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Abstract

This thesis proposes a novel approach to attribute clustering. It exploits the strength of

semi-supervised learning to improve the quality of attribute clustering particularly when

labeled data is limited. The significance of this work derives in part from the broad, and

increasingly important, usage of attribute clustering to address outstanding problems

within the machine learning community. This form of clustering has also been shown to

have strong practical applications, being usable in heavyweight industrial applications.

Although researchers have focused on supervised and unsupervised attribute clus-

tering in recent years, semi-supervised attribute clustering has not received substantial

attention. In this research, we propose an innovative two step iterative semi-supervised

attribute clustering framework. This new framework, in each iteration, uses the result

of attribute clustering to improve a classifier. It then uses the classifier to augment the

training data used by attribute clustering in next iteration. This iterative framework

outputs an improved classifier and attribute clustering at the same time. It gives more

accurate clusters of attributes which better fit the real relations between attributes.

In this study we proposed two new usages for attribute clustering to improve clas-

sification: solving the automatic view definition problem for multi-view learning and

improving missing attribute-value handling at induction and prediction time. The ap-

plication of these two new usages of attribute clustering in our proposed semi-supervised

attribute clustering is evaluated using real world data sets from different domains.
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A.3 Average AUC calculated by Friedman’s and Nemenyi test On Microar-

ray data sets (Setting:10 labeled instances, 50 attributes, Näıve Bayes)111
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Chapter 1

Introduction

This thesis proposes a novel iterative approach to attribute clustering and semi-supervised

learning. This iterative approach exploits the strength of semi-supervised classification

to gradually improve the quality of attribute clustering particularly when labeled data

is limited. It also applies the result of attribute clustering to improve the classification

results iteratively. The significance of this work derives in part from the broad, and

increasingly important, usage of attribute clustering to address outstanding problems

within the machine learning community. For example, attribute clustering is commonly

used with Big Data to extract relations between attributes, the key element for extract-

ing information (Kim et al., 2013). This form of clustering has also been shown to have

strong practical applications, being usable in heavyweight industrial applications; an

example of which is provided in section 1.2.

Many knowledge representation methods have been proposed and used so far. Among

the most popular in machine learning and data mining communities are semantic net-

works (Simmons, 1963; Quillian, 1963), frames (Winograd, 1975; Minsky, 1974), proposi-

tional logic (Mendelson, 1964) and attribute-value systems (Pawlak, 1991; Or lowska and

Pawlak, 1984). All these knowledge representation systems describe objects and their

properties. This is most clearly seen in an attribute-value system. This, perhaps, leads

to it being the most popular knowledge representation model used in machine learning

and knowledge discovery problems (Ziarko and Shan, 1996). As the Encyclopedia of Ma-

chine Learning describes it (Sammut and Webb, 2011): attributes are defined as different

properties of things, in other words, ways that humans might describe things; a value

is what we might assign to an attribute for a given thing that we try to describe in an

instance. The data which we use in machine learning tasks is a set of such instances.

1



Introduction 2

Label or class is an attribute which represents a common characteristic between some of

the instances. It is more often the one we want to predict its value for new instances. If

the label or class is included in the data as one of the attributes we call the data labeled

and the learning task supervised.

Although an attribute-value system is the most common knowledge representation

used in machine learning, there are many problems with this form of representation some

of which this research addresses. A modern problem, generated by recent developments in

digital and mobile communication techniques (Rainie and Wellman, 2012), is ‘Big Data’.

It refers to data sets so large and complex that they are beyond the ability of commonly

used algorithms and softwares to process (Snijders et al., 2012). Laney (2001) formalized

this challenging problem for the first time by defining three dimensions: high volume,

high velocity and hight variety. Later, Douglas (2012) updated its definition as follows

“Big Data is high volume, high velocity, and/or high variety information assets that

require new forms of processing to enable enhanced decision making, insight discovery

and process optimization”. Big Data may have a large number of attributes in a learning

task, called the curse of dimensionality (Elder IV and Pregibon, 1996), which causes

problems for learning algorithms. This is one of the major problems with Big Data

(Matloff, 2013). Following are some famous quotes about curse of dimensionality:

• Elder IV and Pregibon (1996) said “methodological intuition gained from experi-

ence in low dimensions is thoroughly out of place in high-D spaces - a phenomenon

known as the ‘curse of dimensionality’ ”.

• Yao et al. (2006) mentioned “It is a crucial issue to select the most suitable features

or properties of the objects in a data set in the machine learning process”.

• Mining (2008) said “Sometimes too much information can reduce the effectiveness

of data mining. Some of the columns of data attributes assembled for building and

testing a model may not contribute meaningful information to the model. Some

may actually detract from the quality and accuracy of the model”.

• Chizi and Maimon (2010) indicated that “Dimensionality (i.e., the number of data

set attributes or groups of attributes) constitutes a serious obstacle to the efficiency

of most Data Mining algorithms. This obstacle is sometimes known as the ’curse

of dimensionality’ ”.

Big Data includes raw information which is not self-explanatory and one of the ways to

apply commonly used conventional algorithms is to use new methods to interpret or clean
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it using a filter. Bollier and Firestone (2010) said “As a large mass of raw information, Big

Data is not self-explanatory. And yet the specific methodologies for interpreting the data

are open to all sorts of philosophical debate”. An important factor in this interpretation

or cleaning is to use relations between attributes. Boyd and Crawford (2011) mentioned

“Big Data is notable not because of its size, but because of its relationality to other

data. Due to efforts to mine and aggregate data, Big Data is fundamentally networked.

Its value comes from the patterns that can be derived by making connections between

pieces of data, about an individual, about individuals in relation to others, about groups

of people, or simply about the structure of information itself”. Kim et al. (2013) indicated

that “Primary goal of Big Data is extracting value from the large amount of data.

Attribute relevance in Big Data is a key element for extracting information”. Many recent

approaches attempt to handle the large number of attributes by finding the relations

between them. Examples of the use of such relationships include feature selection (Tan

et al., 2014; Hoi et al., 2012; Maji, 2012, 2011; Au et al., 2005; Li and Zha, 2002; Zhu et al.,

2003), feature extraction (Jiang et al., 2011), feature replacement (Hong et al., 2009b),

data summarization (Mampaey and Vreeken, 2010), subspace clustering (Niu et al., 2008)

and topic identification (Blei et al., 2003). Many of these approaches use grouping of

attributes in sets of similar or related ones, called attribute clustering, which is done using

a similarity, correlation or information measure between attributes. Attribute clustering

is mainly used in data preparation and filtering to refine the data prior to applying

learning algorithms.

It is important to realize that attribute clustering is different from data clustering.

The latter clusters similar instances and is an unsupervised process (there is no class

definition). Attribute clustering, on the other hand, finds clusters of similar or related

attributes. The data used in this process may be supervised or unsupervised (we may

have the class label for each instance in the data set). The conventional data clustering

methods and similarity measures are not useful for clustering attributes. Therefore, many

alternative measures, like mutual information between attributes, have replaced them.

Also conventional clustering algorithms could only be used for unsupervised attribute

clustering. For supervised attribute clustering we need new approaches which consider

the label of instances. To solve this problem many new approaches have been recently

proposed.

In principle, attribute clustering could be achieved using

• supervised methods
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• unsupervised methods

• semi-supervised methods

As we will see in the Related Work chapter, most of the work in this research area is

concentrated on supervised and unsupervised attribute clustering. Supervised attribute

clustering uses similarity measures which consider the class label of the training instances

when looking for the relationship between attributes. These measures are more accurate

compared to unsupervised ones and extract patterns which could not be recognized

by the latter. Therefore, supervised attribute clustering will lead to better clusters of

attributes which better fit the data. However, in many real world applications, labeled

data are rare due to labeling costs. It is not possible to find clusters using a supervised

method, because the small training set is insufficient to find relations between attributes.

Semi-supervised attribute clustering is one answer, using the small labeled training set

with a large unlabeled data set. It leads to finding clusters which better capture the

important relationships between attributes. There exist three simple semi-supervised

attribute clustering frameworks:

• One uses a semi-supervised classifier to add more labeled instances to the training

set before performing attribute clustering. Problems will arise if the classifier is not

accurate enough to add more labeled instances. Additionally, the classifier could

be improved using the result of attribute clustering in an iterative framework.

• The second uses background knowledge in the form of some constraints on the

clusters, together with unlabeled data. These constraints include attributes that

must be clustered together and those that shouldn’t. However, in most real world

problems supervised information is in form of labeled data so this framework could

not be applied.

• The third combines a supervised similarity measure with an unsupervised one used

in the attribute clustering process. Yet the unsupervised similarity measure is not

as accurate as supervised one and it will degrade performance.

None of these proposed semi-supervised attribute clustering methods is effective. We

address this problem by proposing a new semi-supervised attribute clustering framework.

In the rest of this chapter we show how researchers have chosen to use various su-

pervised and unsupervised attribute clustering methods to solve different problems. We
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show there has always been a need for more accurate attribute clustering methods, es-

pecially when we have a small training set of high dimensions. We address this need by

proposing a new semi-supervised attribute clustering method. This work will not only

be effective as a semi-supervised clustering approach but also as a novel semi-supervised

classifier.

1.1 Attribute Clustering

In this section, we illustrate attribute clustering and its applications in machine learning

literature using two real practical attribute clustering examples, applied to a text corpus.

Then we use those examples to illustrate different applications of attribute clustering.

An industrial application is also presented to indicate how useful attribute clustering

could be in real world problems.

1.1.1 Attribute Clustering Applied to Improve Text Classifica-

tion

In this section, a simple attribute clustering example is illustrated using a data set

represented as a frequency based bag of words (la1s.wc.arff), available at the Weka (Hall

et al., 2009) data set website1. The data has two classes, financial and sport.

In the first example, supervised mutual information is used as a similarity measure

to find mutually related words and then to define clusters based on them. The aim

of this example is to illustrate and interpret the relations between attributes extracted

using such a measure. Figure 1.1 illustrates these relations. The first point of interest is

that the measure has separated the attributes into two clusters based on the class: one

includes all the attributes (words) which are related to sport and the other includes all

those which are related to financial. As illustrated in figure 1.1 win, won, team, season,

championship, victory, play, player, football, coach, game, night, sport, basketball, score

and athlete are clustered together. Another cluster includes invest, company, market, inc,

stock, corporate, secure, sale, acquisition, firm, president, chairman, industry, cooperate,

story, financial, base, billion, million, invest. The former includes the words which are

related to the concept of sport while the latter contains words which are more related

to financial concept. For example win, won, victory and championship are related to

the concept of competition in sport games while invest, stock and sale are related to

1This data is available at http://www.cs.waikato.ac.nz/ml/weka/datasets.html
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Figure 1.1: An attribute clustering example for a text corpus
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the financial aspects of market. Each cluster contains meaningful words that are closely

related to each other and the clusters seem to be conditionally independent given the

class. No relation found between the words from the two groups. 14 words out of 50

are not clustered due to the low mutual information with other attributes. This may

happen either when the word is not really related to any of the clusters or when there is

not enough training instances available to obtain the mutual information.

In the second example the result of supervised and unsupervised attribute clustering

are compared. Conditional correlation considers the class value of instances when cal-

culating the correlation between every two attributes and it is a supervised similarity

measure. We perform attribute clustering twice, on the same data set, using conditional

correlation and standard correlation respectively as similarity measures. This will result

in clusters of highly correlated attributes. Table 1.1 shows the result of supervised and

unsupervised attribute clustering. Comparing these two tables reveals that the super-

vised attribute clustering clustered all the attributes while the unsupervised one was not

able to find relations for 26 of the attributes and did not cluster them. As an example,

the supervised attribute clustering found vice and president are highly correlated so they

are clustered together while the unsupervised attribute clustering did not identify any re-

lation between these two attributes. As another example, supervised attribute clustering

clustered company, corporation and product together while the unsupervised attribute

clustering did not cluster corporation and product.

Correlation between two attributes, two words in this example, could be interpreted

as the following: if two words are highly correlated, then if one of them shows up in a

document, it is more likely to see the other one in the same document. In other words,

these words show up most of the time together in documents. The power of supervised

attribute clustering comes from considering the class of documents when calculating

the correlation between attributes. It is possible to have two attributes which are only

correlated in instances of one of the classes. Supervised conditional correlation is able

to find such relations while unsupervised correlation will consider such attributes not

correlated.

