
Handling Elephant Flow on a DPDK-Based
Load Balancer
CHENMIN SUN, YIPENG WANG, HONGJUN NI
INTEL

2

Agenda

• HDSLB Introduction

• Problem Statement

• Innovative Algorithm

• DLB-assisted Distribution

• Key Takeaway

• Q & A

3

HDSLB

HDSLB: High Density Scalable Load Balancer

User

RS

User

RS RS

Performance Requirements for Single Node

01

02

100M Level Concurrent Conn

150Mpps/200Gbps Throughput

03 Single Session 10Mpps Level

HDSLB Introduction

4

Intel Processors and NIC Packaged Solution

Handle 100M Level Concurrent Conn

Handle 150Mpps Level Throughput

Handle 10Mpps Level Elephant Flow

Fully optimized

Address the business challenges for large concurrent conns

Address the business challenge of huge traffic

Address the business challenge of Elephant Flow

HDSLB Addressing These Challenges With Industry Leading Performance

Up to 3x higher performance

Scaling for DNAT and SNAT

HDSLB Highlights

5

Problem Statement

NIC

queue

queue

queue

queue

RSS

cor
e

cor
e

cor
e

cor
e

queue NIC

• The load balancer itself processes flows using multiple cores.
• NIC uses RSS to distribute flows among cores.
• However, flows are not equal, 10% elephant (heavy) flows may take 90% of total traffic.
• The small number of elephant flows may not be balanced by RSS.

heavy flow Light flow

6

Problem Statement (Cont.)

• Need to treat the elephant flows differently than mice flows.
o Huge volume of traffic from an elephant flow could exceed t single core’s processing capacity.
o Heavy flows and mice flows could impact each other from QoS perspective.

• What we propose to solve the issues.
o Step 1: An Efficient heavy hitter detection Algorithm.
o Step 2: Distributes a single elephant flow to multiple cores for parallel processing.
o Step 3: Reorders the paralleled flow among multiple cores.

7

Key Components of Solution

• Heavy hitter detection algorithm
o Based on the state-of-the-art heavy flow detection algorithm - Nitrosketch [1].
o Implemented and optimized for Intel Platform.

• Intel® Dynamic Load Balancer (DLB)
• DLB is Intel’s new hardware accelerator for queue management and load balancing.
• We use DLB to distribute heavy flow among multiple cores.

• The processing pipeline of HDSLB

[1] Zaoxing Liu, et al. Nitrosketch: robust and general sketch-based monitoring in software switches (SIGCOMM '19)

8

Heavy Hitter Detection Algorithm

Counter arrays
Hash table Min-heap

Sampled
packets Query

heavy
hitters

• The algorithm profiles and reports heavy flows with their estimated packet counts.
• The data structure is small enough to reside in local cache.
• Only a small percentage of total packets needs to be sampled (e.g. 1%, configurable).
• Uses a hash table to optimize the heap lookup time.
• Collaborating with Professor Liu, the author of Nitrosketch to further improve the algorithm.

9

Intel® DLB

• Intel® DLB is a hardware
accelerator available in Intel’s
latest processor
• Dynamic Load Balancing
• Exposes as a PCIe device
• Acts as an event-dev in DPDK
• A variety of working modes

• We use the Intel® DLB to
distribute heavy flows among
multiple cores.

Enqueue
for LB

Dequeue for
Parallel Processing

Enqueue for
Reordering

10

Mice Flows Processing

11

Elephant Flow Processing – Main Core

12

Elephant Flow Processing – Worker Cores

Redirect to
producer

Enqueue
for LB

Each worker got
partial traffic

Dequeue
for Reorder

Ordered
packets

13

Performance Comparison

14

Key Takeaway

• Distributing elephant flows to multiple cores is essential.

• Implements flow detection and distribution mechanism in HDSLB.
• Improved state-of-the-art elephant flow detection algorithm
• Leverages Intel® DLB technology to further reduce overhead.

• Other learnings
• Leverages dedicated packet pools to avoid side effects on other workers.
• Prefetch/CLDEMOTE instructions to hide the cache misses.
• Leverages NIC offloading capability to accelerate packet processing.

15

Acknowledgement

• Jay Vincent @ Intel

• Pan Zhang @ Intel

• Mrittika Ganguli @ Intel

• Rahul R Shah @ Intel

• Niall McDonnell @ Intel

• Pravin Pathak @ Intel

• Sameh Gobriel @ Intel labs

• Ren Wang @ Intel Labs

• Charlie Tai @ Intel Labs

• Alan (Zaoxing) Liu @ Boston University

16

Q & A

Thank You!
Q & A

