Skip to main content

Advertisement

Log in

A multiscale framework for defining homeostasis in distal vascular trees: applications to the pulmonary circulation

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Pulmonary arteries constitute a low-pressure network of vessels, often characterized as a bifurcating tree with heterogeneous vessel mechanics. Understanding the vascular complexity and establishing homeostasis is important to study diseases such as pulmonary arterial hypertension (PAH). The onset and early progression of PAH can be traced to changes in the morphometry and structure of the distal vasculature. Coupling hemodynamics with vessel wall growth and remodeling (G&R) is crucial for understanding pathology at distal vasculature. Accordingly, the goal of this study is to provide a multiscale modeling framework that embeds the essential features of arterial wall constituents coupled with the hemodynamics within an arterial network characterized by an extension of Murray’s law. This framework will be used to establish the homeostatic baseline characteristics of a pulmonary arterial tree, including important parameters such as vessel radius, wall thickness and shear stress. To define the vascular homeostasis and hemodynamics in the tree, we consider two timescales: a cardiac cycle and a longer period of vascular adaptations. An iterative homeostatic optimization, which integrates a metabolic cost function minimization, the stress equilibrium, and hemodynamics, is performed at the slow timescale. In the fast timescale, the pulsatile blood flow dynamics is described by a Womersley's deformable wall analytical solution. Illustrative examples for symmetric and asymmetric trees are presented that provide baseline characteristics for the normal pulmonary arterial vasculature. The results are compared with diverse literature data on morphometry, structure, and mechanics of pulmonary arteries. The developed framework demonstrates a potential for advanced parametric studies and future G&R and hemodynamics modeling of PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Download references

Funding

The funding was provided by National Institutes of Health (Grants No. U01-HL135842 and R01-HL158723).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Gharahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 917 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharahi, H., Filonova, V., Mullagura, H.N. et al. A multiscale framework for defining homeostasis in distal vascular trees: applications to the pulmonary circulation. Biomech Model Mechanobiol 22, 971–986 (2023). https://doi.org/10.1007/s10237-023-01693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-023-01693-7

Keywords

Navigation