1.1.2 Use of Attribute Clustering in Learning Tasks

Clustering attributes in machine learning tasks, specifically the ones which suffer from

curse of dimensionality, has recently been of keen interest to researchers in machine

learning. It is commonly used to extract relations between attributes, the key element
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Table 1.1: An attribute clustering example for a text corpus, using A) conditional cor-

relation B) standard correlation, as similarity measures.

A)

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 Cluster7

Win President Game Team Company Industry Inc

Won Vice Play Coach Corporation Market Invest

Beat Score Season Product Sale Financial

Champion Victory Player Price Stock

Final Basketball League Secure

Story Football Acquisition

Lead Firm

Night

Shot Cluster8 Cluster9 Cluster10

Minute Million Athlete Chairman

Left Billion Sport Co

Corporate School Amp

Profit

B)

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 Cluster7 Cluster8

Win President Game Team Company Sport Player Acquisition

Won Chairman Score Coach Industry Athlete Play Invest

Victory Football Firm Season Stock

Champion Market Inc
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for extracting information from Big Data (Kim et al., 2013). Many attribute clustering

methods have been developed and many usages of these methods have been studied

and published. Most of these applications propose solutions for high-dimensional tasks.

We will use the example proposed in the previous section to illustrate applications of

attribute clustering in some learning tasks. These applications include

• Attribute reduction (John et al., 1994; Kohavi and Frasca, 1994): There

are many high-dimensional learning tasks with thousands of attributes. In such

data sets, some redundant attributes may exist. Attribute reduction is a solution

for reducing the number of attributes. Feature selection and feature extraction are

two alternatives. In text classification, attribute clustering is an effective method

for attribute reduction (Jiang et al., 2011). The idea is to combine words into a set

of clusters, whose attributes are semantically related to each other. Each cluster

can be represented by a new single attribute thus reducing the dimensionality

drastically. Each cluster could be represented by selecting an existing attribute or

by creating a new one for each group like a mean value.

– Feature selection (Kira and Rendell, 1992; Liu and Motoda, 1998a):

Feature selection is a process of selecting relevant features and removing irrel-

evant and redundant ones. This represents the data in a simpler way which

may not only reduce the execution time but also make the results easier to

interpret. We can use the following hypothesis, “Good feature subsets contain

features highly correlated with the class, yet uncorrelated with each other”,

presented in Hall (1999), to cluster attributes with high correlation together

and then select an attributes or more from each cluster as new reduced at-

tribute set.

Applying feature selection using attribute clustering in the example given in

section 1.1.1, we cluster words which have similar meanings or are closely re-

lated to each other in the same clusters. These are words which are more

likely to appear in the same documents. For feature selection we would se-

lect one attribute from each cluster and that attribute will represent all the

attributes in that cluster. For example, we would select “president” from the

cluster containing “president” and “chairman” or from the cluster contain-

ing “game” and “score” the attribute “game” will be selected. The learning

methods would be applied on the set of all selected attributes. Usually we use

information measures to rank the attributes in each cluster and then we select
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Figure 1.2: Selected attributes for the text classification example

some of those attributes in each cluster which give us much more information.

A possible selected attribute set as the result would be the set of attributes

not crossed with a red line in figure 1.2.

As a practical example feature selection is used in classification of microarray

(Maji, 2012, 2011; Li and Zha, 2002) and gene expression (Au et al., 2005)

data which suffer from curse of dimensionality. In such data sets genes are

the attributes and there are a large number of genes but a small number of

samples. An example is the Healthy Controls data set (Van der Pouw Kraan

et al., 2007) which has almost 26000 genes as attributes but only 50 samples.

In such tasks feature selection based on attribute clustering is used to identify

a reduced set of the most relevant genes.

As another example Zhu et al. (2003) select features based on attribute clus-

tering to provide a small feature set for indexing and representing cases in

case-based reasoning. Retrieving similar cases using these representative fea-

tures reduced the execution time.

– Feature extraction (Liu and Motoda, 1998b): For feature extraction,

we would create a new feature for each cluster. These new features are ex-

tracted by summing up the features in each cluster, by adding the number of

appearances of all the words in the same cluster, for each document.

In our text classification example the process would be similar to feature se-
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lection but instead of selecting a representative attribute for each cluster we

create a new attribute for each. For example for the cluster containing “Pres-

ident” and “Chairman” we create a new attribute called “Boss” which will

represent that the word “President” or “Chairman” exists in the correspond-

ing document.

As a practical example, Jiang et al. (2011) used attribute clustering to reduce

features of a high-dimensional text classification problem by grouping similar

words into the same clusters and then extracting one feature for each cluster.

• Feature replacement: Attribute clustering clusters attributes with high simi-

larity into the same cluster. In feature selection we select one of the attributes

in a cluster to represent that cluster. Hong et al. (2009b) replaced any selected

attribute with a missing value by an attribute within the same cluster and calls

this approach feature replacement.

In our text classification problem, suppose that “president” is selected as repre-

sentative attribute from the cluster containing “president” and “chairman”. A

classifier is trained using all the representative attributes. If a new instance to

be classified has missing attribute value in the attribute “president”, we would se-

lect “chairman” as another representative attribute from the corresponding cluster.

Then we would train a new classifier using the new set of representative attributes

and classify the instance.

• Data summarization: When exploring the data extracted from a new domain,

it is quite hard to get a good first impression. Attribute labels will convey some

information about the content. However, these do not provide a comprehensive

overview of what is in the data set. Mampaey and Vreeken (2010) proposed a solu-

tion to this problem using attribute clustering that provides high-quality summary

overviews for binary transaction data. The outcome provides insight into which

attributes are most correlated and in what contexts these occur.

In our text classification example, given in section 1.1.1, when mutual information

is used as similarity measure, attribute clustering tells us that there exist two

clusters representing two separate “financial” and “sport” views in our data set

and how attributes within each cluster are related.

• Subspace clustering: Subspace clustering is a strategy that reduces the com-

plexity of clustering high-dimensional data. It attempts to find clusters within
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subspace of the data sets. It is useful when dimensionality increases and the data

become increasingly sparse and clustering of the data using all the feature space is

not possible.

In our text example with two separate clusters (views) of attributes, to find the

clusters in the data we would use one view as the attribute set to cluster the data

instead of using the whole feature set.

As a practical example, Niu et al. (2008) used attribute clustering to propose a

fast algorithm of subspace clustering which overcomes the limitations of existing

subspace clustering methods. These limitations are

– the algorithms typically scale exponentially with the data dimensionality or

the subspace dimensionality of clusters.

– the clustering results are often sensitive to input parameters.

• Topic identification: A topic model is a statistical model for discovering the

implicit topic of a collection of documents in machine learning and natural language

processing. Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is one of the

popular methods applied to textual data collections for topic identification. It uses

attribute clustering to find the related words (attributes) and creates the topics

(clusters). Then, based on the statistics of the words in each document it captures

what the topics might be and what each document’s balance of topics is.

In our text example on page 5, attribute clustering separated the words into two

clusters: one includes all the words which are related to sport and the other includes

all those which are related to financial. For each document the statistics of the

words related to a specific topic shows how much that document is related to that

topic.

1.1.3 Definition

According to Au et al. (2005), Attribute clustering can be defined as the partitioning of

a set A of attributes A = {A1, A2, ..., AM} in a machine learning task, into a collection

CA = {C1, C2, ..., CK} of mutually disjoint subsets of correlated features Ci of A, where

k is the number of k clusters of attributes, such that C1 ∪ C2 ∪ ... ∪ Ck = A,Ci 6= φ,

and Ci ∩ Cj = φ for i 6= j. Many different correlation measures, capturing similarity or

dissimilarity, measures of relatedness and information measure are used, based on the
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application, to form the clusters. Some of these measures are unsupervised but some are

supervised. The supervised ones consider the class label of samples while they compute

the similarity of attributes. These various measures and their applications are reviewed

in the Related Work chapter.

1.2 Example of Attribute Clustering

There are many industrial applications and examples of attribute clustering in machine

learning literature. Here we indicate an industrial example which shows application

of attribute clustering to data preparation and attribute reduction for power system

problems.

1.2.1 Data Preparation for Power System Problems

In this part we discuss work done by Louis Wehenkel in his PhD thesis (Wehenkel,

1994). He used attribute clustering for data preparation and more specifically attribute

reduction. He applied it to the problem of preventive transient stability assessment

applied to various power system problems like the 735kV system of Hydro-Quebec.

He was faced with a large number of attributes. Thus, there is a need to reduce this

information. This is a typical attribute clustering problem, which he has solved using

hierarchical agglomerative attribute clustering (Wehenkel, 1994).

In such clustering, each observation (here observations are attributes) starts in its own

cluster, and pairs of clusters are merged as one moves up the hierarchy. At each step of

the algorithm it proceeds by identifying the two most similar clusters and merging them

to form a single new cluster. This process continues until all attributes have been merged

into a single cluster. The resulting hierarchy may be represented by a dendrogram like

the example shown in figure 1.3 which shows graphically the hierarchical groupings of

attributes along with the cluster (dis)similarities. This is particularly interesting for the

analysis of attribute similarities, when the number of attributes to cluster is small.

To illustrate this problem, he has clustered 14 power flow and 3 power generation at-

tributes. The similarity among the attributes was defined as their correlation coefficient.

It is estimated for each pair of attributes. The similarity of two subsets of attributes was

defined as the minimum similarity of pairs of attributes of the two subsets. It is inter-

esting to know that, in results, there exist a contextual relation between the attributes

inside each of the clusters. One cluster of attributes shows that all its attributes corre-
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Figure 1.3: A hierarchical attribute clustering example

spond either to generations of the LaGrande power plant or to North to South power

flows in the James Bay corridor. Similarly, attributes in another cluster are all related

to lines within the Quebec to Montreal corridor, which are shared by the North to South

and the West to East corridors of the Hydro-Quebec system. As we see in this exam-

ple, the clustering analysis of attributes allows us to identify groups of attributes which

share the same physical information. In the context of power system security problems

this is very frequent for variables such as power flows or voltages. A simple dendrogram

may then be drawn to suggest which groups of such attributes may be represented by

a single prototype, e.g. a mean value or a representing attribute from the same group.

In practice, this may lead to more efficient and more robust classification results. This

method was found to provide a substantial reduction in dimensionality in several other

power system security applications.

1.3 Proposed Work

Clustering attributes in tasks, specifically the ones which suffer from curse of dimen-

sionality, has recently been of keen interest to researchers in machine learning. Many

supervised and unsupervised attribute clustering methods have been developed and many

applications of these methods have been studied and published so far. The lack of an

effective semi-supervised attribute clustering method motivated us to propose a new

two-step iterative semi-supervised attribute clustering approach.
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Figure 1.4: Iterative semi-supervised attribute clustering framework using supervised

classifier and supervised distance measure.

1.3.1 Proposed Framework

This framework is illustrated in figure 1.4. In each iteration of this framework, the results

of attribute clustering will be used to improve a classifier and then the improved classifier

will be used to improve attribute clustering by augmenting its labeled training set, with

the most confident new labeled instances. The improvement of the classifier could be

done by using attribute clustering in different ways. For example, it could be done

by using attribute clustering for defining views for a multi-view classifier or improving

missing value handling methods in the classifier. All other usages of attribute clustering,

for improving a classifier, could be applied to this framework.

1.3.2 Research Contributions

The proposed framework in this thesis has impact in two machine learning research

areas: attribute clustering and data classification. It is a contribution to attribute clus-

tering by proposing an effective semi-supervised attribute clustering framework. The

proposed approach is able to extract hidden relations between attributes, using only

small labeled training sets. It is a contribution to classification by proposing an im-

proved semi-supervised classifier. The proposed framework applies attribute clustering

results to improve the semi-supervised classifier in each iteration and the semi-supervised

classifier used to improves the attribute clustering, by augmenting its training set, in each

iteration.
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The proposed framework is very broad. The result of attribute clustering can be

used in different ways to improve a classifier. We look at two very particular ways of

exploiting the framework. Unquestionably, there will be others worth exploring in future

work. This research is a contribution to multi-view learning by proposing a solution to

the problem of automatic view definition. It is also a contribution to missing attribute

handling by proposing an improved missing attribute value handling method.

