident Sampling System (NASS).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.


^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

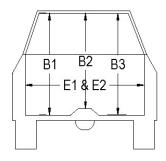

^{***}Measure and document on the vehicle diagram the location of the maximum crush.

Table H.12. Occupant Compartment Measurements of Vehicle for Test No. 469468-8-4.

Date:	2018-01-24	_ Test No.:	690900-HS17	_ VIN No.:	KNADH4A38A6627535
Year:	2010	Make:	KIA	Model:	RIO

^{*}Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

DEI ORWATION WEASONEWENT							
	Before	After inches	Differ.				
A1	67.50	67.50	0.25				
A2	67.25	67.25	0.00				
А3	67.75	67.75	0.00				
B1	40.50	40.50	0.00				
B2	39.00	39.00	0.00				
В3	40.50	40.50	0.00				
B4	36.25	36.25	0.00				
B5	36.00	36.00	0.00				
B6	36.25	36.25	0.00				
C1	26.00	26.00	0.00				
C2	0.00	0.00	0.00				
C3	26.00	26.00	0.00				
D1	9.50	9.50	0.00				
D2	0.00	0.00	0.00				
D3	9.50	9.50	0.00				
E1	51.50	51.50	0.00				
E2	51.00	51.00	0.00				
F	51.00	51.00	0.00				
G	51.00	51.00	0.00				
Н	37.50	37.50	0.00				
1	37.50	37.50	0.00				
J*	51.00	51.00	0.00				

H.4.3 Sequential Photographs

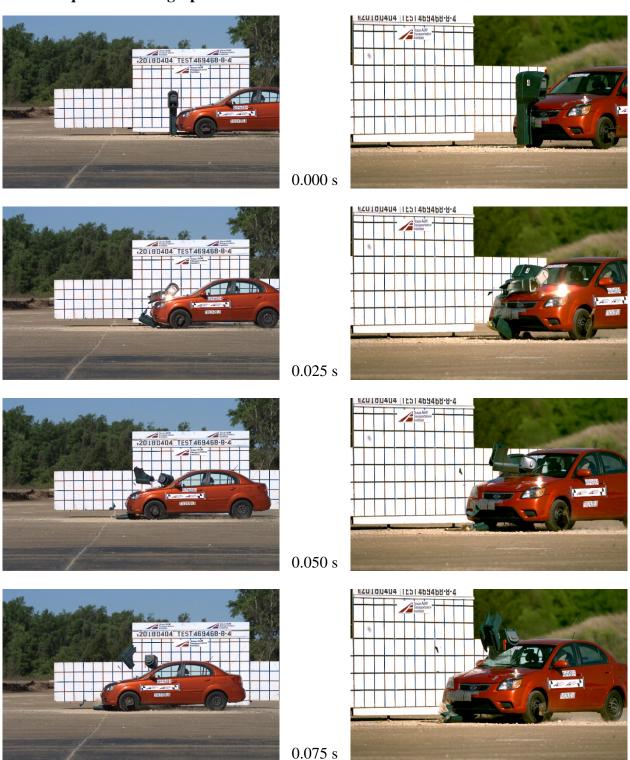


Figure H.25. Sequential Photographs for Test No. 469468-8-4 (Perpendicular and Oblique Views).

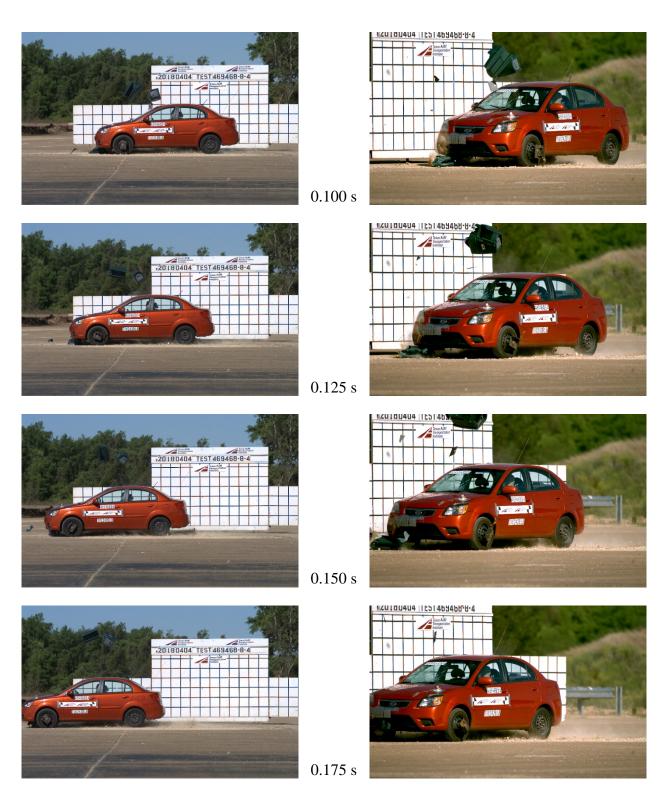


Figure H.25. Sequential Photographs for Test No. 469468-8-4 (Perpendicular and Oblique Views) (Continued).

TR No. 0-6946-R2

H-61

2019-03-26

Figure H.26. Vehicle Angular Displacements for Test No. 469468-8-4.

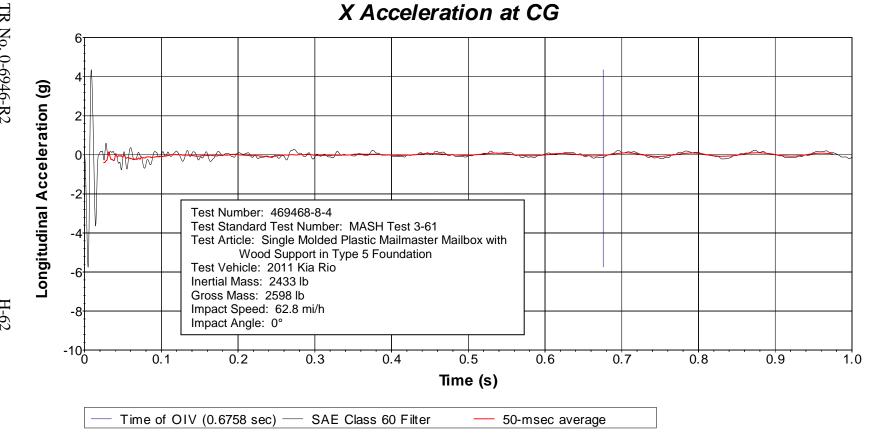


Figure H.27. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-8-4 (Accelerometer Located at Center of Gravity).

Time of OIV (0.6758 sec) —

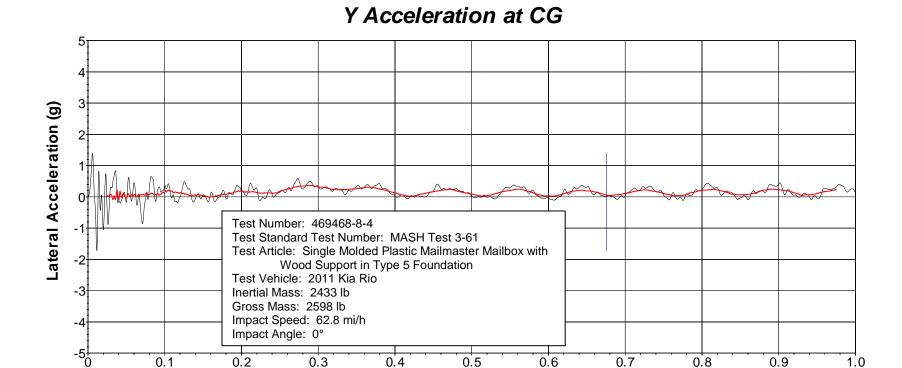


Figure H.28. Vehicle Lateral Accelerometer Trace for Test No. 469468-8-4 (Accelerometer Located at Center of Gravity).

Time (s)

50-msec average

SAE Class 60 Filter

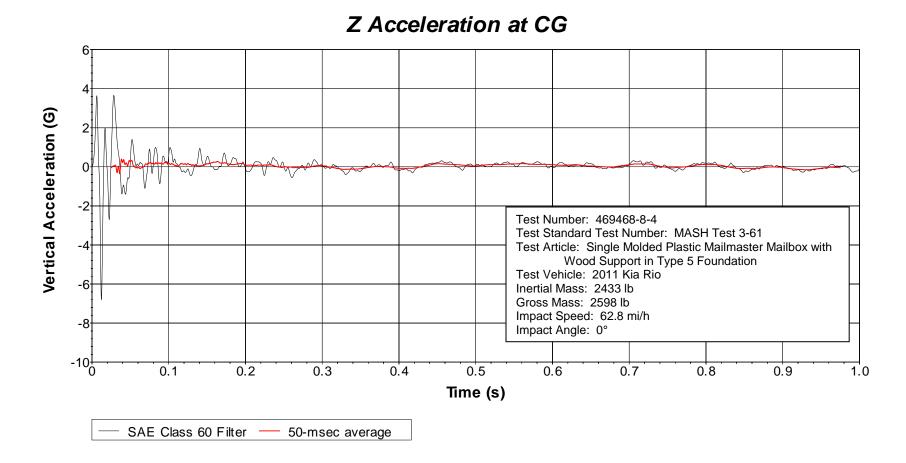


Figure H.29. Vehicle Vertical Accelerometer Trace for Test No. 469468-8-4 (Accelerometer Located at Center of Gravity).

X Acceleration Rear of CG

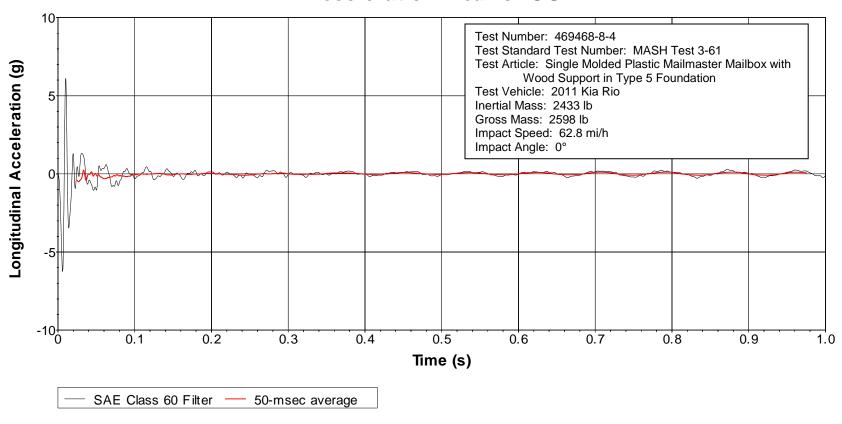


Figure H.30. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-8-4 (Accelerometer Located Rear of Center of Gravity).

Y Acceleration Rear of CG

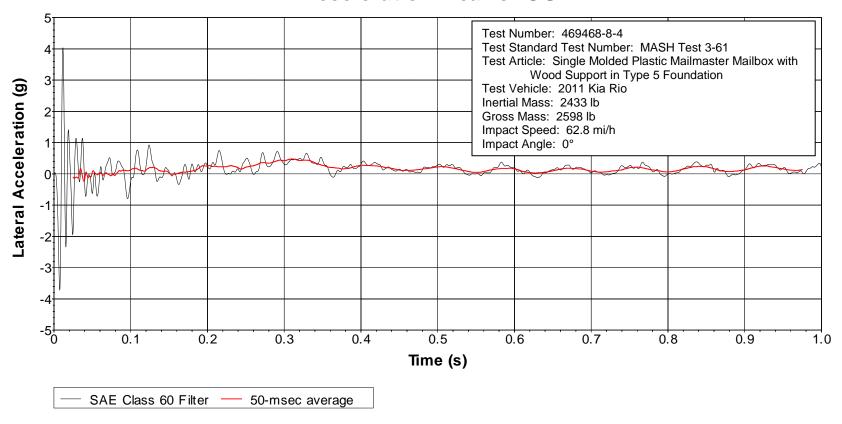
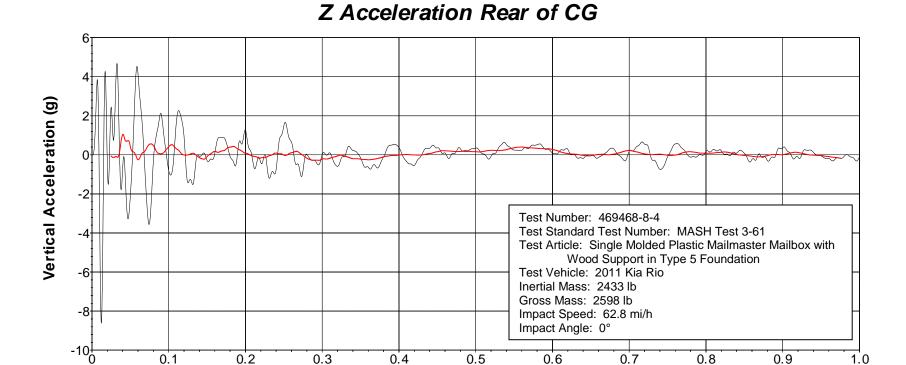



Figure H.31. Vehicle Lateral Accelerometer Trace for Test No. 469468-8-4 (Accelerometer Located Rear of Center of Gravity).