The specific contributions of this thesis are:

• An effective semi-supervised attribute clustering approach

• An improved semi-supervised classifier

• A solution for the problem of automatic view definition, for multi-view learning

classifiers

• An improved missing attribute value handling method

We have submitted a journal paper on this thesis to the Journal of Machine Learning

Research (Seifi et al.).

1.4 Summary

Variants of attribute clustering are encountered in various machine learning tasks such

as attribute reduction, feature replacement, data summarization, subspace clustering

and topic identification. Though there is a strong appeal for more efficient and effective

attribute clustering methods, little has been done to improve attribute clustering when

labeled data is limited. Most of the work in this domain is concentrated on supervised and

unsupervised attribute clustering. In real world learning tasks it is more likely to have a

small labeled training set together with a large number of unlabeled instances. In such

cases, supervised attribute clustering is not reliable. On the other hand, the unsupervised

attribute clustering is not able to reveal and use all the relationships between attributes.

Very few simple semi-supervised attribute clustering approaches have been proposed

yet. One of these approaches uses background knowledge as supervised information, in

the form of some restrictions on what attributes should be clustered together or not.

This is not applicable for the common cases when we only have labeled and unlabeled

data. Another approach combines labeled and unlabeled data by using a hybrid distance

measure. The combination of supervised and unsupervised distance measures is not
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accurate, specifically when the labeled training set is very small. The supervised distance

measure is not reliable and also the unsupervised measure is not able to extract all the

relationships between attributes. A third approach simply performs semi-supervised

learning to increase the size of the labeled training set in the first step and then performs

supervised attribute clustering in the second step. The problem in this approach is that

the first step which uses a classifier could not be improved using attribute clustering.

To address these problems we propose a new iterative semi-supervised attribute clus-

tering framework by combining attribute clustering and supervised learning. Our re-

search not only provides an effective semi-supervised attribute clustering approach but

it also creates an improved semi-supervised classifier. When attribute clustering is used

for view definition in this framework, it provides a solution to the problem of automatic

view definition, for multi-view learning classifiers. We also propose the use of attribute

clustering to provide an improved missing attribute value handling method at induction

time, which looks for the missing value of an attribute considering related attributes

from the same cluster. Our framework, when used for automatic view definition for

multi-view learning, improves missing attribute value handling at prediction time by

grouping attributes and reducing the number of reduced feature models. In our experi-

mental results, we evaluate this framework and its usages, using real data sets from two

different domains including text and microarray gene expression data.



Chapter 2

Related Work

This chapter addresses the justification, positioning and novelty of this research. The

justification motivates this research by emphasizing the importance of attribute clustering

and showing the need for an effective semi-supervised attribute clustering approach.

The positioning takes a broad view of the machine learning area, including supervised,

unsupervised and semi-supervised learning, and positions the proposed research. The

novelty shows how this work differs from prior research, by overcoming weaknesses of

those methods.

2.1 Justification

When the dimensionality of the data space increases, the volume of the space increases

dramatically and consequently the available data become sparse. This sparsity of the

data degrades the performance of the learning methods and is problematic for those

which require statistical significance. Elder IV and Pregibon (1996) called this phe-

nomenon ‘Curse of Dimensionality’ and Mining (2008) has justified it as the result of

some attributes which may not contribute meaningful information to the model or even

detract from the accuracy of it. According to Chizi and Maimon (2010), large increase

in dimensionality, the number of data set attributes, causes efficiency problems for most

of the machine learning algorithms, in terms of the time need to build the model.

Clustering attributes, specifically the ones which suffer from the curse of dimensional-

ity, has recently been of keen interest to researchers in Machine Learning. Many attribute

clustering methods have been developed and published. These methods have been used

to apply machine learning techniques in many practical situations. These new techniques

18
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include

• Attribute reduction

– Feature selection

– Feature extraction

• Feature replacement

• Data summarization

• Subspace clustering

• Topic identification

A topic area that has grown rapidly in recent years is Gene Expression and Microarray

Analysis. It has the potential to radically facilitate how medicine discovers totally novel

and unexpected functional roles of genes (Slonim and Yanai, 2009). Attribute clustering

is critical to find predominant patterns in the Gene Expression and Microarray data. It

is an inherently high dimensional domain, so is one of the major places where attribute

clustering techniques are needed. Such high-dimensional data contains large number of

genes (attributes) but a small number of samples. Attribute clustering is used to reduce

the number of dimensions searched by data mining algorithms. This is done for example

by attribute selection or reduction using clusters of correlated attributes.

Over the last decade many well-known conferences, workshops or journals concen-

trated on applications of attribute clustering on gene expression data. DIMACS Work-

shop on Analysis of Gene Expression Data, which was held by Rutgers University at

Feb 2001, was one of the earliest workshops which completely focused on this topic.

International Workshops on Practical Applications of Computational Biology and Bioin-

formatics, which started at 2007, and MultiClust Workshops: Discovering, Summarizing

and Using Multiple Clusterings, which started at 2010, are the two most recent ones that

included major parts on applications of attribute clustering on gene expression data. Two

comprehensive surveys have also been published on this domain collecting and summa-

rizing most of the proposed techniques and methods. Jiang et al. (2004) divided the

cluster analysis for gene expression data to Gene-based clustering (attribute clustering)

and Sample-based clustering. They devoted the first part to the papers related to appli-

cation of attribute clustering to gene expression data. Nagi et al. (2011) showed how this

domain has been active for the last decade and addressed various approaches to gene
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expression data analysis using clustering techniques. More than one hundred related

papers on attribute clustering are referenced in these surveys.

These publications, workshops, surveys and usages of attribute clustering, show the

great appeal for more accurate attribute clustering approaches but most of the research

in this domain focused on unsupervised and supervised attribute clustering. An effective

semi-supervised attribute clustering method has not been proposed yet.

When enough labeled data is available, supervised attribute clustering can provide

more accurate results than unsupervised one because it uses supervised similarity or

distance measures. Such measures consider the class label of instances, while measuring

the relationship between attributes, therefore, they are capable of extracting class-based

relationships between attributes. However, empirical experiments (e.g. (Du et al., 2011;

Palanikkumar and Scholar, 2013; Maji, 2012, 2011)) showed that the result of supervised

attribute clustering is not reliable when a small labeled training set is used. The number

of samples is not enough to distinguish the real relationship between attributes. This is

where we need semi-supervised attribute clustering to get benefit from both labeled and

unlabeled instances.

As an example, attribute clustering could be used to split attributes for Co-training.

Standard co-training (Blum and Mitchell, 1998) uses two disjoint sets of attributes or

views to train two separate classifiers on initial labeled data. Then, alternately each

classifier classifies the unlabeled data and adds a few of the most confidently labeled

samples to the training set. Then the classifiers are trained again and the process repeated

for a number of times until a stop criterion is met.

Du et al. (2011) raised and answered the following three crucial questions for applying

standard co-training:

1. Is it possible to verify that the sufficiency and independence assumptions of co-

training are satisfied, for a given large labeled dataset with two views?

2. Can we split a given large labeled dataset with single view, into two sufficient and

independent views and apply the two view co-training?

3. Is it possible to split a given small labeled set with single view, into two views and

apply co-training? Can we verify co-training assumptions for a given small labeled

dataset (training set)?

The answer to the first two questions is positive. Du et al. (2011) described a novel

approach to verify the two assumptions empirically. They also proposed four different
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methods to split single views to make standard co-training work. The first two questions

are based on a large labeled set while the third a small labeled training set. This is

actually an attribute clustering issue when the labeled data are rare. Du et al. (2011)

answered this question by an emphatic no. Experimental results on both real world

and synthetic datasets revealed that in the latter case, not only the verification of the

sufficiency and independence assumptions are not accurate but also splitting single view

into two is not reliable. This is an empirical example of supervised attribute clustering,

not working reliably when labeled samples are rare.

Very few semi-supervised attribute clustering approaches have been proposed so far,

which solve this problem by exploiting a small labeled dataset together with a large

unlabeled dataset. All that have been proposed suffer from major weaknesses. We

address them by proposing an effective semi-supervised attribute clustering approach

which combines the attribute clustering with semi-supervised learning in an iterative

manner.

2.2 Positioning

Depending on the availability and usage of labeled and unlabeled data, machine learning

and data mining techniques can be divided into three categories:

• Supervised Learning: using completely labeled training data.

• Unsupervised Learning: using unlabeled data for learning and data mining.

• Semi-supervised Learning: using both labeled and unlabeled data for learning.

Attribute clustering is a machine learning technique, which uses a similarity or dis-

tance measure between attributes to cluster similar or related attributes. It can be

supervised, unsupervised or semi-supervised, based on the type of similarity or distance

measure used. Semi-supervised attribute clustering could be considered as a conjunction

of attribute clustering and semi-supervised learning.

In the rest of this section we briefly review the history of attribute clustering methods

and their weaknesses in these three categories. As we will see, most of the work done for

attribute clustering is concentrated on supervised and unsupervised attribute clustering

and there seems to be a big niche in improving attribute clustering using large unlabeled

data sets, available in most learning tasks.
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2.2.1 Unsupervised Attribute Clustering

In this section, we briefly outline the history of unsupervised attribute clustering, to

show how it has been an important topic for researchers over the last decade with a

great amount of effort dedicated to it.

In early research into unsupervised attribute clustering, Tavazoie et al. (1999) used

K-means as a clustering method to group genes, the attributes in gene expression data.

Heyer et al. (1999) pointed out two main problems. First, the conventional measure used,

Euclidean distance, is not meaningful when we talk about clustering attributes. Second,

the number of clusters in gene expression data is unknown so we may need to run the

algorithm with different number of clusters to find the most suitable one.

Many other researchers proposed new approaches to address the problems with ap-

plying K-means. Heyer et al. (1999)’s algorithm clusters similar portions of an organism’s

genom using a similarity score between these portions. Mitra et al. (2002) used k-means

with a new similarity measure, based on linear dependency between two random vari-

ables, called maximal information compression. Au et al. (2005) replaced the concept of

mean with the concept of mode and also used the interdependence redundancy measure

between attributes. Hong and Liou (2007) proposed a new distance measure between

attributes, based on the relative dependency. Covões et al. (2009) improved the method

described by Mitra et al. (2002) in a new method, capable of selecting features automat-

ically.

The work to propose a more efficient and effective unsupervised attribute clustering

has not been limited to the application of k-means and its variants. Tjhi and Chen (2006)

developed a new fuzzy co-clustering algorithm which considers feature-cluster weighting.

An innovative attribute clustering approach based on genetic algorithms is proposed in

Hong et al. (2009a), Hong et al. (2009b) and Hong et al. (2010). Zeng et al. (2009) gener-

ated a new attribute clustering method based on spanning trees. Minimum Description

Length (MDL) is used by Mampaey and Vreeken (2010) to develop an attribute cluster-

ing approach, which is then used for data summarization. A novel unsupervised feature

selection method, based on hierarchical attribute clustering, is proposed by Li et al.

(2008). Maximal Information Compression Index (MICI) is used in this work as similar-

ity measure. Niu et al. (2008) used a new overlapping attribute clustering method in a

new subspace clustering algorithm.

All this research shows the great interest in finding a better attribute clustering

approach. However, with labeled instances we could get better results by applying a
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supervised approach.

2.2.2 Supervised Attribute Clustering

Since supervised attribute clustering methods apply supervised measures with labeled

data, they can extract and use the class-based relationship between attributes. Therefore,

if there is enough labeled instances available, they provide better clusters of attributes

which better fit the real patterns in the data. Here we review supervised attribute

clustering approaches to highlight the amount of work done on this topic.

Li and Zha (2002) proposed a simultaneous classification and attribute clustering

method using Discriminant Vector Quantization (DVQ) (Li, 2002). This iterative ap-

proach gradually fits the model to the data by applying attribute clustering for feature

selection and then recalculating the parameters of the model considering the result of

testing the classifier. Jiang et al. (2007) invented a new confidence-based hierarchical

word clustering method where word groups represent new features for document clas-

sification. Occurrences of words, given the class, form clusters, so this is a supervised

attribute clustering method. Jiang et al. (2011) groups similar words into the same

cluster using a supervised similarity test. Maji (2012) used a new supervised similarity

measure for grouping co-regulated genes which has strong association to the class labels.

This work is extended in Maji (2011) by using a new supervised similarity measure based

on fuzzy-rough sets.

Although supervised attribute clustering tends to be more reliable than unsupervised

one, one reason that has limited its popularity is the requirement for labeled data, a

resource that is often scarce.

2.2.3 Semi-supervised Attribute Clustering

The previous sections show the large amount of work directed towards finding an effective

attribute clustering method. They also show that most of the work done in this domain

is concentrated on unsupervised attribute clustering. Although supervised attribute

clustering gives better clusters of attributes, in most real world problems we do not

have large labeled data sets. So, we are not able to find accurate relationships between

attributes. In many of such real world problems we also have large number of unlabeled

data available. This is where semi-supervised attribute clustering approaches would be

most effective.
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Although such a semi-supervised method can give us much more accurate attribute

clustering results, only a little work (Niu et al., 2005; Frigui and Mahdi, 2007; Quinzán

et al., 2009) has been already done in this area. The lack of an effective semi-supervised

attribute clustering approach motivated our research and we are addressing this problem

by proposing a new iterative semi-supervised attribute clustering approach to fill this

gap. The very few existing semi-supervised attribute clustering approaches and their

weaknesses are mentioned later in the novelty section. They are explained in more detail

in chapter 3.

2.3 Novelty

This section shows how the related work differs from proposed research, its weaknesses

and how they are overcome by the approach put forward in this thesis.

2.3.1 Improving Semi-supervised Attribute Clustering

The simplest way to use labeled and unlabeled data in attribute clustering would be

the use of a semi-supervised classifier to increase the size of labeled set and then the

use of the enlarged labeled set to do supervised attribute clustering. This framework,

which is shown in figure 2.1, performs supervised classification at the first stage and once

the labeled training set is augmented, applies supervised attribute clustering. The main

difference between this approach and ours is that it is not using the result of attribute

clustering to improve the classifier. It is a one pass process while our approach is an

iterative one.

Some supervised algorithms perform attribute clustering using a matrix which in-

cludes the number of times each feature co-occurs within each class. Those supervised

algorithms can not cluster attributes which only appear in unlabeled data because the

distribution of class labels over those attributes is not known (instances which include

those attributes are not labeled). Niu et al. (2005) proposed a semi-supervised attribute

clustering approach which uses the distribution of class labels over features in label data

to derive the distribution unavailable in training data. This is based on the similarity

between attributes in labeled data and those which only exist in unlabeled data. There-

fore, this algorithm could be used not only on the attributes which exist in training set

but also on those attributes which only appear in unlabeled data set. When this method

is used for dimensionality reduction, it outperforms other techniques. This means using
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Figure 2.1: One pass semi-supervised attribute clustering framework using a semi-

supervised classifier.

unlabeled data which includes more attributes can improve the performance of attribute

clustering. This algorithm is different from our approach in that it is not using the

unlabeled data to improve the attribute clustering but using it to cluster attributes not

in labeled data. It is performing one pass and therefore it will not work well when the

number of labeled instances is small.

Frigui and Mahdi (2007) developed another semi-supervised attribute clustering ap-

proach, which is used for feature weighing. This framework is illustrated in figure 2.2. It

uses a set of unlabeled data together with supervised information, in the form of back-

ground knowledge. This consists of a small set of constraints on which attributes should

or should not be in the same cluster. The attribute clustering process includes minimiza-

tion of an objective function which has three parts. One part is responsible for minimizing

the distance between attributes in clusters while the two other parts are taking care of

must-link and can-not-link constraints. Minimization of this objective function lead to

compact clusters, learned feature weights and the incorporation of partial supervision

information. Experimental results showed that the new algorithm outperforms similar

algorithms and the use of supervision constraints with unlabeled data set improves the
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Figure 2.2: One pass semi-supervised attribute clustering framework using background

knowledge

Figure 2.3: One pass semi-supervised attribute clustering framework using semi-

supervised distance measure

attribute clustering result. The main difference between this approach and ours, is the

difference between supervised information used in learning process. This approach is

using background knowledge in form of must-link and can-not-link constraints, however,

in many real world learning tasks we only have a small labeled training set with large

number of unlabeled instances. Our approach could be applied on such tasks for attribute

clustering.

Quinzán et al. (2009) proposed a new semi-supervised attribute clustering which is

used for feature selection. This algorithm uses a combination of supervised and unsuper-

vised distance measure to use both labeled and unlabeled data for attribute clustering.

The distance between attributes is calculated based on conditional mutual information

and conditional entropy. This approach is shown in figure 2.3.
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The difference between this approach and ours is in the way the unlabeled data is

used. It is used together with labeled data in a semi-supervised distance measure. This

measure has two parts. One part calculates the distance between two attributes based on

unlabeled data. Other part measures this distance using labeled data and by considering

the class label. Combining these two in a single measure degrades the accuracy of the

supervised measure. In our approach, only a supervised distance measure is used and

the unlabeled data is used to augment the labeled set, using a classifier iteratively.

As we saw in this section, a few semi-supervised attribute clustering methods have

been proposed so far, which all have weaknesses. We addressed these by proposing a new

iterative semi-supervised attribute clustering approach. This new approach is applicable

on many real world learning tasks which include a small labeled training set and a large

unlabeled data set.

2.3.2 Solving the Automatic View Definition Problem

This section shows the value of a new approach which solves the problem of automatic

view definition for multi-view learning especially for cases which we do not have enough

labeled data.

There usually exist several views, from different angles, to a learning problem. Con-

ventional machine learning algorithms concatenate all these multiple views into a single

one for simplicity. However, this concatenation causes overfitting, specifically in case of

small labeled training sets and is not meaningful because it removes the specific statis-

tical property of each view (Di and Crawford, 2012). Alternatively, multi-view learning

is used to train multiple learners on different views and then concatenate the learning

results using an aggregation function.

Blum and Mitchell (1998) formalized multi-view learning for the first time by propos-

ing co-training as a semi-supervised approach to multi-view learning. They proposed two

assumptions under which it is guaranteed to work well. The first assumption is that the

views are sufficient; each view could be used to perfectly predict the class. The second

assumption is that the two views are conditionally independent, independent given the

class. Their theoretical results have shown that if these two assumptions are satisfied

then co-training is guaranteed to work well.

Unfortunately in many real world problems we do not have a priori views which meet

these assumptions. This problem motivated researchers to relax these assumptions. Of

the work done, some completely removed the need for different views. Wang and Zhou
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(2007) derived a theorem showing why co-training can work with a data set that does

not have two views. Goldman and Zhou (2000) proposed a new approach which used

two different predictors that are each trained using the whole feature space. Zhou and

Li (2005) used two different parameter configurations for the two predictors which are

from the same base learner. These two methods are actually ensembles of two different

learners, trained on the whole feature space, and not multi-view learners, because they

are not following its base assumption, aggregation between learners which are trained

on different sets of attributes. Raskutti et al. (2002a) presented another variation of

multi-view learning in which the first predictor is trained using the original feature space

and the second with new features that are derived by clustering both the labeled and

unlabeled instances. The clusters are considered as higher level concepts in the data,

and the derived features indicate the similarity of each instance to these concepts. This

approach is limited to two separate views: the original and the derived feature set.

Other work aims to weaken or replace the assumptions. Wang and Zhou (2010),

Abney (2002) and Wang and Zhou (2013) showed that weak dependence can result in

successful co-training. Balcan et al. (2004) analyzed co-training and proved that the

strong assumptions needed by previous theoretical analyses, guarantee the success of

one-shot co-training and a much weaker ‘expansion’ assumption is sufficient given the

iterative nature of standard co-training. Based on this analysis, Chen et al. (2011) and

Ando and Zhang (2007) proposed new feature decomposition algorithms for single-view

co-training which was only able to divide the features of a single-view data set into

two mutually exclusive subsets. Zhu (2006), in his literature survey of semi-supervised

learning, mentioned that the co-training assumptions are strong and, in general, are not

required by multi-view learning models.

Another group of work concentrated on construction of multiple views from the single-

view to make multi-view learning applicable on single-view data sets. A simple way to

generate multiple views is to randomly split the attributes (Bickel and Scheffer, 2004;

Brefeld and Scheffer, 2004; Brefeld et al., 2005). However, the view generation process

must ensure that the views sufficiently represent the data and satisfy the assumptions

required for learning (Xu et al., 2013). Du et al. (2011) designed several methods to split

feature space into two views. Their empirical results showed that, given a large labeled

training set, the splitting methods are quite effective. However, given small labeled train-

ing sets the view splitting methods are unreliable. Semi-supervised learning, is precisely

used when the labeled training set is small. Therefore, their proposed splitting methods

could not be applied to the problem of automatic view definition for semi-supervised
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multi-view learning. Di and Crawford (2012) proposed active learning strategies to gen-

erate views for Hyperspectral Image Data when training set is limited. Their proposed

active learning methods differ from semi-supervised learning in the sense that it requires

the true labels for the samples that the learner is the least confident about. Their em-

pirical results showed that increasing the number of views increases the diversity and

consequently improves the performance.

The proposed supervised multiple view generation methods are not reliable when

labeled training set is small Du et al. (2011). However, in many real world learning

tasks, there usually exist a large number of unlabeled instances available which could

be used to enhance learning performance in a semi-supervised manner. This problem

motivated us to propose a semi-supervised approach to generate multiple views for a

single-view data set. This is addressed in our research by combining attribute clustering

with classification, in an iterative process, when using multi-view learner as classifier and

view generation as the way attribute clustering results are used to improve the classifier.

In each iteration, the results of attribute clustering will be used to improve the views.

Then, the improved classifier will be used to improve attribute clustering by augmenting

its labeled training set, with the most confident new labeled instances. This iterative

process will not only improve the attribute clustering results gradually, but it will also

improve the views, and consequently, the multi-view classifier.

2.3.3 Improving Missing Attribute-value Handling

Missing attribute-values are very common in real data sets. An attribute-value might

be missing because of various reasons, i.e., it is lost, it is considered irrelevant or it is

expensive to be calculated for all instances. The absence of these values would degrade

the performance of machine learning techniques. This motivated researchers to propose

missing attribute-value handling methods. When talking about missing attribute-value

handling, we should distinguish between missing attribute-values at induction time in

the training data (Grzyma la-Busse and Grzymala-Busse, 2005), and at prediction time

in test data or the upcoming new instances (Saar-Tsechansky and Provost, 2007). In

this section we mention existing problems in missing attribute-value handling and we

indicate how these problems are addressed in our research using attribute clustering.
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Missing Attribute-value Handling at Induction Time

Various approaches have been proposed for handling missing attribute-values at induction

time. A group of well-known missing attribute-value handling methods are designed

based on the idea of closest fit. The closest fit of a particular instance is the closest

instance, in terms of Manhattan distance. This idea originated in Grzyma la-Busse et al.

(1999) and it has two different variations: The Global and Concept Closest Fit.

The Global Closest Fit method (Grzyma la-Busse et al., 1999) looks into the pool of

instances with known values and replaces a missing value by the value of another instance

which is the closest fit to the one with missing value. To find the closest fit, Manhattan

distance measure is computed between the vector for the case with missing value and

the vector of attribute-values for another case which is a candidate of closest fit. The

distance measure is calculated for all cases with a known value for the corresponding

attribute and the instance with the smallest distance is selected. This method considers

the class label as simply one of the attributes. Thus, it may find the closest fit from

other classes. This might be problematic because the difference can come from the value

of an attribute with a missing value.

To solve this problem, the Concept Closest Fit method (Grzyma la-Busse et al.,

1999) is proposed. It first splits the data sets into subsets based on the class label of

instances. Then, for replacing each missing attribute-value, it finds the closest fit in the

subset of the instances with the same class label. The only difference, comparing to the

global closest fit method, is that the search space is limited to the subset of instances

with the same class label. This decreases the search time and also improves the accuracy

of the value found for the missing attribute-value.