SAE Class 60 Filter

Time (s)

Figure H.32. Vehicle Vertical Accelerometer Trace for Test No. 469468-8-4 (Accelerometer Located Rear of Center of Gravity).

50-msec average

APPENDIX I. SKID-MOUNTED DUAL WOOD POST TEMPORARY SIGN SUPPORT SYSTEM

I.1 VEHICLE PROPERTIES AND INFORMATION

Table I.1. Vehicle Properties for Test No. 469468-9-1.

Date: 2	2018-2-1	9	Test No	o.:4	69468	3-9-1	VIN No.:	1C6RD6	6FT0CS	59827
Year:	2012		Mak	e:	DOD	GE	Model:	R	AM 1500)
Tire Size:	265/70	R 1	7		_	Tire In	nflation Pre	essure: 35 F	PSI	
Tread Type:	HIGHV	VAY			_		Odo	meter: 149	523	
Note any dar	nage to th	e veh	nicle prior	to test:	NON	ΙE				
 Denotes a 							X - W ->			
NOTES:				4			77			1
Engine Type Engine CID:	V-8 5.7 I			_	M WHEE TRACI	r r				N T
Transmission	ı Type:			I				TE	est inertial c. m.)
Auto ☐ FWD	or ☑ R¹	ᄱ	_ Manual □ 4W			₽ • Q	-			
Optional Equ					Ρ-					<u> </u>
NONE	притепт.									
Dummy Data	ı:			ļ	J- I-				$(O)_{\mathcal{T}}$	$\nu_{ m T_K}$
Type: Mass:	NON NA	1E					U	L _G L _V L _S		
Seat Positio						7	n	— E ———	- D-	-
Geometry:	inches					Y	M FRONT		▼ M REAR	
-	8.50	F	40.	00 k	(20.00	P	c	U	-
	4.00	G	28.			30.00	Q	30.50		
	7.50	н _	62.		/	68.50	R _	18.00	_ w _	
· · · · · · · · · · · · · · · · · · ·	4.00	1 _		<u>50</u> N	1	68.00	S _	13.00	_ X _	
	0.50	J _	27.			46.00	Т _	77.00		
Wheel Cer Height Fr			14.75	Clearance	el Well (Front)		6.00	Bottom Frar Height - Fro		12.00
Wheel Cer Height R			14.75	Whe Clearance	el Well (Rear)		9.25	Bottom Frar Height - Re		25.50
RANGE LIMIT: A	N=78 ±2 inches;	C=237 ±	13 inches; E=14	48 ±12 inches;	F=39 ±3 ir	nches; G = > 28 i		1 inches; O=43 ±4 inc		
GVWR Rati	•		Mass:		<u>Cu</u>		<u>Test</u>	t Inertial	Gros	s Static
Front	3700 3900	_	M _{front}			2870 2000		2808 2226		
Back Total	6700	_	M _{rear} M _{Tota}	\(\frac{1}{2}\)		<u>4870</u>		5034		
Mass Distrib		_	I ota	·			Range for TIM a	nd GSM = 5000 lb ±1	10 lb)	
lb	oution:	LF:	14	<u>03</u> R	F:	1405	LR:	1129	RR:	1097

Table I.2. Measurements of Vehicle Vertical CG for Test No. 469468-9-1.

Date:2018-	2-19 Te	est No.: _	469468	3-9-1	VIN:	1C6RD6FT00	S159827	,
Year:201	12	Make: _	DOD	GE	Model:	RAM	√ 1500	
Body Style: Q	UAD CA	3	<u>=</u>		Mileage:	149523		
Engine: 4.7L	V-8			Tran	smission:	AUTO		
Fuel Level: E	MPTY	Bal	ast: _120	LBS			(4-	40 lb max)
Tire Pressure:	Front: 3	35 ps	i Rea	ar: <u>35</u>	_ psi	Size: 265/70	R 17	
Measured Ve	hicle Wei	ghts: (l	b)					
LF:	1403		RF:	1405		Front Axle:	2808	
LR:	1129		RR:	1097		Rear Axle:	2226	
Left:	2532		Right:	2502		Total:	5034	
						5000 ±1	10 lb allow ed	
Wh	eel Base:	140.50	inches	Track: F:	68.50	inches R:	68.00	inches
	148 ±12 inch	es allow ed			Track = (F+F	R)/2 = 67 ±1.5 inche	s allow ed	
Center of Gra	avity, SAE	J874 Sus	spension N	/lethod				
X:	62.13	inches	Rear of F	ront Axle	(63 ±4 inche	s allow ed)		
Y:	-0.20	inches	Left -	Right +	of Vehicle	e Centerline		
Z:	28.50	inches	Above Gr	ound	(minumum 28	3.0 inches allow ed)		
Hood Heig			-	Front	Bumper I	Height:	27.00	inches
	43 ±4 ir	nches allowed						
Front Overhar	ng:	40.00	inches	Rear	Bumper H	Height:	30.00	inches
	39 ±3 ir	nches allowed						
Overall Leng	th:	227.50	inches					
	237 ±13	3 inches allow	red					

Table I.3. Exterior Crush Measurements of Vehicle for Test No. 469468-9-1.

Date:	2018-2-19	Test No.:	469468-9-1	VIN No.:	1C6RD6FT0CS159827
Year:	2012	_ _ Make:	DODGE	_ Model:	RAM 1500

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete Wh	en Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2
< 4 inches	=
≥ 4 inches	

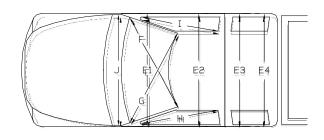
Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

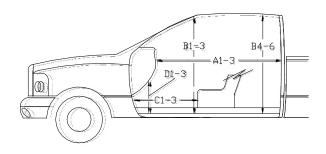
G : C		Direct I	Damage								
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C ₁	C ₂	C3	C4	C ₅	C6	±D
1	Roof	10.0	1.0								
	inches										

¹Table taken from National Accident Sampling System (NASS).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.


^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

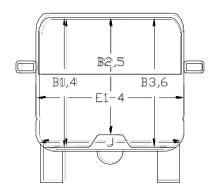

^{***}Measure and document on the vehicle diagram the location of the maximum crush.

Table I.4. Occupant Compartment Measurements of Vehicle for Test No. 469468-9-1.

Date:	2018-2-19	Test No.:	469468-9-1	VIN No.:	1C6RD6FT0CS159827
Year:	2012	Make:	DODGE	Model:	RAM 1500

^{*}Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

	Before	After inches	Differ.
A1	65.00	65.00	0.00
A2	63.00	63.00	0.00
A3	65.50	65.50	0.00
B1	45.00	45.00	0.00
B2	38.00	38.00	0.00
B3	45.00	45.00	0.00
B4	39.50	39.50	0.00
B5	43.00	43.00	0.00
B6	39.50	39.50	0.00
C1	6.00	6.00	0.00
C2	0.00	0.00	0.00
C3	26.00	26.00	0.00
D1	11.00	11.00	0.00
D2	0.00	0.00	0.00
D3	11.50	11.50	0.00
E1	58.50	58.50	0.00
E2	63.50	63.50	0.00
E3	63.50	63.50	0.00
E4	63.50	63.50	0.00
F	59.00	59.00	0.00
G	59.00	59.00	0.00
Н	37.50	37.50	0.00
1	37.50	37.50	0.00
J*	25.00	25.00	0.00

I.2 SEQUENTIAL PHOTOGRAPHS

0.000 s

0.025 s

0.050 s

201802. 45 468-9-1

0.075 s

Figure I.1. Sequential Photographs for Test No. 469468-9-1 (Perpendicular and Oblique Views).

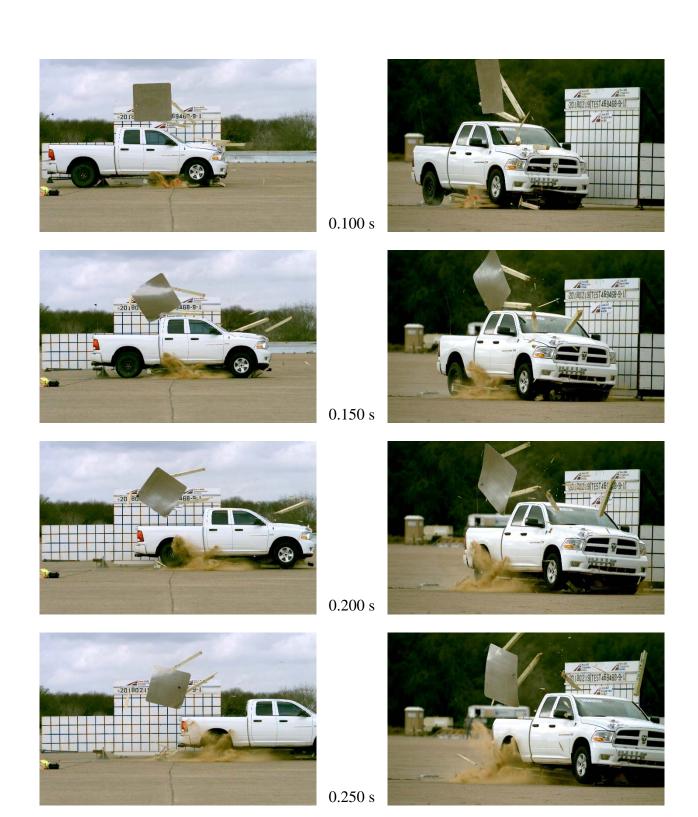


Figure I.1. Sequential Photographs for Test No. 469468-9-1 (Perpendicular and Oblique Views) (Continued).

APPENDIX J. MBGF WITH W6×8.5 STEEL POSTS IN ROCKY TERRAIN

DETAILS OF THE SYSTEM

T:\1-ProjectFiles\469468 - TxDOT - Bligh\-10 Guardrail in Rocky Terrain\Drafting, 469468-10\469468-10 Drawing

T:\1-ProjectFiles\469468 - TxDOT - Bligh\-10 Guardrail in Rocky Terrain\Drafting, 469468-10\469468-10 Drawing

Proving Ground 3100 SH 47, Bldg 7091 Bryan, TX 77807	Texas A&M Transportation Institute Texas A&M University College Station, TX 77843 Phone 979-845-6375	5.7.2	Concrete Break	Doc. No. QPF 5.7.2	Revision Date: 2012-09-17
Quality 1	Policy Form	Revised by: (Approved by:	G. E. Schroeder C. E. But	Revision:	Page:

1	10

Printed name of Technician taking sample:
Signature of Technician taking sample:
Printed name of Technician breaking sample:
Signature of Technician breaking sample:

J.2

CONCRETE STRENGTH

Break Date	Cylinder Age	Truck No.	Total Load (Pounds)	PSI Break	Average
2018-3-27	19 DAYS	1	123,000	4350	
	1	1	130,000	4,105 -	4350
4	*	4	130,000	4,600 -	

Table J.1. Summary of Strong Soil Test Results for Establishing Installation Procedure.

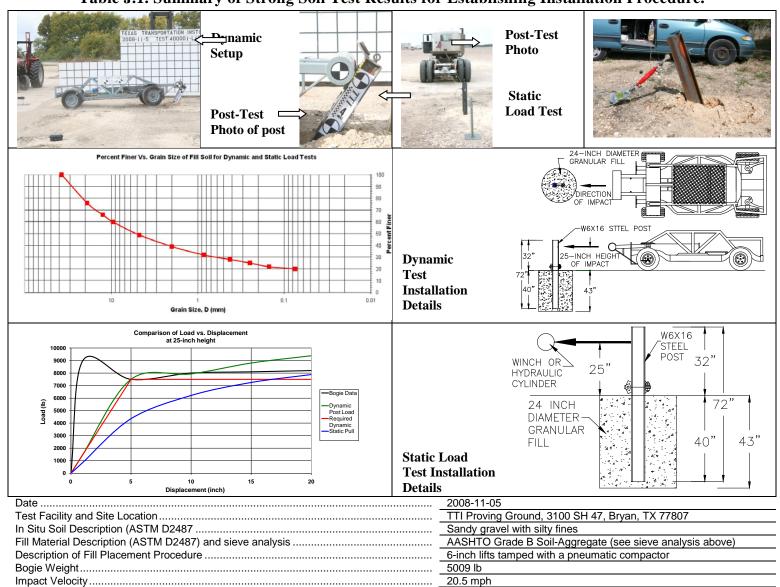
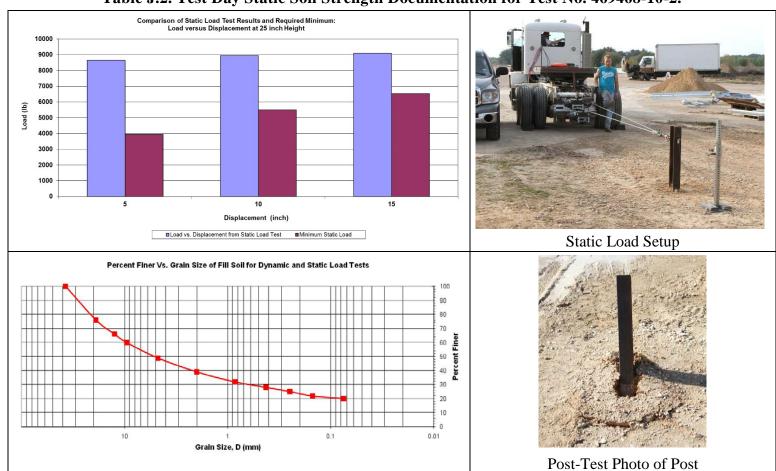
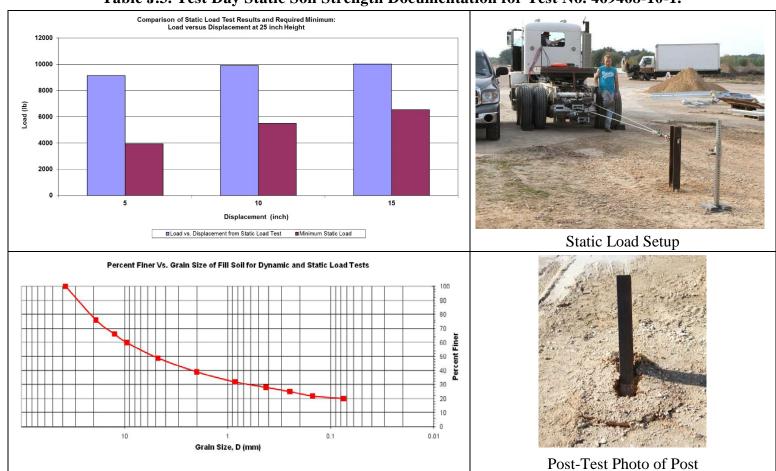



Table J.2. Test Day Static Soil Strength Documentation for Test No. 469468-10-2.