According to Suguna and Thanushkodi (2011), although several approaches are pro-

posed for missing attribute value handling at induction time, many based on the idea of

closest fit (Gaur and Dulawat, 2011; Gaur, 2012, 2014), the one used more frequently is

deleting instances containing at least one missing value. If the number of instances with

missing attribute-value is small, this approach is applicable, otherwise it is not. Alter-

natively, some methods, such as assigning an average or the most common value, make

good use of all the available data. However these methods do not consider the existing

attribute-values of the instance when calculating its missing attribute-values. Grzymala-

Busse et al. (2002) and Grzymala-Busse et al. (2005) compared the closest fit methods

with different variations of the common value method. They concluded that even though

the closet fit methods, unlike common value methods, consider the attribute-values of



Related Work 31

each instance when looking for its missing values, they are not better than common value

methods. The computational time of closest fit methods is higher because in order to

find the missing value of an instance, they need to calculate its distance to all other

instances. When looking for the closest fit, the vector of attribute-values includes all

the attributes. However, the feature space can include attributes which are completely

unrelated to the attribute with missing value and can mislead the process of finding the

closest fit. To overcome this, Common Value methods remove all the attributes except

the one with missing attribute value from consideration. This removes the misleading

attributes but it also removes useful attributes.

When looking for the closest fit in such cases, using a subset of the feature space,

reduces the computational time. If the subset includes all the related attributes, it will

improve the accuracy of the value found for replacing the missing attribute-value. Li

and Cercone (2006) used rough set theory to limit the attributes to the core or one

of the reducts. Each reduct is a subset of the attributes which is sufficient enough to

represent the whole data. The core is the intersection of all the reducts. This approach

reduces the computational time but it is not effective in terms of removing irrelevant

attributes from the search. The reducts are generated considering that each one should

be able to represent the whole data, so it is not necessarily gathering related attributes

in each reduct. There also may be more than one reduct which contain the attribute

with missing value so it is not clear which one to use. According to Du et al. (2011),

when labeled data is limited it is impossible to find the underlying relationships between

attributes, therefore the reducts and the core would not be reliable.

We address these problems in this research by proposing a new approach, which

uses attribute clustering to limit the feature space to the related attributes. In other

words, we are changing the definition of closest fit to be the closest instance from the

pool, considering the subset of related attributes to the one with missing attribute-

value. In first step, attribute clustering is used to create clusters of related attributes.

Then, in order to find a missing attribute-value, the cluster which the attribute belongs

to will be used as the feature set to find the closest fit. This will remove the irrelevant

attributes while drastically decreasing the computational time. When there is not enough

labeled instances available to perform supervised attribute clustering, the proposed semi-

supervised framework in chapter 3 would be used. The result of attribute clustering would

be used in each iteration to improve the classifier by improving the missing attribute

value handling and the classifier will be used in each iteration to improve the attribute

clustering by augmenting its training set. Therefore the result would be a better missing
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attribute value handling and also an improved semi-supervised classifier.

Missing Attribute-value Handling at Prediction Time

There exist four approaches for missing attribute-value handling at prediction time. The

simplest missing attribute-value handling method at prediction time is to discard the

instances with missing attribute-values. This means that we decline to provide

prediction for some of the instances which may be problematic. Another approach is to

obtain the missing value by paying the cost to run some complimentary tests or to

get it from a third party. This method may not be applicable in some cases or the cost

may not be acceptable. Imputation-based methods are a group of methods which

handle missing attribute-values, at prediction time, by replacing it with an estimation of

its value or its distribution from the data. According to Hastie et al. (2001), imputation-

based methods are the most common approaches used for handling missing attribute-

values. Another approach is to apply a specific prediction model for each instance based

on the available attributes, its pattern of missing values. Saar-Tsechansky and Provost

(2007) called such approaches as reduced-feature models.

Their empirical evaluation showed that, although imputation methods are the most

common, reduced-feature models have substantially better predictive performance. The

difficulty of reduced-feature models is that for each instance with a particular pattern of

missing values, a different model should be applied. The models can be created on-line,

which involves computation time, or precomputed and stored, which involves storage of

different models which is exponential in the number of attributes.

Saar-Tsechansky and Provost (2007) tried to address this problem by proposing a

hybrid method that uses the reduced-feature models for frequent patterns of missing

values, and imputation for other cases. It allows the user to manage the tradeoff between

predictive performance and storage/computation cost. Their empirical results show that

when reduced-feature models are used, even for a few patterns, it improves the predictive

performance substantially. This method still does not offer the use of reduced-feature

model for all the cases and also the maximum number of precomputed models is still

exponential in the number of attributes.

To reduce the number of attributes and consequently the number of precomputed

models for reduced-feature models, Hong et al. (2009b) proposed an unsupervised at-

tribute clustering approach for feature selection. The number of possible models, in this

approach, is still exponential to the number of all selected attributes. Therefore, if the

number of selected attributes is large, it is still problematic. If the number of selected
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attributes is small and the dataset has many missing attribute-values, it is problematic

because in some cases very few attributes, of the selected ones, may contain values.

To address this problem, Hong et al. (2009b) suggested replacing selected features

with missing attribute-values, with another from the same cluster. This replacement

will help to create effective feature sets. However, the feature replacement increases

the number of possible models. The number of possible models with replacement is

the n-combination of attribute set. The size of each model is also based on the size of

all selected attributes. If the number of selected attributes is high this model will still

have high storage/computation cost. The attribute clustering method in this approach is

unsupervised reducing its effectiveness, in terms of placing attributes into related clusters.

We address these problems in our proposed semi-supervised attribute clustering

framework, when multi-view learner is used as classifier and attribute clustering is used

to create the views for multi-view learner automatically. Each attribute of a view comes

from a cluster of related attributes. If there is a missing value for such an attribute, it

could be replaced with an attribute from the same cluster in that view. This replacement

will only affect the learner corresponding to that view and that is the only part of the

model which will be changed. The splitting of the selected attributes into views, in our

approach, significantly reduces the number of possible patterns and consequently the

number of models which need to be precomputed and stored for reduced-feature model.

A more detailed explanation of the performance of existing approaches and our new

solution is provided in Improving Missing Attribute-value Handling chapter.

2.4 Summary

Although the various publications, workshops, surveys and usages of attribute cluster-

ing, show the great appeal for more accurate attribute clustering approaches, most of

the research in this domain focused on unsupervised and supervised attribute clustering.

When the labeled data is limited, supervised attribute clustering methods are unreliable.

Unsupervised methods, as an alternative, are not able to extract the class-based rela-

tionships between attributes and existing semi-supervised methods have significant limi-

tations. In this research we address them by proposing a new improved semi-supervised

attribute clustering method. We use it to solve the automatic view definition problem

for multi-view learning and to improve missing attribute value handling at induction and

prediction time.



Chapter 3

Semi-supervised ‘Attribute

Clustering’/Classification

Framework

This chapter starts with the vocabulary helpful in defining attribute clustering. Then,

a definition of attribute clustering and its different types is provided and its geometric

interpretation is discussed using a simple example. The next section discusses the weak-

nesses of existing semi-supervised attribute clustering methods. Finally, we describe the

semi-supervised attribute clustering framework, and its underlying algorithm, and how

it addresses these weaknesses.

Data, fundamental in machine learning tasks, could be represented in several ways.

One of the most common is as a matrix. Each row represents an instance and each

column an attribute or a feature. Each cell in the matrix represents an attribute

value. The label or class attribute represents a common characteristic between some

of the instances and more often is the one we want to predict its value for new instances.

If the label is included in the data we call the data labeled and the learning tasks

supervised.

Data classification is the assignment of labels to the upcoming new instance, based

on the relations found in a labeled training set. It is used in many problems like diagnosis

of a disease based on information that we have about previously observed patients and

healthy people. Disease symptoms are the attributes in this problem.

In some learning problems we do not have any information about the class and the la-

bel set is unknown. An interesting task in such problems is to find out different subsets of

34
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similar instances called clustering. Clustering algorithms are used in many applications.

They could be used to cluster patients to find out different unknown types of a disease.

For example Paykel (1971) used data clustering to cluster a heterogeneous sample of 165

depressed patients with 35 rating variables into 4 clusters. The clusters are then speci-

fied to contain 4 types of depressed patients as anxious, hostile, retarded psychotic and

young depressive. Many distance/similarity measures have been proposed for clustering.

Using appropriate distance/similarity measure is very important in clustering results and

critical to accurate data analysis (Cha, 2007; Choi et al., 2010).

In this thesis the focus is on clustering attributes rather than instances. Attribute

clustering is the assignment of attributes in a learning task to some subsets in a way

that similar attributes are gathered in the same cluster. Clustering attributes in machine

learning tasks, specifically the ones which suffer from curse of dimensionality, has recently

been of keen interest to researchers. Many different methods, applied to many different

problems, have been studied and published so far.

Attribute clustering methods could be categorized as

• supervised attribute clustering

• unsupervised attribute clustering

• semi-supervised attribute clustering

The difference between supervised and unsupervised attribute clustering is

whether the instances, used to measure the distance between attributes, are labeled or

not. Saying attribute clustering is supervised may seem at first a little counterintuitive.

We typically think of clustering as the archetype of unsupervised learning algorithms.

However, it is important to notice that the class or label which we are talking about

is the label of instances not attributes. We do not have any information about label

that could be assigned to attributes. So, supervised attribute clustering is a cluster-

ing approach, which clusters attributes, using labeled instances to find out dissimilarity

between attributes.

Semi-supervised attribute clustering could be an improvement of supervised

attribute clustering, enriching the small labeled training sets to better fit the inherent

structure. Most of the work in this field are concentrated on supervised and unsupervised

attribute clustering. The need for more effective semi-supervised attribute clustering

methods motivated us to propose a new iterative semi-supervised attribute clustering

method in this study.
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3.1 Geometric Interpretation of Attribute Cluster-

ing

Let us reiterate that attribute clustering is different from data clustering. Data clustering

is an unsupervised process (there is no class definition) which clusters similar data in-

stances, based on a similarity measure between different instances. Attribute clustering,

on the other hand, finds clusters of similar or related attributes. Attribute clustering

methods are similar to conventional data clustering but they are not the same. One dif-

ference is that these methods cluster attributes based on instances instead of clustering

instances based on attributes. Another difference is that they usually do not use con-

ventional measures like Euclidean or Manhattan distance. Attributes may be numerical

or categorical and it is hard to compare them if they have different formats. Even if the

attributes are normalized such distance measures may not provide enough information to

capture the dissimilarity between attributes. When we have more instances, the dimen-

sionality of attribute clustering increases and data become increasingly sparse. Distance

measures become decreasingly informative. In fact, at very high dimensions data points

are so spread out that they are almost equidistant from each other (Niu et al., 2008).

This is the reason why many new similarity measures have been proposed. Such measures

are correlation-based measures like correlation co-efficient (Domany, 2003), information

based measures like mutual information (Au et al., 2005), relative dependency (Hong and

Liou, 2007) and Kullback-leibler divergence (Vinh and Phuong, 2008) and many other

similar measures as alternatives. In this section we illustrate the geometric interpretation

of attribute clustering with a simple example.

Let us consider a data set in which each instance captures the marks for a particular

student on different courses. So attributes are courses and attribute values are marks.

Suppose that we want to find some factors which predict the academic ability of students.

Suppose that the courses are from the two categories of art and science but we do not

know this a priori. So considering that some students are good at art and some at science

we use attribute clustering to find two categories of courses. Using these two clusters of

attributes we can determine if a student is good at art or is good at science. This is an

example of attribute clustering.

We have two students Mary and Jane and we have the information given in table 3.1

about the marks which they have received for different courses. Do not forget that we

consider that we do not have information about course categories and we want to find

two categories of courses using attribute clustering. As we see in this table Mary is good
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Table 3.1: Marks received by two students for 3 art courses and 3 science courses.

Art1 Art2 Art3 Science1 Sceince2 Science3

Jane 90 85 80 20 35 25

Mary 50 45 60 45 50 60

Figure 3.1: Illustration of attribute clustering for two instances of Jane and Mary and 6

attributes (courses)

at Science and Jane is good at Art. But let us consider, for simplicity, that we do not

have this information and we want to do unsupervised attribute clustering. For clustering

courses we need to use a distance/similarity measure to find out what courses should be

clustered together. Let us for simplicity use Euclidean distance as the distance measure.

In the new space each course will be represented as a point in the cartesian coordinate

system while Jane will be one axis and Mary would be another. This is illustrated in

figure 3.1.

If we use Euclidean distance as distance measure we could find the two clusters of

courses, art and science, in this simple example. It is important to mention that in real

attribute clustering problems this measure or similar measures do not work well and

some similarity measures like correlation coefficient are used.

Now lets see a more complicated example with 2 new courses one from art and one

from science category. In this example we show how using correlation coefficient could
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Table 3.2: Marks received by two students for 4 art courses and 4 science courses.

Art1 Art2 Art3 Art4 Science1 Sceince2 Science3 Science4

Jane 90 85 80 30 20 35 25 70

Mary 50 45 60 25 45 50 60 80

outperform the use of Euclidean distance. Consider we have the information given in

table 3.2. We have 4 courses from art category and 4 courses from science category.

Again Jane is good at art and Mary is good at Science. The attributes are illustrated

in figure 3.2 and 3.3 while Euclidean distance and Correlation are used as distance

and similarity measure respectively. Art courses are shown in these figures in blue and

science courses are shown in red. As shown in figure 3.2, considering Euclidean distance

as distance measure, we would cluster the new art course with science courses and new

science course with art ones. The Euclidean distance of a new art course with all other

courses is shown in figure 3.4. Although Jane is better than Mary in this course, Jane

got 30 while Mary got 25, this course is closer to science courses than art courses. Figure

3.5 also shows the correlation between new art course and all other courses. In this two

dimensional space correlation between any two science courses is 1, correlation between

any two art courses is 1 and correlation between any art and any science course is -1. So

using correlation in this example will give us better results.

It is very easy to split the space in this two dimensional space problem into two

subspaces of courses which Jane is better than Mary and the one in which Mary is better

than Jane by drawing the diagonal. For all points below Jane got better marks; for all

points above Mary got better marks. So, as illustrated in figure 3.3, we may have two

courses one at the very bottom left and one at the top right both below the diagonal

and should be clustered together. However, if Euclidean distance is used as distance

measure we will find them surprisingly far from each other and they will not be clustered

together. Considering correlation as similarity measure they have correlation of 1 and

they are perfectly correlated and will be clustered together.
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Figure 3.2: Illustration of attribute clustering, using Euclidean distance, for two instances

of Jane and Mary and 8 attributes (courses)

Figure 3.3: Illustration of attribute clustering, using correlation, for two instances of

Jane and Mary and 8 attributes (courses)
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Figure 3.4: Euclidean distance, illustrated for two instances of Jane and Mary and 8

attributes (courses)

Figure 3.5: Correlation, illustrated as dissimilarity measure for two instances of Jane and

Mary and 8 attributes (courses)
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Figure 3.6: One pass semi-supervised attribute clustering framework using a semi-

supervised classifier.

3.2 Semi-supervised ‘Attribute Clustering’/Classification

Framework

In this section we propose our new framework to improve attribute clustering by per-

forming iterative semi-supervised attribute clustering. First, let us review the existing

semi-supervised attribute clustering methods in more detail.

The simplest way is to use unlabeled data with a semi-supervised classifier to increase

the size of labeled set and then the use of new enlarged labeled set to do supervised

attribute clustering. This framework is illustrated in figure 3.6. As we see in this figure,

labeled data and unlabeled data are given as input to the semi-supervised classifier.

Unlabeled data is labeled augmenting the training set used to cluster attributes. This

framework is one pass. However, the classifier used in first step could be improved by the

result of attribute clustering. Then if we improve the classifier we can get more accurate

labeled instances and consequently we can improve the attribute clustering. This is one of

the strengths of our new approach, it improves the classifier and the attribute clustering

iteratively.

Another semi-supervised attribute clustering framework, proposed by Quinzán et al.

(2009), uses a semi-supervised distance measure. This is a combination of supervised and
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Figure 3.7: One pass semi-supervised attribute clustering framework using semi-

supervised distance measure

unsupervised distance measures applied on labeled and unlabeled data sets, respectively.

This approach, illustrated in figure 3.7, is also a one pass method. As we see in this

figure labeled and unlabeled data are given as input to the attribute clustering method.

A supervised distance measure calculates the distance between every two attributes using

the labeled data and considering the class label. An unsupervised distance measure uses

the unlabeled data and calculates the distance between every two attributes without

considering the class label. The attribute clustering method combines the two distances.

The problem with this framework is that the distance calculated by supervised measure

is much more accurate than the one calculated by unsupervised measure and therefore

the unsupervised measure negatively affects the combination.

Another semi-supervised attribute clustering method is the one proposed by Frigui

and Mahdi (2007). This method applies background knowledge as supervision informa-

tion in form of a small set of constraints, on which attributes should or should not group

in the same cluster. This framework is illustrated in figure 3.8. This framework could

only be applied on problems for which we have both unlabeled data and background

knowledge. If we have a few labeled instances this method is not able to exploit them.

All of these proposed approaches are one pass methods. In machine learning liter-

ature, it has been considered as a fact that using more labeled instances will lead to

improvement of the results of learning tasks (Valiant, 1984; Lanquillon, 2000; Wu and

Srihari, 2004; Ling et al., 2008; Wan et al., 2011). So the first framework, which labels

the unlabeled samples first and increases the size of labeled training set for attribute

clustering, is a good first step. But this method could be improved by using the result

of attribute clustering, to improve the classifier used to add labeled data. We propose
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Figure 3.8: One pass semi-supervised attribute clustering framework using background

knowledge

an iterative framework for attribute clustering in this study. This framework is shown

in figure 3.9. As we see in this figure this framework has two main steps: Supervised

classification and supervised attribute clustering. The combination of these two in an it-

erative process provides a semi-supervised classifier and also a semi-supervised attribute

clustering. The labeled data is used to train a classifier in the first step. The classi-

fier could be any of the existing classifiers like neural network (multi-layer perceptron),

support vector machine, k-nearest neighbor, Gaussian mixture model, Näıve Bayes and

decision tree. The classifier is used to label unlabeled data. The output is a set of new

labeled instances. Further for each one we have a confidence value which tells how sure

the classifier is about the class assigned to the instance. This is used to add a few most

confident new labeled instances to the labeled training set.

Then, in second step the new labeled training set is used with a supervised attribute

clustering algorithm to find more accurate clusters of attributes. This attribute clustering

algorithm could be any of the existing ones. Any of the supervised similarity/distance

measures could be selected for this step. It would be selected based on the data and the

way we use its output to improve the classifier. The result of attribute clustering could

be used in different ways to improve the supervised classifier. For example we could use

these results to

• define multiple views if we are using a multi-view classifier

• perform feature reduction: selection or extraction

• handle missing attribute values, using related attributes from the same cluster, not

the whole attribute space
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Figure 3.9: Iterative semi-supervised attribute clustering framework using supervised

classifier and supervised distance measure.
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The general algorithm for this semi-supervised attribute clustering framework is de-

fined in algorithm 1. The Input includes labeled training set L with M instances and A

attributes, Unlabeled training set U with N instances and A attributes and also Number

of clusters of attributes, P . P is optional based on attribute clustering approach used in

step 5 of the algorithm. Output of this framework includes both an improved attribute

clustering and an improved classifier.

Algorithm 1 Proposed semi-supervised attribute clustering approach

1: Input Labeled training set L with M instances and A attributes, Unlabeled train-

ing set U with N instances and A attributes, Number of Clusters of attributes P

(optional)

2: repeat

3: if First Iteration then

4: Initialize the framework: If a multi- view Classifier would be used define the

initial views of attributes, perform initial attribute selection, perform initial missing

attribute value handling

5: else

6: Use new clusters of attributes F to improve the classifier used in step 2 by Up-

dating views of multi-view classifier or performing attribute selection or performing

missing attribute value handling

7: end if

8: Train a classifier C using the Labeled training set L and the result of previous

step.

9: Classify unlabeled instances U

10: Add K most confident new labeled instances to the labeled set (M = M+K,L =

L ∪ {K most confident new labeled instance})
11: Use new labeled set with an attribute clustering method to provide clusters of

attributes F

12: until No new instances added

13: Output: The set of clusters of attributes and the classifier trained in the final

iteration

In the first iteration of the algorithm, the framework is initialized in line 4. This

step can include initialization of the classifier, attribute selection or missing attribute

value handling. All these processes try to improve the result of classification. Since the

labeled training set, used for this purpose, is very small at this step we augment the
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training set and run these processes iteratively in next steps of the framework. If this

is not the first iteration of the algorithm the line 6 uses the clusters of attributes F ,

obtained in previous iteration, to improve the classifier to be trained in next iteration by

updating views of multi-view classifier or performing attribute selection or performing

missing attribute value handling. In next step, in line 8, a classifier C is trained using

the available labeled training set L and the result of previous part of the algorithm. The

trained classifier is then used in line 9 to classify unlabeled instances in U . The classifier

provides a confidence for each new labeled instance which shows how much the classifier

was confident about the label assigned to each instance. All the information provided

in previous step is used in line 10 to assign K most confident new labeled instances to

the labeled set. After this step the size of labeled training set will increase to M + K

and the size of unlabeled training set will decrease to N - K. In line 11 the augmented

labeled training set is used by a supervised attribute clustering approach to provide

clusters of attributes F . Line 12 checks the stop condition of the iterative process. If

the termination criterion is satisfied then the algorithm terminates and outputs the final

set of clusters of attributes and also the improved classifier. Otherwise it will go to next

iteration.

3.3 Summary

This chapter discussed the differences and similarities between the attribute and data

clustering. The geometric interpretation of attribute clustering is illustrated using a

simple example. The existing semi-supervised attribute clustering methods and their

weaknesses are reviewed and finally our semi-supervised attribute clustering framework,

to address their problems, is proposed. The result of attribute clustering could be used

in different ways to improve the classifier. The proposed framework is a very general

one. Different usages of this framework will solve different existing problems in machine

learning. Next two chapters show different problems that are addressed using the pro-

posed framework and the customization that needs to be done in the framework. The

results include experiments using these customized frameworks and are compared with

other approaches to show there are clear advantages.



Chapter 4

Attribute Clustering for Automatic

View Definition in Multi-View

Learning

Multi-view learning is based on the assumption that each hypothesis could be represented

by different sets of attributes, called views, which look at the same problem from different

angles. These attribute sets can be identified by people based on their knowledge of a

domain or derived using different feature extraction algorithms. These multiple represen-

tations of a pattern are used to train different complementary learners which help each

other in the learning process. Alternatively, an aggregation function is used to combine

them to find the final hypothesis. Recent work has shown that utilizing the agreement

between learners, based on different views, improves performance (Abney, 2002; Ando

and Zhang, 2007; Blum and Mitchell, 1998; Chen et al., 2011). Yet, an effective method-

ology for creating effective views automatically from data sets has not been proposed.

This is even more problematic in real world applications for which we do not have large

labeled data sets (Du et al., 2011).

In this chapter we address this problem by combining attribute clustering with multi-

view learning in an iterative semi-supervised process. The power of this approach comes

from creating sufficient and diverse views during learning. This approach clusters the

attributes based on their correlation in each iteration. This will help to create views

which do not include highly correlated attributes and it will lead to a good spread of

such attributes in different views. The result will be a good set of views which can

be used to train effective multi-view learners. These learners will then be trained in

47



Attribute Clustering for Automatic View Definition in Multi-View Learning 48

each iteration and used to augment the training set used to refine the views in the next

iteration.

In many real world learning tasks there exist only very few labeled instances and a

large number of unlabeled ones. It is fairly easy to find unlabeled instances while the

labeling process is expensive, difficult or time consuming. For example the labeling pro-

cess may need human insight or performance of expensive tests or experiments (Seeger,

2001). Most of the supervised learning algorithms do not work well when the labeled

training set is small. In such cases we can use a small labeled data set together with a

large unlabeled data set in a semi-supervised learning algorithm to improve the results.