Date..... Test Facility and Site Location In Situ Soil Description (ASTM D2487) Fill Material Description (ASTM D2487) and sieve analysis .. AASHTO Grade B Soil-Aggregate (see sieve analysis) Description of Fill Placement Procedure

2018-04-26

TTI Proving Ground – 3100 SH 47, Bryan, Tx Sandy gravel with silty fines

6-inch lifts tamped with a pneumatic compactor

Table J.3. Test Day Static Soil Strength Documentation for Test No. 469468-10-1.

Date..... Test Facility and Site Location In Situ Soil Description (ASTM D2487) Fill Material Description (ASTM D2487) and sieve analysis .. AASHTO Grade B Soil-Aggregate (see sieve analysis) Description of Fill Placement Procedure

2018-03-27

TTI Proving Ground – 3100 SH 47, Bryan, Tx Sandy gravel with silty fines

6-inch lifts tamped with a pneumatic compactor

J.4 *MASH* TEST 3-10 (CRASH TEST NO. 469468-10-2)

J.4.1 Vehicle Properties and Information

Table J.4. Vehicle Properties for Test No. 469468-10-2.

Date: 2018-04-26 Test N	o.: 469468-10-2	VIN No.:	KNADI	E223496	462610
Year: 2009 Make:	KIA	Model:	9	RIO	
Tire Inflation Pressure: 32 PSI	Odometer: <u>2018</u>	16	Tire Size:	185/65R	14
Describe any damage to the vehicle	prior to test:				
Denotes accelerometer location. NOTES:	A M		*		N T
Engine Type: 4 CYL Engine CID: 1.6 L Transmission Type:	WD P	R R			₩ N B B W W W W W W W W W W W W W W W W W
Mass: 165 lb Seat Position: Driver Side	_		E — X — — — — — — — — — — — — — — — — —	D -	
Geometry: inches A 66.38 F 33.0 B 51.50 G C 165.75 H 36.3 D 34.00 I 7.3 E 98.75 J 21.3 Wheel Center Ht Front 11.0	L 25.25 30 M 57.75 75 N 57.70 50 O 28.25 Wheel Center I	Q R S T Ht Rear	4.12 22.50 15.50 8.25 66.20 11.00	V V X W-H	14.75 19.50 36.30 106.80
	= 56 ±2 inches; W-H < 2 inches or use M.	ASH Paragraph A4.3.	2		
GVWR Ratings: Mass Front 1718 M _{froi} Back 1874 M _{rea} Total 3638 M _{Tot}	1566 896 2462		Inertial 1546 901 2447		981 2612
Mass Distribution: Ib LF:			455	RR:	446

Table J.5. Exterior Crush Measurements of Vehicle for Test No. 469468-10-2.

Date:	2018-04-26	_ Test No.:	469468-10-2	_ VIN No.:	KNADE223496462610
Year: _	2009	_ Make:	KIA	_ Model:	RIO

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete Wh	en Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2 _
< 4 inches	2 =
≥ 4 inches	

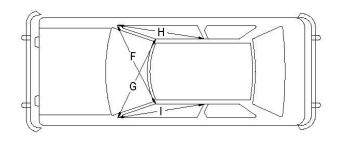
Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

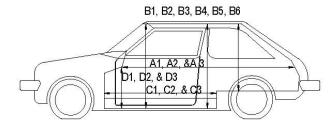
Specific Impact Number		Direct Damage									
	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C ₁	C ₂	C3	C ₄	C5	C ₆	±D
1	AT FT BUMPER	15	5	12	5	3	1				-14
2	ABOVE FT BUMPER	15	9	36	1	2.5	3	6	8	9	+60
	Units in inches	73					77				

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.


Note: Use as many lines/columns as necessary to describe each damage profile.


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

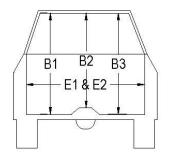

^{***}Measure and document on the vehicle diagram the location of the maximum crush.

Table J.6. Occupant Compartment Measurements of Vehicle for Test No. 469468-10-2.

Date:	2018-04-26	Test No.:	469468-10-2	VIN No.:	KNADE223496462610
Year:	2009	Make:	KIA	Model:	RIO

^{*}Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

DEFORMATION MEASUREMENT								
	Before	After inches	Differ.					
A1	67.50	67.50	0.00					
A2	67.25	67.25	0.00					
А3	67.75	67.75	0.00					
B1	40.50	40.50	0.00					
B2	39.00	39.00	0.00					
B3	40.50	40.50	0.00					
B4	36.25	36.25	0.00					
B5	36.00	36.00	0.00					
B6	36.25	36.25	0.00					
C1	26.00	26.00	0.00					
C2	0.00	0.00	0.00					
C3	26.00	26.00	0.00					
D1	9.50	9.50	0.00					
D2	0.00	0.00	0.00					
D3	9.50	9.50	0.00					
E1	51.50	51.50	0.00					
E2	51.00	51.00	0.00					
F	51.00	51.00	0.00					
G	51.00	51.00	0.00					
Н	37.50	37.50	0.00					
I	37.50	37.50	0.00					
J*	51.00	51.00	0.00					

J.4.2 Sequential Photographs

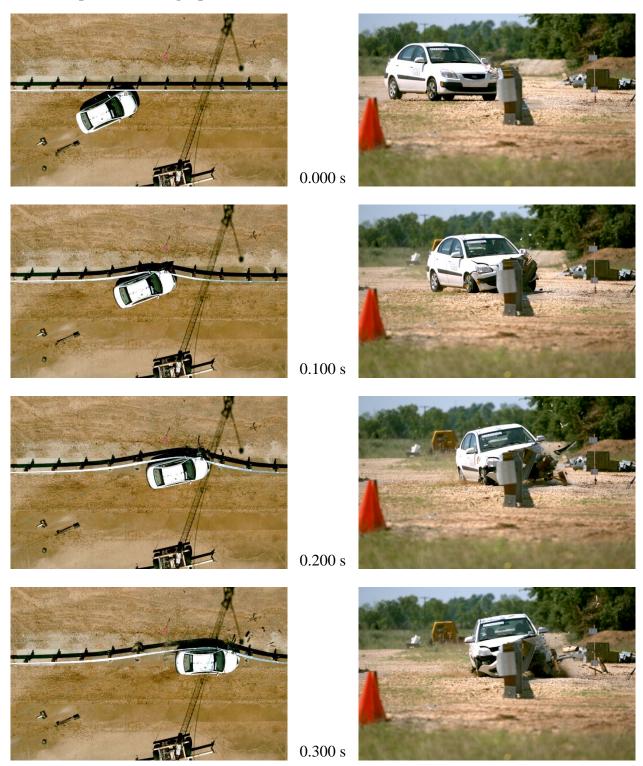


Figure J.1. Sequential Photographs for Test No. 469468-10-2 (Overhead and Frontal Views).

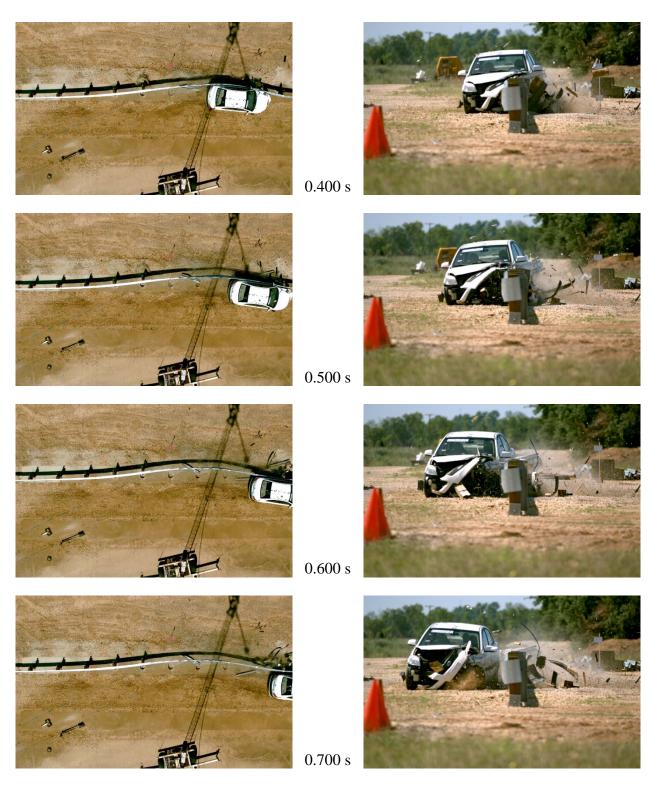


Figure J.1. Sequential Photographs for Test No. 469468-10-2 (Overhead and Frontal Views) (Continued).

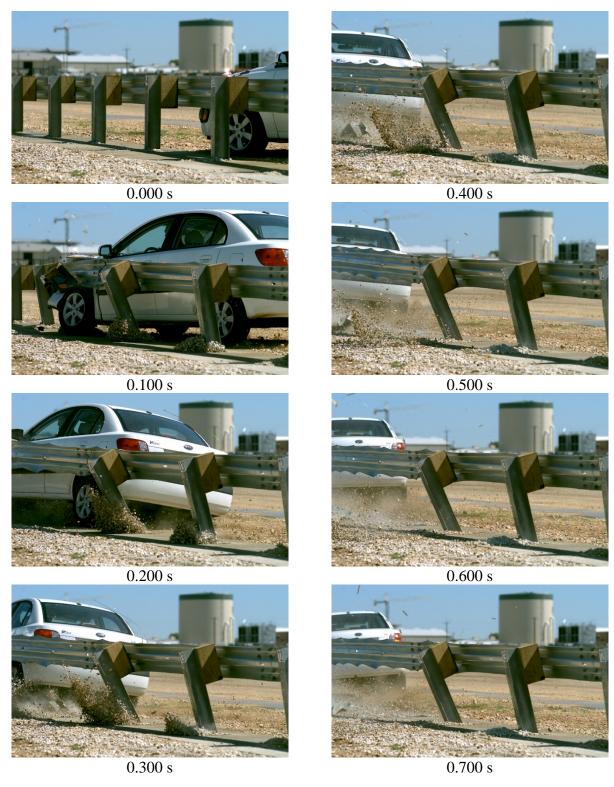


Figure J.2. Sequential Photographs for Test No. 469468-10-2 (Rear View).

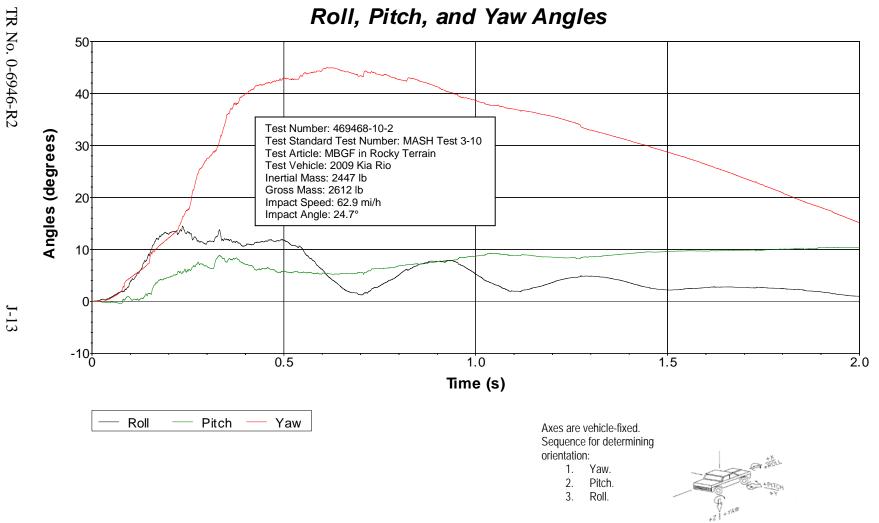


Figure J.3. Vehicle Angular Displacements for Test No. 469468-10-2.