Blum and Mitchell (1998) formalized multi-view learning for the first time by propos-

ing co-training as a semi-supervised approach to multi-view learning. This approach is

guaranteed to work well on data sets with two a priori disjoint sets of attributes, i.e.

two sufficient and independent views. In many real world problems we do not have

a priori views which meet these assumptions. This motivated many researchers to pro-

pose other multi-view learning algorithms and variations of standard co-training (Abney,

2002; Ando and Zhang, 2007; Balcan et al., 2004; Chen et al., 2011; Goldman and Zhou,

2000; Raskutti et al., 2002a; Zhou and Li, 2005) which weaken, change or remove these

assumptions. A problem which has not been addressed is how to find such views when

labeled data are rare, the automatic view definition problem. A simple way to generate

multiple views is to randomly split the attributes (Bickel and Scheffer, 2004; Brefeld and

Scheffer, 2004; Brefeld et al., 2005), which may lead to insufficient views which do not

satisfy the assumptions required for learning (Xu et al., 2013). Du et al. (2011) designed

several methods to split feature space into two views. However, their empirical results

showed that, given small labeled training sets the view splitting methods are unreliable.

Therefore, their proposed splitting methods could not be applied to the problem of au-

tomatic view definition for semi-supervised multi-view learning. Di and Crawford (2012)

proposed active learning strategies to generate views for Hyperspectral Image Data when

training set is limited. However their proposed active learning methods requires the true

labels for the samples that the learner is the least confident about.

The view definition for multi-view learning can be cast as an attribute clustering

problem. Attribute clustering is used to cluster similar or related attributes based on a

similarity or distance measure. When the labeled training set is small it is impossible to

measure the similarity between attributes so the supervised attribute clustering methods

will not work well. In such cases a semi-supervised attribute clustering method is needed.

In this chapter we address the problem of automatic view definition for semi-supervised
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Figure 4.1: Iterative semi-supervised multi-view learning combined with attribute clus-

tering.

multi-view learning by combining attribute clustering with multi-view learning. In this

approach, an initial split for the attributes, obtained by using attribute clustering on the

original labeled data, will be used in the first iteration of the algorithm. In each sub-

sequent iteration, each predictor will use one view to train and then weighted majority

voting will be used to label unlabeled instances. Then the training set will be augmented

by the most confident new labeled instances. At the end of each iteration, labeled data

and new labeled instances will be used to refine views using attribute clustering.

We evaluate our approach experimenting on real world data sets from two different

domains, text data sets and microarray gene expression data.

4.1 Combining Multi-View Learning and Attribute

Clustering

In this study we combine attribute clustering with multi-view learning to create an

improved semi-supervised multi-view learning approach which creates the views auto-

matically. This algorithm is illustrated in figure 4.1.

In each iteration, the results of attribute clustering will be used to improve the views.

Then, the improved classifier will be used to improve attribute clustering by augmenting

its labeled training set, with the most confident new labeled instances.
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Figure 4.2: Illustration of feature selection methods which rank the attributes and select

a few first ranked attributes. Red, green and blue show 3 different groups of corre-

lated attributes and diameter of circles show the amount of information they provide for

classification.

As we see in this figure, this approach has two main components: Supervised multi-

view classification and supervised attribute clustering. The next two subsections discuss

these two components in more detail and the last subsection shows how they interact

with each other in the iterative process.

4.1.1 The Attribute Clustering Component

The lower half of figure 4.1 shows the usage of the attribute clustering component in the

iterative framework. It uses the augmented training set to provide clusters of attributes.

The results are then used by the multi-view learning component to refine the views.

Pairwise partial correlation between two attributes given a third one, in this case the

class, is used as the similarity measure for attribute clustering. It is used to generate a

matrix which contains the partial correlation between every two attributes. The inverse of

this similarity matrix is used as distance matrix, for attribute clustering. Agglomerative

Nesting (AGNES) (Kaufman and Rousseeuw, 2009), which is a hierarchical clustering

method, is used for attribute clustering in our experiments. The use of this clustering

algorithm is not part of the proposed framework and any clustering algorithm which uses

the similarity measure of interest could be used for this purpose. Agnes takes as input the
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Figure 4.3: Illustration of feature selection using attribute clustering. Red, green and

blue show 3 different groups of correlated attributes and diameter of circles show the

amount of information they provide for classification.

distance matrix, which in this case is calculated using correlation between attributes. It

then returns hierarchical clustering results in the form of a tree. Therefore, any number

of clusters, if needed, could be obtained by cutting the tree at different locations. In the

first few iterations, when labeled data is limited, attribute clustering will be more like a

random view splitting algorithm. Later, when the labeled training set is enriched, the

attribute clustering results will improve.

4.1.2 The multi-View Learning Component

The result of attribute clustering in each iteration is used for refining the views used

by the multi-view learner. The power of our approach comes from utilizing the largest

number of discriminating views in multi-view learning. This is obtained by combining

attribute ranking methods with attribute clustering to perform attribute selection for

views.

Many feature selection methods rank the attributes based on the amount of informa-

tion they provide for classification. They use a measure like chi-squared or information
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Figure 4.4: View splitting process to create multi-view learner.

gain to sort the attributes and then select those which provide the most information.

However, if two selected attributes with good ranks are highly correlated, then there

is no point in selecting both. Figure 4.2 shows this problem. The circles represent at-

tributes. The diameter of the circles represent the amount of information they provide

and red, green and blue show three different groups of correlated attributes.

In our approach the result of attribute clustering is used to prevent this problem in

feature selection and improve the multi-view classifier. As illustrated in figure 4.3, after

attribute clustering, the attributes in each cluster are sorted based on the chi-squared

measure in decreasing order. Then, the first attribute from each cluster is selected to

create a feature set for the first view. So the first individual view classifier picks up the

most useful attribute from each cluster and it will be the best individual view classifier,

but we need to use more classifiers for voting. Generally, when creating the j th view, we

will pick the ranked j attribute from each cluster. If a cluster k has less than j attributes,

the attribute with highest Chi-Squared value from the same cluster will represent the

cluster k in the j th view. This enables our approach to create overlapping views if

needed.

As we go towards the last attribute in each cluster the individual view classifiers will

get weaker and weaker because the attributes which remain in each cluster are the least
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useful ones for classification. Therefore, at some point the rest will not be good enough

to be added to the multi-view classifiers. In order to find out if a created view is useful

we use a function f to calculate the usefulness of the given view:

f(atti) =

∑n
i=1ChiSquared(atti, class)

n
(4.1)

Where atti represents the attribute with index i, n is the number of attributes in

the created view, class is the class label of the instances and ChiSquared calculates

the Chi-Squared measure between atti and class. For each individual view the value of

this function is compared with a threshold, 0.2, which is obtained empirically, to decide

whether the view is useful or not. The minimum number of views used to train the multi-

view classifier is two. Therefore, when the number of views which pass the threshold is

less than two, the two views with highest chi-squared measure will be used to train the

multi-view classifier. Consequently the number of views, used by the multi-view classifier,

could be different in each of the iterations. Figure 4.4 shows the view splitting procedure

to create our multi-view learning approach.

4.1.3 Proposed Algorithm

The algorithm for this semi-supervised attribute clustering approach is shown in algo-

rithm 2. It receives, as input, a labeled training set L with m instances and a attributes

and an unlabeled training set U with n instances and a attributes. This algorithm has

two main steps, the classification and attribute clustering.

In the first iteration of the algorithm, the initialization in line 4 obtains an initial view

split by using attribute clustering with original labeled data. Then the iterative process

starts by training the multi-view learner on the labeled set in line 8. The multi-view

classifier is used to label unlabeled data in line 9. The output of this step is a set of new

labeled instances paired with a measure of confidence in the new label. This confidence

is used in line 10 to add the most confident new labeled instances to the labeled training

set. Then, in line 11, the new labeled training set is used with the supervised attribute

clustering algorithm to find more accurate clusters of attributes. The output of the

attribute clustering algorithm is then used in the next iteration, in line 6, to refine the

views and improve the multi-view classifier.

The algorithm iterates until all the unlabeled data is used to augment the training set

or there is no more confident new labeled instances to be added to the labeled training

set. At the end, the algorithm outputs the views and the classifier which is trained on
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Algorithm 2 Proposed semi-supervised attribute clustering approach

1: Input Labeled training set L with M instances and A attributes, Unlabeled train-

ing set U with N instances and A attributes, Number of Clusters of attributes P

(optional)

2: repeat

3: if First Iteration then

4: Define the initial views of attributes

5: else

6: Use new clusters of attributes F to refine views

7: end if

8: Train a multi-view classifier C on the Labeled training set L using views

9: Classify unlabeled instances U

10: Add K most confident new labeled instances to the labeled set (M = M+K,L =

L ∪ {K most confident new labeled instance})
11: Use new labeled set with an attribute clustering method to provide clusters of

attributes F

12: until No new instances added

13: Output: The set of clusters and the classifier trained in the final iteration
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the final iteration.

4.2 Evaluation

In this section the proposed algorithm is evaluated using real text data sets and microar-

ray gene expression data. AUC is used as evaluation measure to compare our approach

with others. Our results show that the performance of our approach tends to be close to

that of the ideal supervised classifier, which has access to all the data labeled, while it

is statistically significantly better than that of the other approaches.

4.2.1 Data Preparation

The text data sets that we have used come from two different sources. The first group

introduced by Cohen et al. (2006) in their research on automated classification of docu-

ment citations for systematic review of drug classes1. The original data sets are in form

of sets of text documents, papers. We use Term Frequency-Inverse Document Frequency

(TF-IDF) to prepare text data for our experiments. TF-IDF is a numerical statistic

which demonstrates the importance of a word in an individual document, considering all

the documents in the collection. We extracted TF-IDF from each document, considering

1-grams and 2-grams of the title, abstract of the paper, main header and sub header

keywords. The stop words are removed from 1-grams. These data sets are binary and

strongly imbalanced.

The second group is obtained from the Weka data set website (Forman and Packard)2.

The problems come from LA Times, TREC, OHSUMED, etc. These data sets are

originally multi-class (1-of-n) text data sets, whose word count feature vectors have

already been extracted by Han and Karypis (2000). We extracted two-class data sets

from them which are fairly imbalanced.

We have also evaluated our approach on microarray data using GEMLeR data sets 3

(Stiglic and Kokol, 2010) which include a collection of gene expression data sets. This

repository consists of gene expression data from 1545 tumor samples which are distributed

into nine tumor tissue types, the class labels. GEMLeR data sets are divided in two

sections, ‘one-versus-all’ (OVA) which includes a data set for each tumor tissue type

1This data is available at http://skynet.ohsu.edu/cohenaa/systematic-drug-class-review-data.html
2This data is available at http://weka.wikispaces.com/Datasets
3This data is available at http://gemler.fzv.uni-mb.si/index.php
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versus all other types, and ‘all-paired’ (AP) which includes a data set for every pair of

tumor tissue types. We have used all of these data sets in our experiments.

4.2.2 Competitor Algorithms

The proposed algorithm (ours) is compared with seven different competitors:

• The Simple Learner (Simple) is a supervised classifier which only has access

to the labeled data. In each experiment the base classifier is trained on the labeled

training set and then tested using the test set. The number of the labeled instances,

in our experiments, is very limited, similar to real world problems, so this classifier

would represent the lower boundary of learners.

• Random Split (Random) is an unsupervised splitting method, introduced by

Du et al. (2011), which randomly splits the attributes in two views. The resulting

views are then used to train co-training in our experiments.

• Entropy Split (Entropy) is a supervised splitting method, proposed by Du et al.

(2011), which uses entropy, a numeric measure that shows how predictive of the

class the feature would be. This method sorts the attributes based on their entropy

and then assigns features with odd and even indexes to the first and second views

respectively.

• Co-training Style (Co-Style) is a semi-supervised classifier, proposed by Gold-

man and Zhou (2000), which is similar to co-training but removes the need for the

views. It uses two different learners that are both trained on the original training

set, instead of two separate views.

• Self-Training (Self) (Zhu, 2006) is a commonly used semi-supervised classifier

which iteratively trains a base classifier with the labeled training set, and then

classify the unlabeled data and augment the labeled training set with most confident

new labeled instances. This process continues until all the unlabeled data is used

or there is no more confident labeled instances.