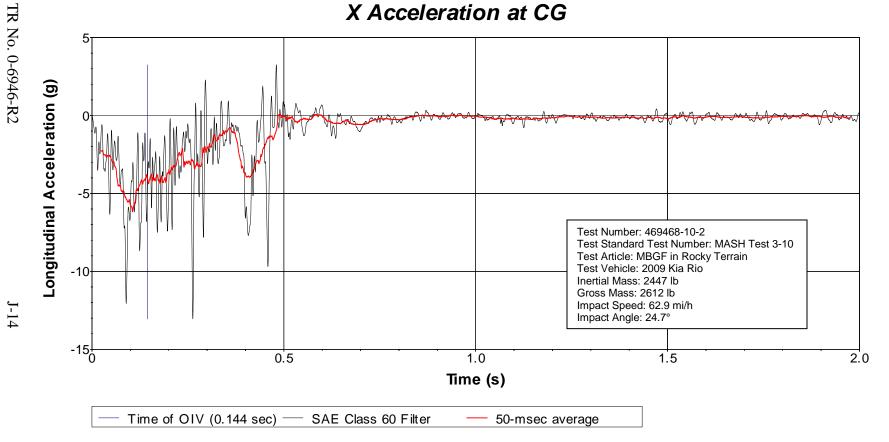


Figure J.4. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-10-2 (Accelerometer Located at Center of Gravity).

Y Acceleration at CG

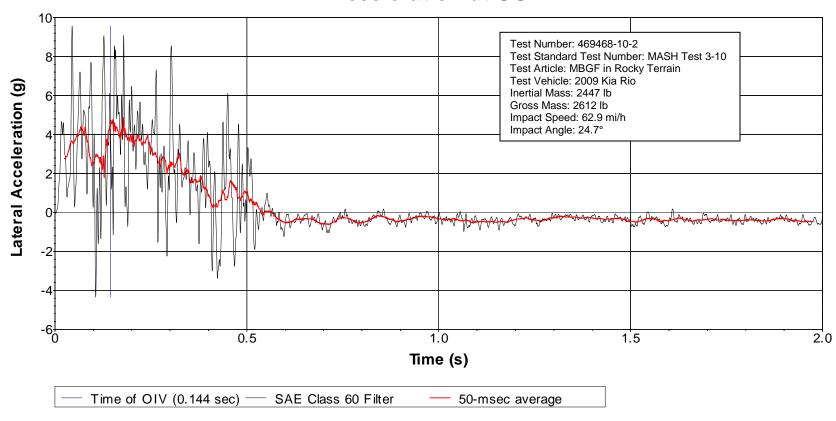


Figure J.5. Vehicle Lateral Accelerometer Trace for Test No. 469468-10-2 (Accelerometer Located at Center of Gravity).

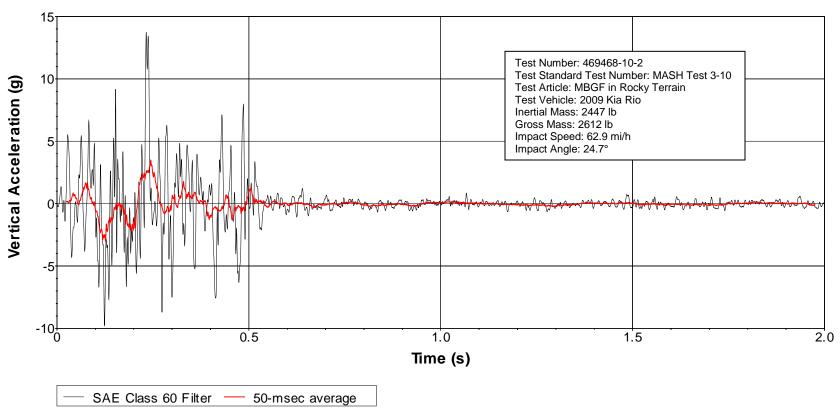


Figure J.6. Vehicle Vertical Accelerometer Trace for Test No. 469468-10-2 (Accelerometer Located at Center of Gravity).

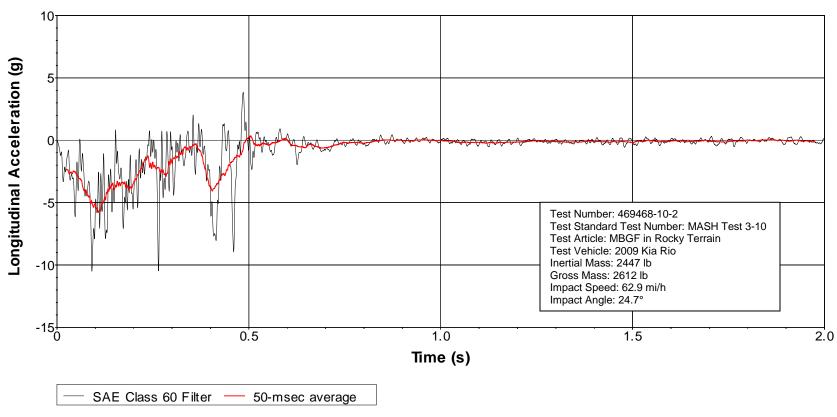


Figure J.7. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-10-2 (Accelerometer Located Rear of Center of Gravity).

Y Acceleration Rear of CG

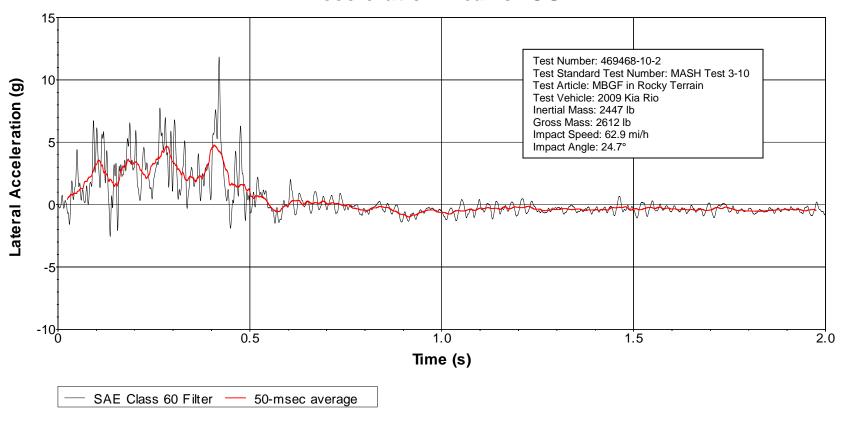


Figure J.8. Vehicle Lateral Accelerometer Trace for Test No. 469468-10-2 (Accelerometer Located Rear of Center of Gravity).

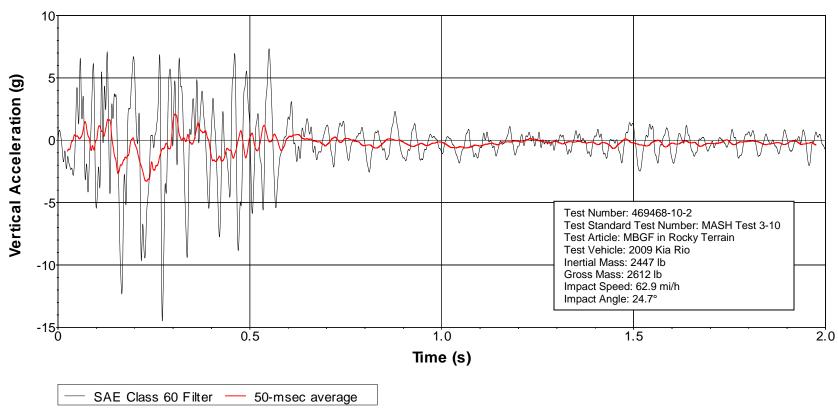


Figure J.9. Vehicle Vertical Accelerometer Trace for Test No. 469468-10-2 (Accelerometer Located Rear of Center of Gravity).

J.5 *MASH* TEST 3-11 (CRASH TEST NO. 469468-10-1)

J.5.1 Vehicle Properties and Information

Table J.7. Vehicle Properties for Test No. 469468-10-1.

Date:	2018-3-	-27	Test No.:	469468	3-10-1	VIN No.:	1C6RD6F	T6CS	221909
Year:	2012)	Make:	DOD	GE	Model:	RAN	/ 1 150	0
Tire Size	e: 265/7	70 R 1	17		Tire In	flation Pres	ssure: 35 PS		
Tread T	ype: HIGH	łWAY	•			Odor	meter: 20040	0	
Note an	y damage to	the ve	hicle prior to te	est: NON	1E				
• Denoi	tes acceleror	neter l	ocation			X	-		
		neter i	ocation.			7		,	
NOTES:				1		$f// \rightarrow$		J	
				A M	7, 7, 7,				N '
Engine (3 ′L		A M	r K				WHEEL TRACK
Transmi	ssion Type:			Y -				,	-91
	Auto or		Manual		+ 0	- - -	TEST IN	ERTIAL C. M.	
		RWD	_		R —				4
				P -	-			-	
NON	l Equipment:			4					T I
NON	IC .			• •	- (₩ **	 	7)	B _ →
Dummy	Data:			J J I -		<i>万</i> 一十	***	1	FK L
Type:	NC	DNE				υJ	L _v L _s		
Mass:					4 F →	—H— ►	∟ _G –E—— ►	← D-	-
Seat P	osition:					M	7	7 M	
Geomet	t ry: inches	1			[-]	FRONT	_	REAR	
A	78.50	F	40.00	K	20.00	Р	c	U	27.75
В —	74.00	G	28.50	Ľ —	30.00	 Q	30.50	V _	30.50
	227.50	Н	61.58		68.50	 R	18.00	w	61.50
D	44.00	1	11.75	Ν	68.00	s	13.00	Χ _	77.75
E	140.50	J	27.00	0	46.00	т _	77.00		
	el Center	_	14.75 _{Clea}	Wheel Well		6.00	Bottom Frame	_	12.00
	ight Front eel Center			arance (Front) Wheel Well			Height - Front Bottom Frame		
	eight Rear	• • • • • • • • • • • • • • • • • • • •		arance (Rear)		9.25	Height - Rear		25.50
		es; C=237					inches; O=43 ±4 inches;		
	Ratings: 370	20	Mass: Ib	<u>Cu</u>	<u>10</u> 2820	<u>rest</u>	Inertial 2818	Gro	ss Static
Front	390	_	M _{front}	7	2030		2199		
Back	670		M _{rear}	-	4850	1	5017		
Total		<u> </u>	M_Total			Range for TIM an	30 17 d GSM = 5000 lb ±110 lb)		
	istribution:		4.404		4007		1001	_	4440
lb		LF:	1421	RF:	1397	LR:	1081 RF	₹:	1118

Table J.8. Measurements of Vehicle Vertical CG for Test No. 469468-10-1.

Date: 2018-03	3-27 T	est No.: _	469468-10	O-1	VIN: <u>1</u>	C6RD6FT6CS	221909			
Year: 2012		Make: Dodge Model: RAM 1500								
Body Style: C	Body Style: Quad Cab Mileage: 200400									
Engine: 4.7 lit	Engine: 4.7 liter V-8 Transmission: Automatic									
Fuel Level: Empty Ballast: 133 lb (440 lb max)								440 lb max)		
Tire Pressure: F	ront: _	<u>35</u> ps	si Re	ar: <u>35</u>	_ psi	Size: <u>265/70</u>	R17			
Measured Vel	hicle Wei	ghts: (l	b)							
LF:	1421		RF:	1397		Front Axle:	2818			
LR:	1081		RR:	1118		Rear Axle:	2199			
Left:	2502		Right:	2515		Total:	5017			
						5000 ±11	0 lb allow ed			
Whe	eel Base:	140.5	inches	Track: F:	68.5	inches R:	68	inches		
	148 ±12 inch	es allow ed			Track = (F+R	2)/2 = 67 ±1.5 inches	allow ed			
Center of Gra	vity, SAE	J874 Sus	spension N	/lethod						
X:	61.58	inches	Rear of F	ront Axle	(63 ±4 inche	s allow ed)				
Y:	0.09	inches	Left -	Right +	of Vehicle	Centerline				
Z:	28.5	inches	Above Gr	ound	(minumum 28	3.0 inches allow ed)				
Hood Heigh	nt:	46.00	_ inches	Fron	t Bumper	Height:	27.00	inches		
	43 ±4 i	nches allowed	t							
Front Overhan				Rea	r Bumper	Height:	30.00	_ inches		
	39 ±3 i	nches allowed	d							
Overall Lengt			_							
	227 ±1	2 inches allow	und							

Table J.9. Exterior Crush Measurements of Vehicle for Test No. 469468-10-1.

Date:	2018-03-27	Test No.:	469468-10-1	VIN No.:	1C6RD6FT6CS221909
Year:	2012	Make:	Dodge	Model:	RAM 1500

VEHICLE CRUSH MEASUREMENT SHEET¹

VEHICLE CROSH WEND CREWENT SHEET								
Complete When Applicable								
End Damage	Side Damage							
Undeformed end width	Bowing: B1 X1							
Corner shift: A1	B2 X2							
A2								
End shift at frame (CDC)	Bowing constant							
(check one)	X1+X2							
< 4 inches	=							
≥ 4 inches								

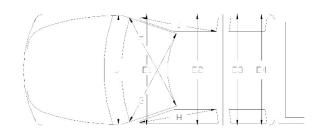
Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

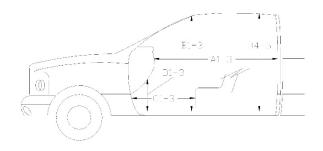
	to Co nom Briver	10 1 4000112	01 0100 111	1 10111 01 1	111			2 2 1 0 11	l III DIC	i impe	
Specific Impact Number	Plane* of C-Measurements	Direct I Width** (CDC)	Damage Max*** Crush	Field L**	C_1	C_2	C_3	C_4	C ₅	C ₆	±D
1	Front plane at bumper ht	16	7	18	7	3.5	2				-35
2	Side plane at bumper ht	16	7	60	1	2			5	7	+72
	Measurements recorded										
	in inches										

¹Table taken from National Accident Sampling System (NASS).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.


^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

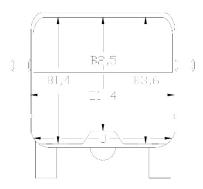

^{***}Measure and document on the vehicle diagram the location of the maximum crush.

Table J.10. Occupant Compartment Measurements of Vehicle for Test No. 469468-10-

Date:	2018-3-27	Test No.:	469468-10-1	VIN No.:	1C6RD6FT6CS221909
Year:	2012	Make:	DODGE	Model:	RAM 1500

^{*}Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

	Before	After inches	Differ.
A1	65.00	65.00	0.00
A2	63.00	63.00	0.00
A3	65.50	65.50	0.00
B1	45.00	45.00	0.00
B2	38.00	38.00	0.00
B3	45.00	45.00	0.00
B4	39.50	39.50	0.00
B5	43.00	43.00	0.00
B6	39.50	39.50	0.00
C1	6.00	6.00	0.00
C2			
C3	26.00	26.00	0.00
D1	11.00	11.00	0.00
D2			
D3	11.50	11.50	0.00
E1	58.50	58.50	0.00
E2	63.50	63.50	0.00
E3	63.50	63.50	0.00
E4	63.50	63.50	0.00
F	59.00	59.00	0.00
G	59.00	59.00	0.00
Н	37.50	37.50	0.00
1	37.50	37.50	0.00
J*	25.00	25.00	0.00

J.5.2 Sequential Photographs

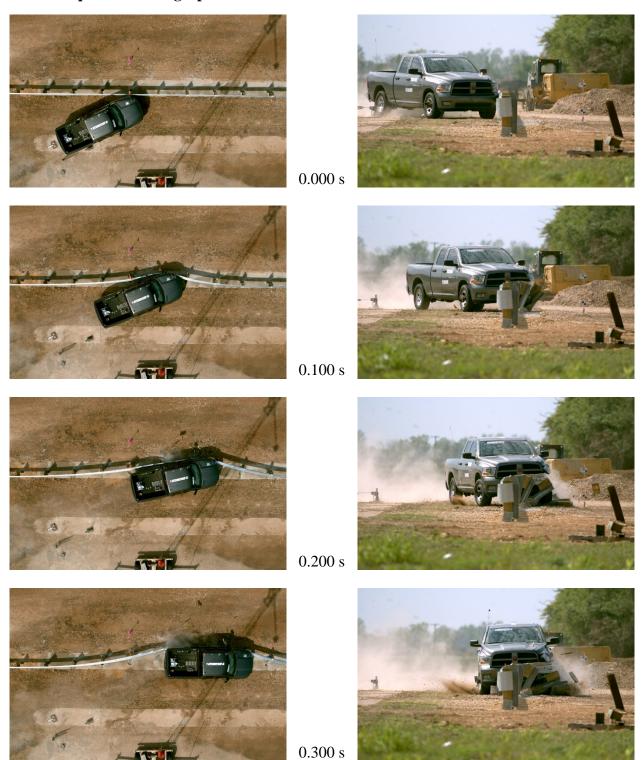


Figure J.10. Sequential Photographs for Test No. 469468-10-1 (Overhead and Frontal Views).

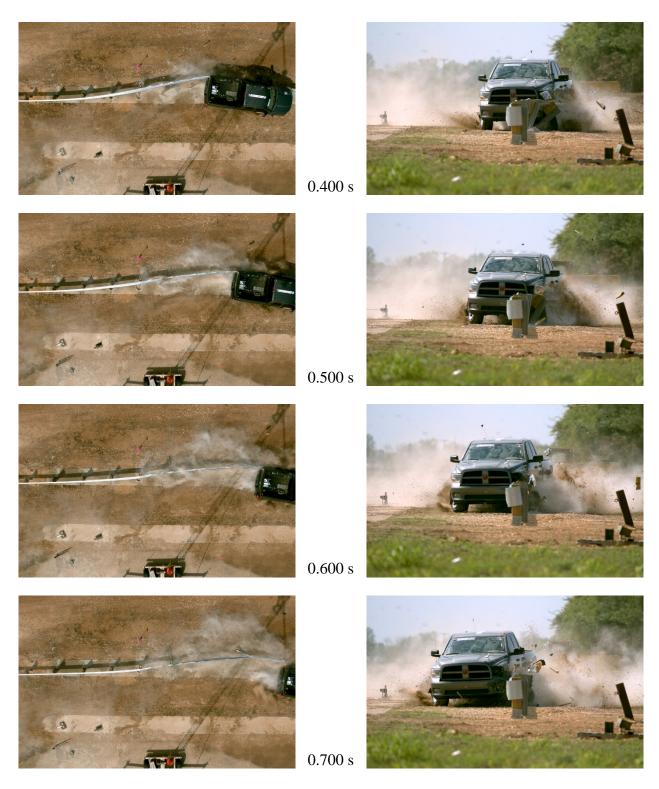


Figure J.10. Sequential Photographs for Test No. 469468-10-1 (Overhead and Frontal Views) (Continued).

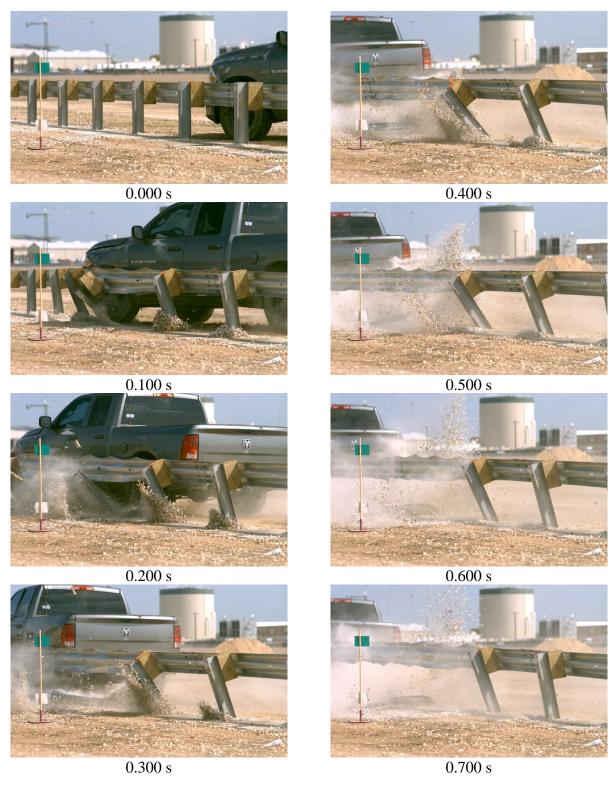


Figure J.11. Sequential Photographs for Test No. 469468-10-1 (Rear View).

Figure J.12. Vehicle Angular Displacements for Test No. 469468-10-1.

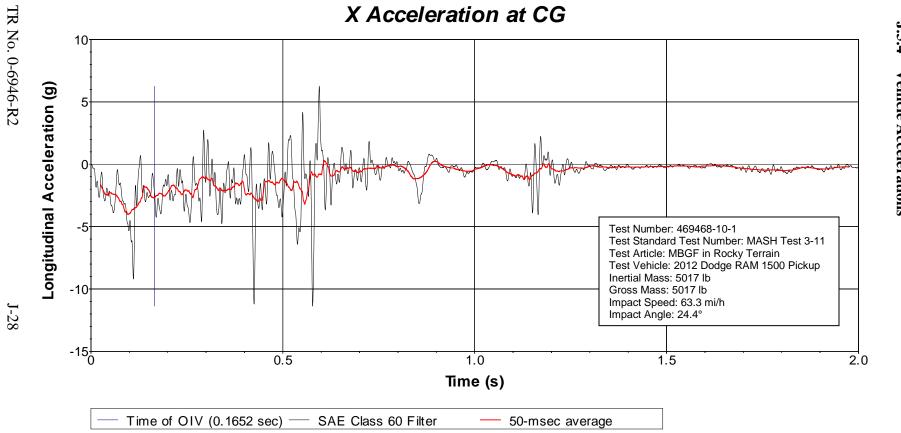


Figure J.13. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-10-1 (Accelerometer Located at Center of Gravity).

Time of OIV (0.1652 sec) -

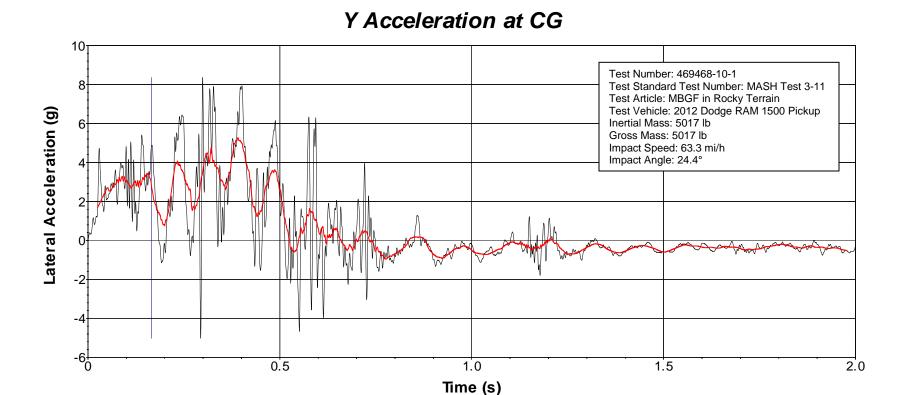


Figure J.14. Vehicle Lateral Accelerometer Trace for Test No. 469468-10-1 (Accelerometer Located at Center of Gravity).

50-msec average

SAE Class 60 Filter

Z Acceleration at CG

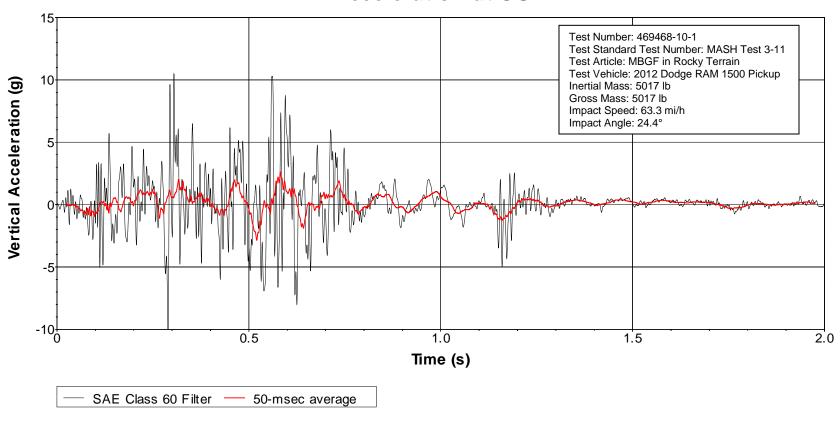


Figure J.15. Vehicle Vertical Accelerometer Trace for Test No. 469468-10-1 (Accelerometer Located at Center of Gravity).

X Acceleration Rear of CG

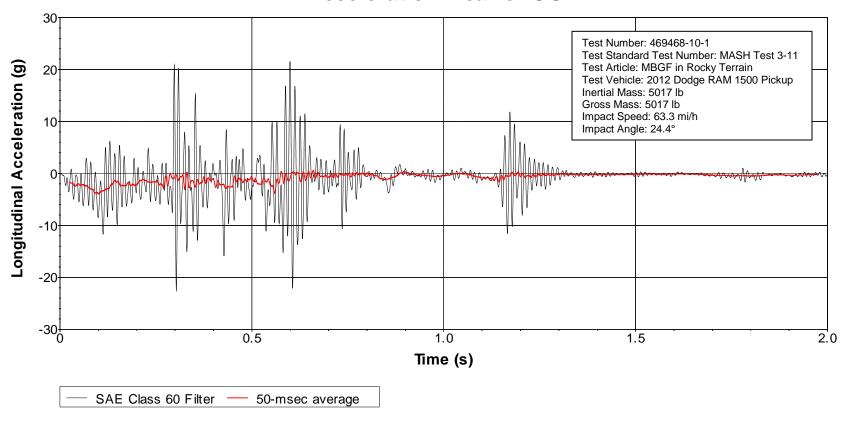


Figure J.16. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-10-1 (Accelerometer Located Rear of Center of Gravity).

Y Acceleration Rear of CG

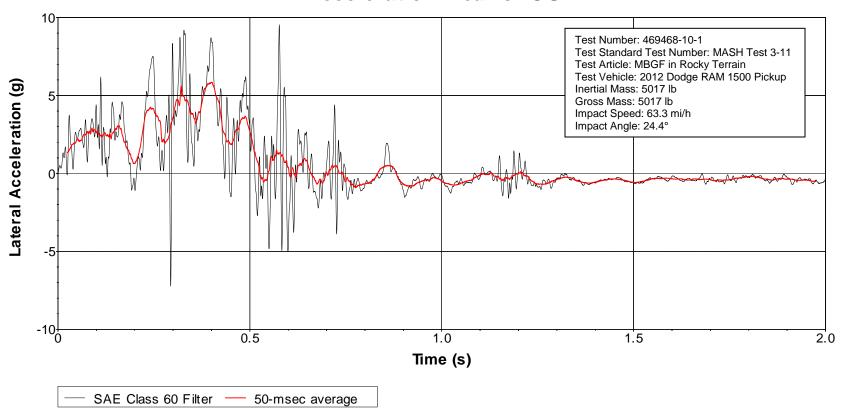


Figure J.17. Vehicle Lateral Accelerometer Trace for Test No. 469468-10-1 (Accelerometer Located Rear of Center of Gravity).

Z Acceleration Rear of CG

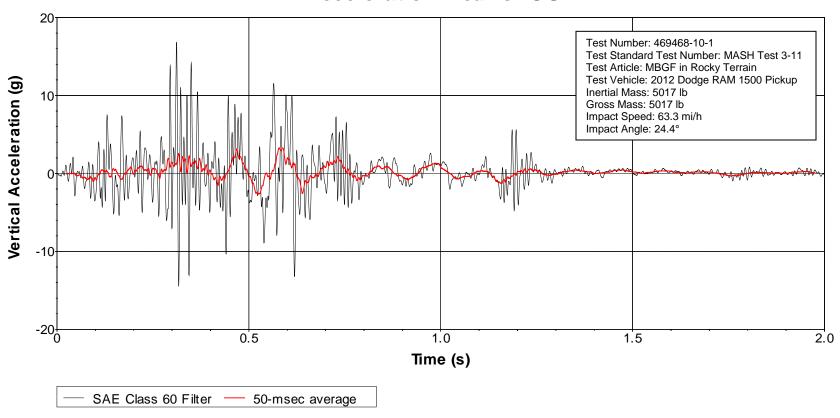
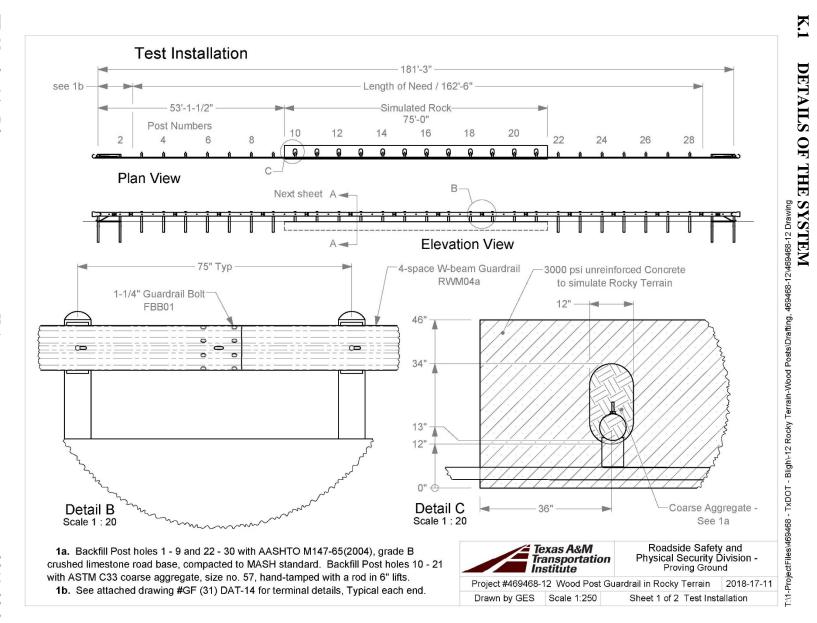
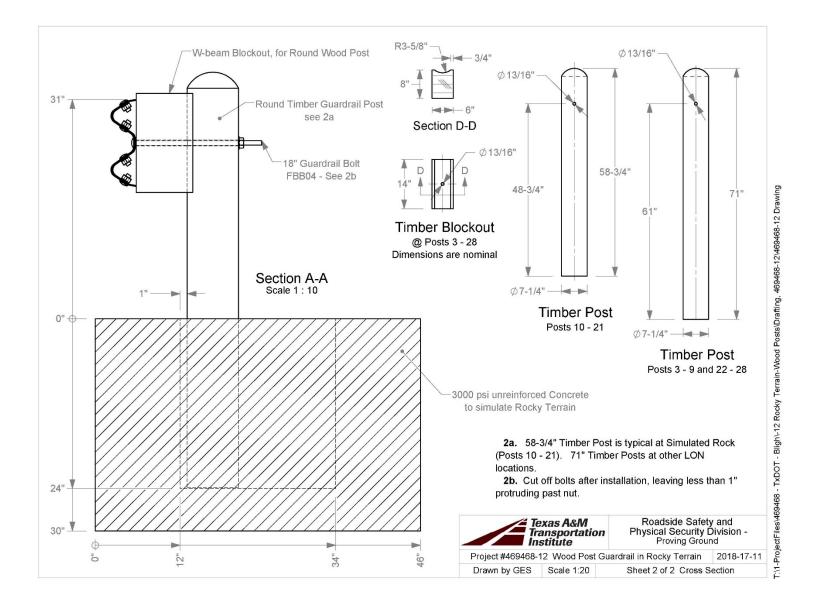
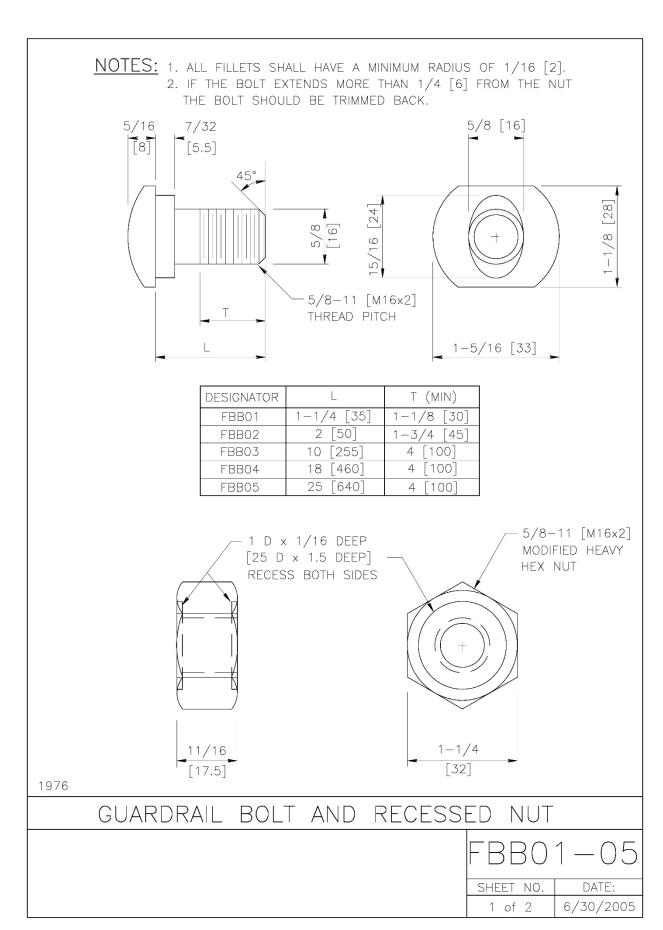





Figure J.18. Vehicle Vertical Accelerometer Trace for Test No. 469468-10-1 (Accelerometer Located Rear of Center of Gravity).

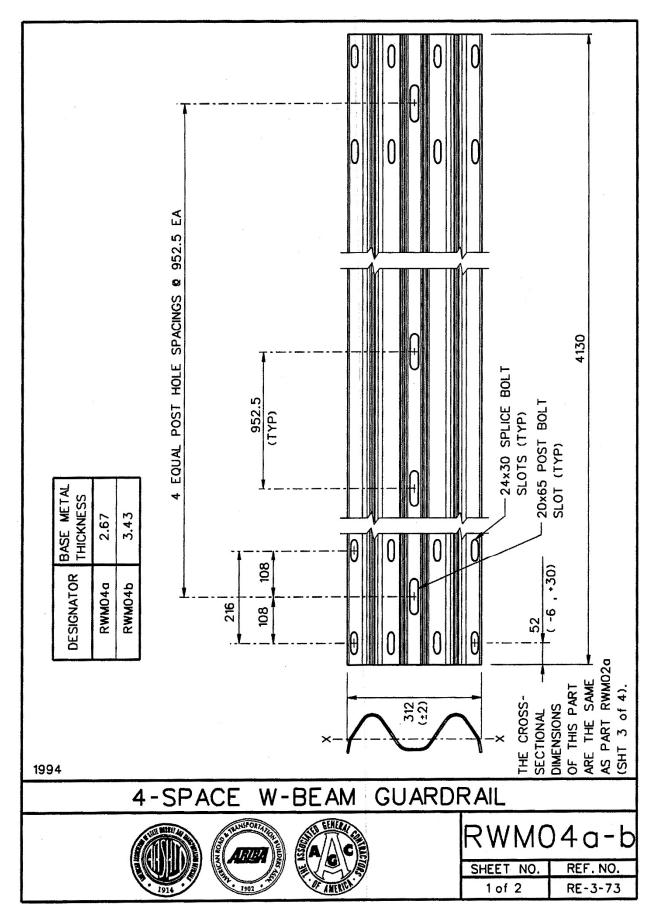
APPENDIX K. ROUND WOOD POST W-BEAM GUARDRAIL

SPECIFICATIONS

The geometry and material specifications for this oval shoulder button-headed bolt and hex nut are found in AASHTO M 180. The bolt shall have 5/8-11 [M16x2] threads as defined in ANSI B1.1 [ANSI B1.13M] for Class 2A [6g] tolerances. Bolt material shall conform to ASTM A307 Grade A [ASTM F 568M Class 4.6], with a tensile strength of 60 ksi [400 MPa] and yield strength of 36 ksi [240 MPa]. Material for corrosion-resistant bolts shall conform to ASTM A325 Type 3 [ASTM F 568M Class 8.8.3], with tensile strength of 120 ksi [830 MPa] and yield strength of 92 ksi [660 MPa]. This bolt material has corrosion resistance comparable to ASTM A588 steels. Metric zinc-coated bolt heads shall be marked as specified in ASTM F 568 Section 9 with the symbol "4.6."

Nuts shall have ANSI B1.1 Class 2B [ANSI B1.13M Class 6h] 5/8-11 [M16x2] threads. The geometry of the nuts, with the exception of the recess shown in the drawing, shall conform to ANSI B18.2.2 [ANSI B18.2.4.1M Style 1] for zinc-coated hex nuts (shown in drawing) and ANSI B18.2.2 [ANSI B18.2.4.6M] for heavy hex corrosion-resistant nuts (not shown in drawing). Material for zinc-coated nuts shall conform to the requirements of AASHTO M 291 (ASTM A 563) Grade A [AASHTO M 291M (ASTM A 563M) Class 5], and material for corrosion-resistant nuts shall conform to the requirements of AASHTO M 291 (ASTM A 563) Grade C3 [AASHTO M 291M (ASTM A 563M) Class 8S3].

When zinc-coated bolts and nuts are required, the coating shall conform to either AASHTO M 232 (ASTM A 153/A 153M) for Class C or AASHTO M 298 (ASTM B 695) for Class 50. Zinc-coated nuts shall be tapped over-size as specified in AASHTO M 291 (ASTM A 563) [AASHTO M 291M (ASTM A 563M)], except that a diametrical allowance of 0.020 inch [0.510 mm] shall be used instead of 0.016 inches [0.420 mm].


	Stress Area of	Min. Bolt
Designator	Threaded Bolt Shank	Tensile Strength
C	$(in^2 [mm^2])$	(kips [kN])
FBB01-05	0.226 [157.0]	13.6 [62.8]

Dimensional tolerances not shown or implied are intended to be those consistent with the proper functioning of the part, including its appearance and accepted manufacturing practices.

INTENDED USE

These bolts and nuts are used in numerous guardrail and median barrier designs.

GUARDRAIL BOLT AND RECESSED NUT					
FBB0	1-05				
SHEET NO.	DATE				
2 of 2	6/30/2005				

SPECIFICATIONS

Corrugated sheet steel beams shall conform to the current requirements of AASHTO M180. The section shall be manufactured from sheets with a nominal width of 483 mm. Guardrail RWM04a shall conform to AASHTO M180 Class A and RWM04b shall conform to Class B. Corrosion protection may be either Type II (zinc-coated) or Type IV (corrosion resistant steel). Corrosion resistant steel should conform to ASTM A606 for Type IV material and shall not be zinc-coated, painted or otherwise treated. Inertial properties are calculated for the whole cross-section without a reduction for the splice bolt holes.

Designator	Area (10 ³ mm ²)	I_x (10 ⁶ mm ⁴)	I _y (10 ⁶ mm ⁴)	S_x (10 ³ mm ³)	S_y (10^3 mm^3)	
RWM04a-b	1.3	1.0		23		

Dimensional tolerances not shown or implied are intended to be those consistent with the proper functioning of the part, including its appearance and accepted manufacturing practices.

INTENDED USE

This corrugated sheet steel beam is used as a rail element in transition systems STB02 and STB03 or when a reduced post spacing is desired in the SGR02, SGR04a-b, SGM02, and SGM04a-b.

4-SPACE W-BEAM GUARDRAIL

RWM04a-b

SHEET NO.	DATE
2 of 2	04-01-95

Table K.1. Summary of Strong Soil Test Results for Establishing Installation Procedure.

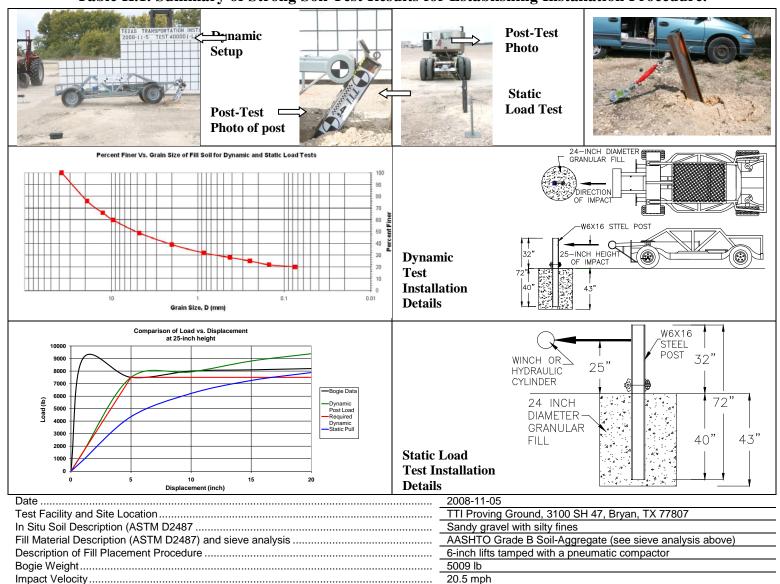
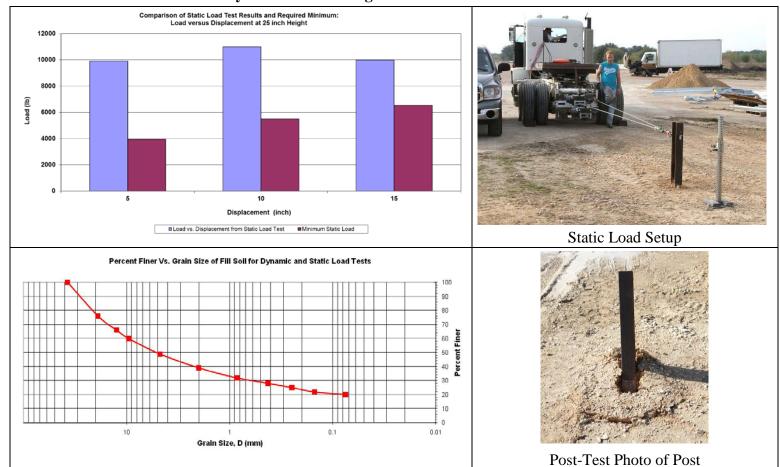



Table K.2. Test Day Static Soil Strength Documentation for Test No. 469468-12-1.

Date..... Test Facility and Site Location In Situ Soil Description (ASTM D2487) Fill Material Description (ASTM D2487) and sieve analysis .. AASHTO Grade B Soil-Aggregate (see sieve analysis) Description of Fill Placement Procedure

2018-08-21

TTI Proving Ground – 3100 SH 47, Bryan, Tx

Sandy gravel with silty fines

6-inch lifts tamped with a pneumatic compactor

K.3 VEHICLE PROPERTIES AND INFORMATION

Table K.3. Vehicle Properties for Test No. 469468-12-1.

Date:	2018-08-2	21	Test No.:	469468	3-12-1	_ VIN No.	: 1C6R	RGTODS	501729
Year: _	2013		Make:	RA	M	Mode	1	1500	2
Tire Size:	265/70	R 17			Tire I	nflation Pr	essure:	35	psi
Tread Typ	e: Highwa	ay				Ode	ometer: 17	5461	-
Note any	damage to t	the veh	icle prior to t	est: Non	е				
Denotes	s acceleron	neter lo	cation.		-	x-			
NOTES:	None			1		711			1
Engine Ty Engine Cl		liter		A M	r c				N T
Transmiss Au FV		 RWD	Manual	,	R P Q	+	7	EST INERTIAL C. M.	-
Optional E None	quipment:			1					B B
Dummy D Type: Mass: Seat Pos	No	Dummy (j 1 → 1-	F	п	L V Ls	-D-	
	u .					M FRONT		V M REAR	
Geometry A	r: inches 78.50	F	40.00	K	20.00	P	— c —	U	26.00
	74.00	Г_ G	28.80	·	30.00	-	30.50	–	30.00
	27.50	— Н	60.98	. <u> </u>	68.50	- ~ . R	18.00		60.98
D	44.00	l –	11.75	. _N —	68.00	s ·	13.00	– x	78.00
E 1	40.50	J	27.00	0	46.00	T	77.00		
A	nt Front	1	4.75 Cle	Wheel Well arance (Front)		6.00	Bottom Fr Height - F	ront	12.50
13)	nt Rear			Wheel Well earance (Rear)	·	9.25	Bottom Fr Height -	Rear	22.50
		C=237 ±13	inches; E=148 ±12						
GVWR Ra	3700		Mass: Ib	<u>Cui</u>	<u>rb</u> 2924	<u>l est</u>	<u>Inertial</u> 2840	Gros	ss Static 2840
Front	3900		M _{front}	5	2106		2178	i s.	2178
Back Total	6700	 3	M _{rear} M _{Total}	i s	5030	-	5018	·	5018
Mass Dist	1000000	_				Range for TIM ar	d GSM = 5000 lb ±1	10 lb)	ent or comment of the state of
lp	i ibudon.	LF:	1437	RF:	1403	LR:	1068	RR:	1110

Table K.4. Measurements of Vehicle Vertical CG for Test No. 469468-12-1.

Date:2018-0	08-21 T	est No.: _	469468-	12-1	VIN:	1C6RRG	TODS50172	9
Year:201	3	Make: _	DODO	SE	Model:	RA	M 1500	77
Body Style: Q	uad Cab				Mileage:	175461		*
Engine: 4.7 lite	er \	V-8		Trans	smission:	Automatic		
Fuel Level: E	mpty	Ball	ast: _114				(440	lb max)
Tire Pressure:	Front: 3	85 ps	i Rea	ır: <u>35</u>	psi S	Size: 265/70 F	<u> 17</u>	
Measured Veh	nicle Wei	ghts: (II	b)					
LF:	1437		RF:	1403		Front Axle	: 2840	
LR:	1068		RR:	1110		Rear Axle	2178	
Left:	2505		Right:	2513			1: 5018 ±110 lb allowed	
VVh	eel Base:	140.50	inches	Track: F:	68.50	inches R	: 68.00	inches
	148 ±12 inch	es allowed			Track = (F+F	R)/2 = 67 ±1.5 inch	es allowed	
Center of Grav	rity, SAE	J874 Sus	pension M	ethod				
X:	60.98	inches	Rear of F	ront Axle	(63 ±4 inche	s allowed)		
Y:	0.05	inches	Left -	Right +	of Vehicle	e Centerline		
Z :	28.80	inches	Above Gr	ound	(minumum 2	8.0 inches allowed)	
Hood Heig				Front	Bumper H	eight:	27.00 i	nches
		nches allowed						
Front Overhar	2004200 DAVIDOR	40.00 nches allowed	3	Rear	Bumper H	eight:	30.00 i	nches
Overall Leng	th:	227.50	inches					
	237 ±1	3 inches allow	ed					

Table K.5. Exterior Crush Measurements of Vehicle for Test No. 469468-12-1.

VIN No.:

Year:	2013 M	lake:	RAM	Model:	1500		
	VEH	IICLE CRU	JSH MEASURE	MENT SHE	ET^1		
		Con	nplete When Appli	able			
	End Damage	9		Side Damage			
	Undeformed end	width		Bowing: B1	X1		
Corner shift: A1				B2	X2		
		A2					
	End shift at frame (C	DC)	1	Bowing constant			

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

Cassifia		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L***	C ₁	C_2	C ₃	C ₄	C ₅	C ₆	±D
1	Front plane at bumper	15	16	44	10	9	8	16	10	3	0
2	Side plane at bumper	15	15	51	1.5	2	<u> </u>	3	13	15	+65
	Measurements recorded ✓ inches or □ mm										
	V menes ofmm										

¹Table taken from National Accident Sampling System (NASS).

2018-08-21

(check one)

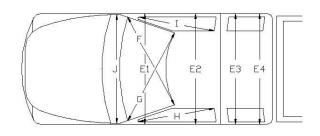
Test No.:

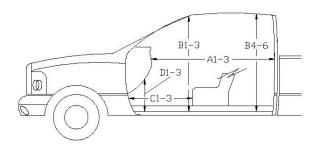
< 4 inches _____ ≥ 4 inches

Date:

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.


^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

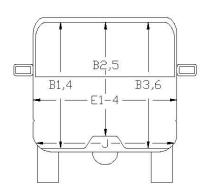

^{***}Measure and document on the vehicle diagram the location of the maximum crush.

Table K.6. Occupant Compartment Measurements of Vehicle for Test No. 469468-12-1.

Date: _	2018-08-21	Test No.: _	469468-12-1	VIN No.: _	1C6RRGTODS501729
Year:	2013	Make:	RAM	Model:	1500

^{*}Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

	Before	After (inches)	Differ.
A1	65.00	65.00	0.00
A2	63.00	63.00	0.00
А3	65.50	65.50	0.00
B1	45.00	45.00	0.00
B2	38.00	38.00	0.00
ВЗ	45.00	45.00	0.00
B4	39.50	39.50	0.00
B5	43.00	43.00	0.00
B6	39.50	39.50	0.00
C1	26.00	26.00	0.00
C2	0.00	0.00	0.00
С3	26.00	26.00	0.00
D1	11.00	11.00	0.00
D2	0.00	0.00	0.00
D3	11.50	11.50	0.00
E1	58.50	58.50	0.00
E2	63.50	63.50	0.00
E3	63.50	63.50	0.00
E4	63.50	63.50	0.00
F	59.00	59.00	0.00
G	59.00	59.00	0.00
Н	37.50	37.50	0.00
Ĩ	37.50	37.50	0.00
J*	25.00	25.00	0.00

K.4 SEQUENTIAL PHOTOGRAPHS

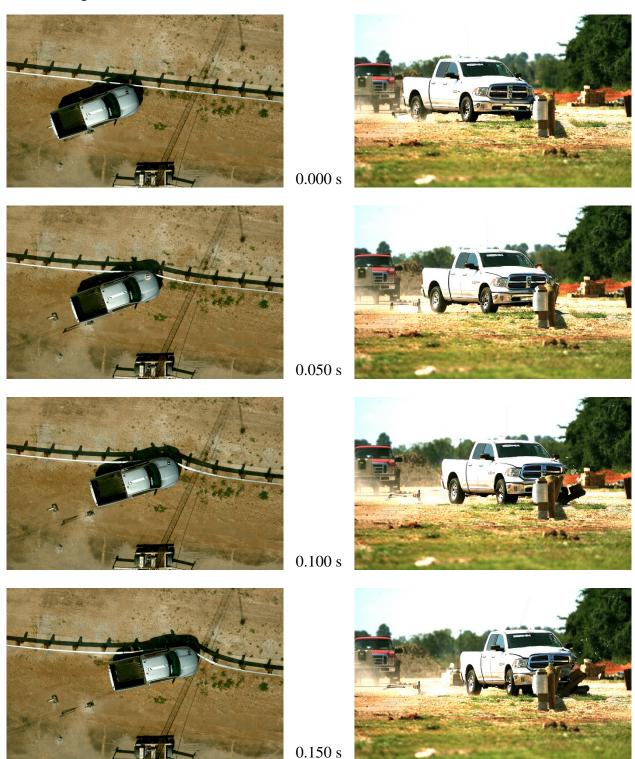


Figure K.1. Sequential Photographs for Test No. 469468-12-1 (Overhead and Frontal Views).

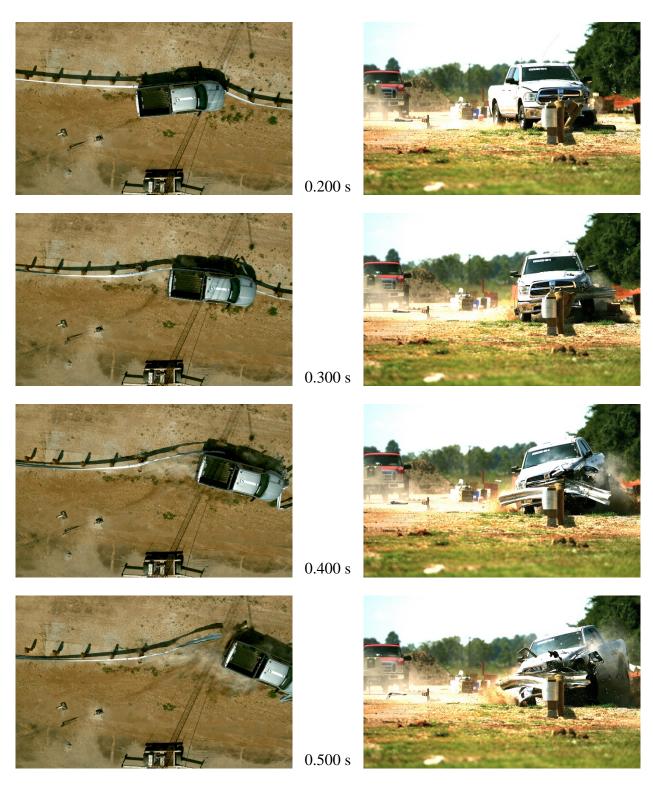


Figure K.1. Sequential Photographs for Test No. 469468-12-1 (Overhead and Frontal Views) (Continued).

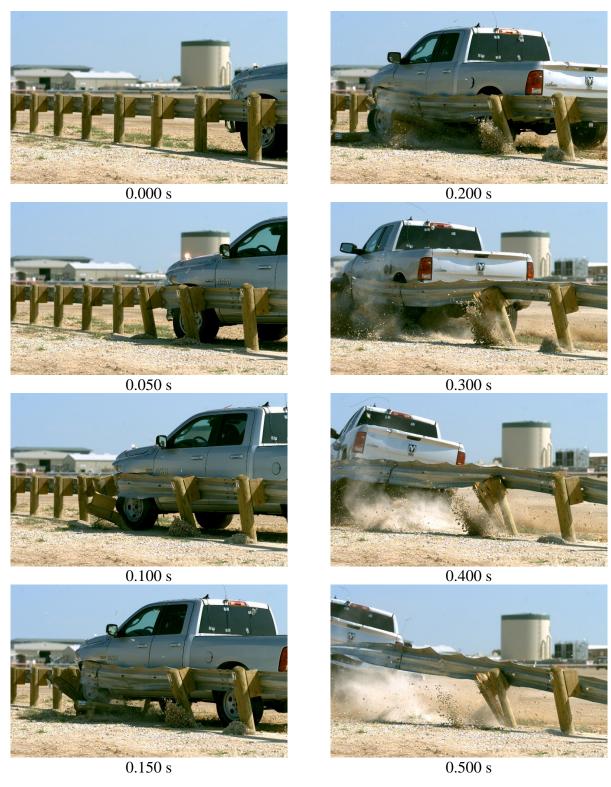


Figure K.2. Sequential Photographs for Test No. 469468-12-1 (Rear View).

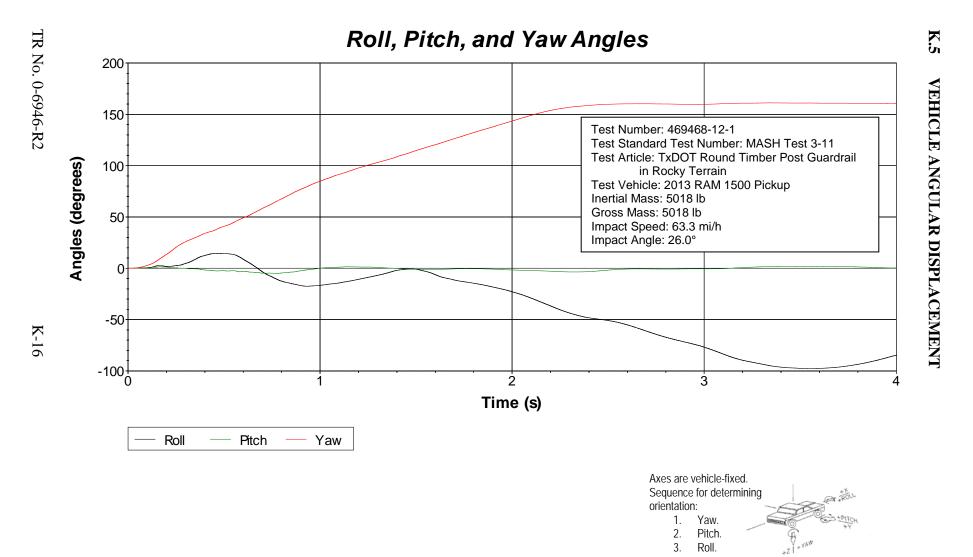


Figure K.3. Vehicle Angular Displacements for Test No. 469468-12-1.

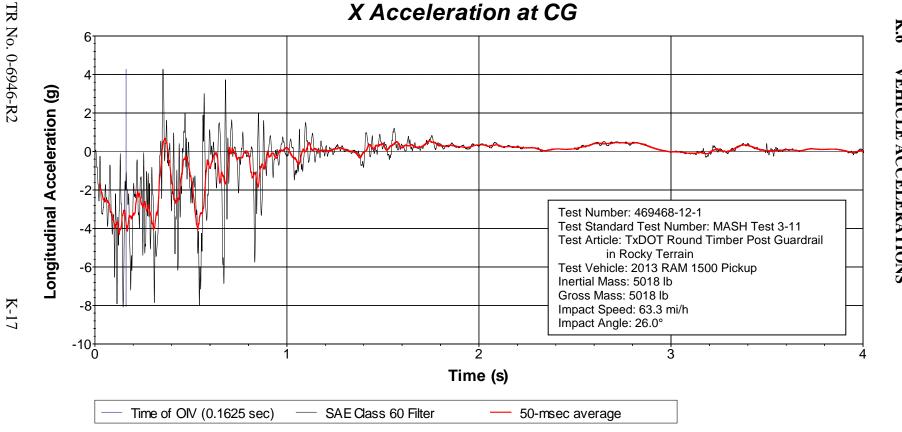


Figure K.4. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-12-1 (Accelerometer Located at Center of Gravity).

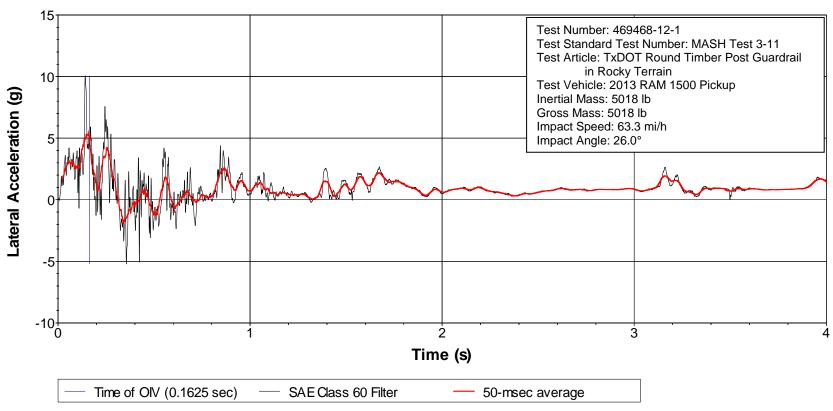


Figure K.5. Vehicle Lateral Accelerometer Trace for Test No. 469468-12-1 (Accelerometer Located at Center of Gravity).

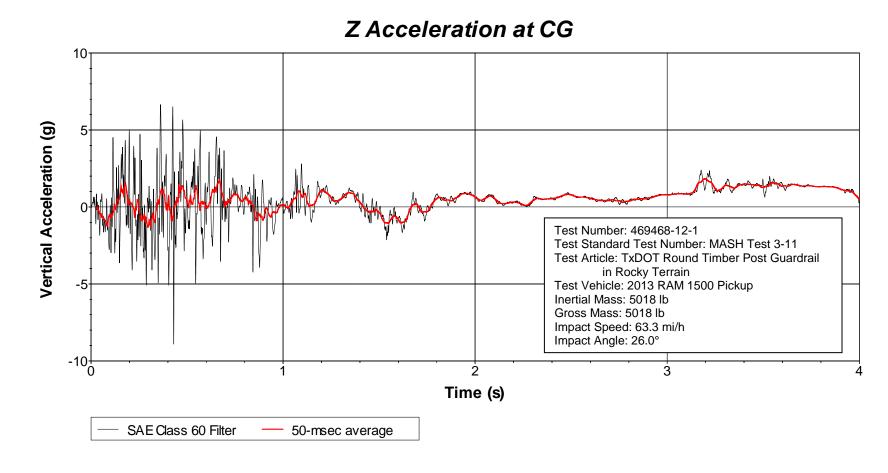


Figure K.6. Vehicle Vertical Accelerometer Trace for Test No. 469468-12-1 (Accelerometer Located at Center of Gravity).

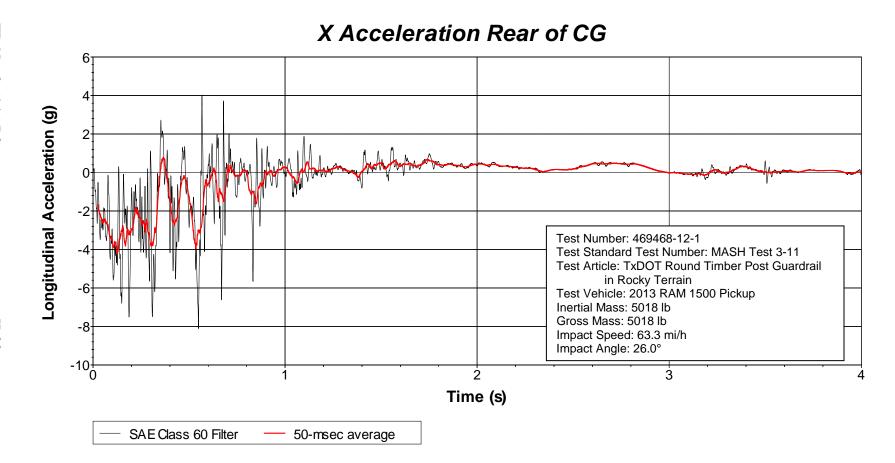


Figure K.7. Vehicle Longitudinal Accelerometer Trace for Test No. 469468-12-1 (Accelerometer Located Rear of Center of Gravity).

Y Acceleration Rear of CG

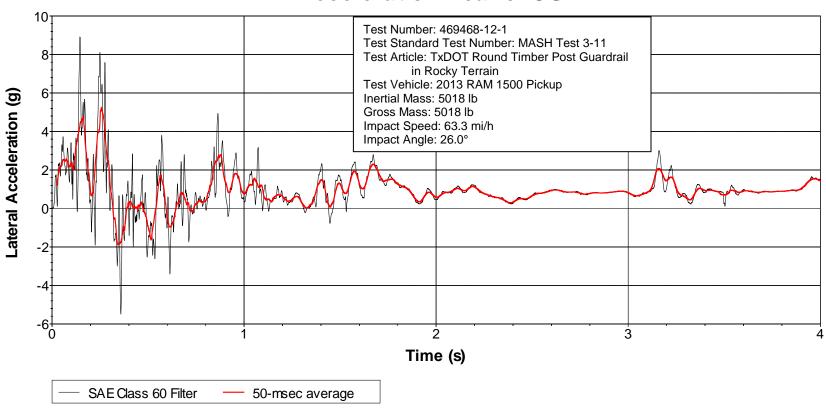


Figure K.8. Vehicle Lateral Accelerometer Trace for Test No. 469468-12-1 (Accelerometer Located Rear of Center of Gravity).

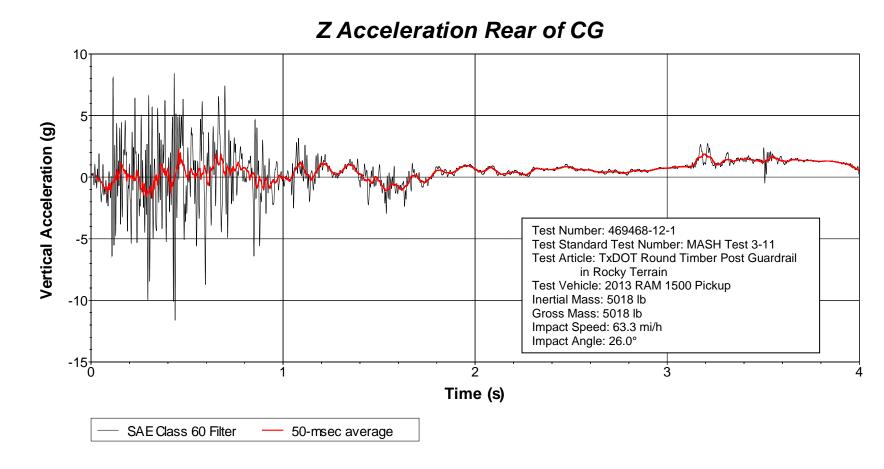


Figure K.9. Vehicle Vertical Accelerometer Trace for Test No. 469468-12-1 (Accelerometer Located Rear of Center of Gravity).