• Unsupervised Split (UnSup) uses an unsupervised similarity measure (Pairwise

correlation between two attributes) to create the views. The views are then used

to train co-training.
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• Our approach (Ours) is proposed in section 4.1. We used algorithm 2 together

with the view definition approach that we presented in section 4.1.

• Ideal Learner (Ideal) is a supervised classifier which has access to the correct

label of all the data. The classification results of this classifier are the best that a

semi-supervised classifier can get because this classifier has all the data, including

the training set and the unlabeled set correctly labeled. So this classifier repre-

sents the upper boundary of possible classifiers. We propose our approach to get

performance as close as possible to this ideal, yet unrealistic, classifier.

4.2.3 Configuration

In semi-supervised learning, the smaller the labeled training set is, the more challenging

the classification problem. Some of the proposed semi-supervised approaches do not work

well, when the labeled training set is very small. That is why many researchers used very

small labeled training sets, 2, 3, 4, 5 instances in references (Sindhwani and Rosenberg,

2008), (Lv et al., 2012), (Brefeld and Scheffer, 2006) and (Jiang et al., 2008) respectively,

to show the reliability of their semi-supervised approaches. In our experiments we used

3, 5 and 10 labeled instances as training sets to explore the effect of the size of the labeled

training set on our approach. The training instances are randomly selected, considering

the distribution of the class labels in the original data sets, with the constraint that at

least one instance from each class should be included in the training set.

Text and microarray data sets contain thousands of attributes, including many which

do not have any helpful information for classification. Therefore, the classifiers applied

on the whole feature set are not able to learn the pattern in the data and consequently

are close to the random classifier. This problem is usually solved by selecting a subset of

attributes using a feature selection algorithm (Jiang et al., 2004; Raskutti et al., 2002b).

In our experiments chi-squared measure is used to reduce the size of the problem. We

used 50 and 100 attributes in different experiments to compare the effect of the size of

the selected feature set.

To explore the effect of the base classifier on the results, Näıve Bayes, as a simple

Bayes classifier, and J48, as a representative of decision trees, are used in two different

set of experiment.

We consider the experiment with 5 labeled training instances, 50 attributes and Näıve

Bayes as the base classifier, to be our benchmark experiment. Then we compare bench-

mark experiment with new experiments with the same setting but different numbers of
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Figure 4.5: Parallel coordinates plot for benchmark experiment.

training instances, different numbers of attributes or different base classifiers, to see the

effect of these changes.

The average AUC has been calculated in each experiment, using five-fold cross vali-

dation. Five-fold cross validation is used because the number of instances is limited in

these experiments. As Japkowicz and Shah (2011) suggested in their book, Friedman’s

test with 95% confidence interval, is applied to see if the proposed algorithms are signif-

icantly different in terms of AUC and the Nemenyi test is used as post hoc test to find

out what these differences correspond to.

4.2.4 Results and Discussion

Table 4.2 shows the result of our benchmark experiment. Table 4.1 and 4.3 show the

results of experiments with the same setting but different numbers of training instances (3

and 10). The first part of these tables includes average AUC of each approach on the text

data sets over the five-fold cross-validation. In all these three experiments the average

AUC of our approach is better than that of the other approaches, while it is close to that

of the classifier produced by the ideal learner discussed earlier. These tables indicate

that the average AUC of each learner increases when the size of the labeled training

set increased. This is quite normal because more labeled instances tend to generate

better results. As we see in these tables, when increasing the size of the training set, the

changes in the average AUC of our approach is less than that of the other learners while

the average AUC of our approach is always higher. It means that our approach is not as
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sensitive as that of the simple learner to the size of the training set, in terms of AUC.

Figure 4.5 illustrates the average AUC of each approach using a line for each data

set, for benchmark experiment, on a parallel coordinates plot. This shows that the AUC

of our approach is almost always higher than the simple approach and self-training while

it is close to the ideal, yet unrealistic, supervised classifier. As mentioned in section 4.2.1

the data sets used in these experiments are all text data sets but they come from two

different sources. The first group introduced by Cohen et al. (2006) and the second group

is obtained from the Weka data set website (Forman and Packard). The former data sets

are more imbalanced, therefore the classification task on them is more challenging. That

is the reason of the significant difference between the AUC of these two groups of data

sets shown in figure 4.5.

In order to find out if these results are statistically significantly different, we used

Friedman’s test with the null hypothesis being that the classifiers being compared are

alike. The null hypothesis rejected by p-value=1.469e-05, 6.955e-05 and 6.104e-05 on the

results of our experiments using 3, 5 and 10 labeled instances respectively. So we used

Nemenyi test as a post hoc test to find out where the difference come from.

The second part of tables 4.1, 4.2 and 4.3 show the p-values from the Nemenyi test.

We use 95% as confidence interval so each p-value less than 0.05 shows that the two

compared methods are statistically significantly different.

The result of the post hoc tests for all three experiments, with different numbers of

labeled instances, are the same. Our approach and the ideal one, compared with every

other existing method individually, are statistically significantly better in terms of AUC.

Comparing our approach to the ideal classifier, which has access to the labels for both the

labeled training set and the unlabeled set, the average AUC is lower but this difference is

not statistically significant. This means that although our new approach is not as good

as the ideal classifier, this difference is not significant. In reality, this ideal classifier is not

available. We use semi-supervised approaches as an alternatives to get similar results.

All these comparisons show that the performance of our approach tends to be close to

the ideal classifier, while it is statistically significantly better than all other approaches.

These tables also show that the Random Split, Entropy Split and Co-training Style

methods are not statistically significantly different from each other as well as the Self-

training and Unsupervised Split.

The same setting as the benchmark experiment, except that the J48 is the base

classifier, is used in an experiment to explore the effect of the classifier on the results.

The result of significant tests on this experiment, shown in table 4.4, is the same as that of
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Table 4.1: Average AUC and P-values calculated by Friedman’s and Nemenyi test on

Text data sets (Setting: 3 labeled instances, 50 attributes, Näıve Bayes)

Sim Ran Entr Co- Un

ple dom opy Style Sup Self Ours Ideal

fbis(111,142) 0.87 0.929 0.93 0.937 0.991 0.995 0.997 0.995

fbis(111,189) 0.964 0.985 0.983 0.939 1 1 0.999 1

fbis(142,189) 0.941 0.93 0.922 0.928 0.974 0.963 0.998 0.973

new3s(111,142) 0.898 0.907 0.926 0.944 0.98 0.996 0.996 0.998

new3s(189,142) 0.872 0.919 0.923 0.906 0.932 0.976 0.992 0.987

new3s(189,301) 0.929 0.787 0.801 0.873 0.938 0.928 0.961 0.957

ohscal(An,Ca) 0.719 0.899 0.889 0.751 0.941 0.961 0.974 0.975

ohscal(An,Dn) 0.772 0.781 0.736 0.768 0.843 0.846 0.943 0.946

ohscal(Ca,Dn) 0.781 0.901 0.879 0.748 0.94 0.936 0.963 0.961

ohscal(Ca,To) 0.718 0.776 0.747 0.699 0.924 0.929 0.958 0.944

ACEInhibitors 0.702 0.694 0.704 0.692 0.7 0.741 0.763 0.755

ADHD 0.886 0.876 0.921 0.856 0.956 0.939 0.959 0.96

AtypicalA 0.633 0.627 0.636 0.622 0.658 0.689 0.663 0.709

ProtonP 0.654 0.672 0.693 0.636 0.701 0.779 0.783 0.786

Statins 0.663 0.602 0.643 0.73 0.654 0.672 0.728 0.802

Average 0.8 0.819 0.822 0.802 0.875 0.89 0.912 0.917

Methods P-value

*Ours - Co-Style 5.821481e-06

*Ours - Entropy 4.805973e-03

*Ours - Random 1.381133e-03

*Ours - Simple 7.303006e-05

Entropy - Co-Style 5.617145e-01

Random - Co-Style 7.771378e-01

Methods P-value

Ours - Ideal 0.9916245971

*Ours - Self 0.0249834276

*Ours - UnSup 0.0008691466

Self - *Ideal 0.0103920166

UnSup - *Ideal 0.0002028328

UnSup - Self 0.7433663827
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Table 4.2: Average AUC and P-values calculated by Friedman’s and Nemenyi test on

Text(Benchmark Setting: 5 labeled instances, 50 attributes, Näıve Bayes)

Sim Ran Entr Co- Un

ple dom opy Style Sup Self Ours Ideal

fbis(111,142) 0.962 0.921 0.931 0.918 0.991 0.993 0.993 0.995

fbis(111,189) 0.991 0.994 0.992 0.992 0.997 1 1 1

fbis(142,189) 0.965 0.932 0.91 0.933 0.979 0.966 0.997 0.973

new3sc(111,142) 0.961 0.93 0.928 0.94 0.993 0.995 0.994 0.998

new3s(189,142) 0.907 0.935 0.923 0.893 0.979 0.975 0.994 0.987

new3s(189,301) 0.931 0.8 0.828 0.894 0.941 0.851 0.969 0.957

ohscal(An,Ca) 0.864 0.924 0.925 0.809 0.962 0.962 0.974 0.975

ohscal(An,Dn) 0.862 0.812 0.831 0.773 0.92 0.917 0.946 0.946

ohscal(Ca,Dn) 0.896 0.881 0.903 0.849 0.965 0.944 0.966 0.961

ohscal(Ca,To) 0.859 0.824 0.791 0.837 0.935 0.925 0.955 0.944

ACEInhibitors 0.706 0.696 0.69 0.69 0.723 0.741 0.754 0.755

ADHD 0.953 0.92 0.92 0.921 0.958 0.935 0.96 0.96

AtypicalA 0.598 0.633 0.625 0.603 0.631 0.657 0.68 0.709

ProtonP 0.704 0.713 0.72 0.629 0.647 0.784 0.776 0.786

Statins 0.65 0.656 0.645 0.622 0.63 0.671 0.621 0.802

Average 0.854 0.838 0.837 0.82 0.883 0.888 0.912 0.917

Methods P-value

*Ours - Co-Style 8.691290e-06

*Ours - Entropy 9.753817e-04

*Ours - Random 3.643670e-03

*Ours - Simple 4.267348e-02

Entropy - Co-Style 8.615484e-01

Random - Co-Style 6.695270e-01

Methods P-value

Ours - Ideal 0.914155300

*Ours - Self 0.023989818

*Ours - UnSup 0.012114262

Self - *Ideal 0.002920296

UnSup - *Ideal 0.001217282

UnSup - Self 0.996343168
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Table 4.3: Average AUC and P-values calculated by Friedman’s and Nemenyi test on

Text data sets (Setting: 10 labeled instances, 50 attributes, Näıve Bayes)

Sim Ran Entr Co- Un

ple dom opy Style Sup Self Ours Ideal

fbis(111,142) 0.988 0.918 0.927 0.93 0.996 0.993 0.998 0.995

fbis(111,189) 0.998 0.99 0.993 0.992 1 1 1 1

fbis(142,189) 0.975 0.924 0.933 0.931 0.989 0.966 0.995 0.972

new3s(111,142) 0.991 0.929 0.921 0.931 0.997 0.994 0.994 0.998

new3s(189,142) 0.968 0.923 0.93 0.911 0.991 0.977 0.993 0.987

new3s(189,301) 0.939 0.84 0.882 0.885 0.953 0.923 0.964 0.957

ohscal(An,Ca) 0.885 0.927 0.929 0.847 0.946 0.959 0.974 0.975

ohscal(An,Dn) 0.904 0.866 0.858 0.857 0.918 0.937 0.946 0.946

ohscal(Ca,Dn) 0.906 0.892 0.898 0.858 0.956 0.946 0.972 0.961

ohscal(Ca,To) 0.905 0.84 0.824 0.866 0.925 0.924 0.955 0.943

ACEInhibitors 0.707 0.682 0.681 0.685 0.715 0.709 0.755 0.755

ADHD 0.951 0.92 0.92 0.923 0.956 0.935 0.963 0.96

AtypicalA 0.611 0.629 0.62 0.595 0.663 0.656 0.672 0.709

ProtonP 0.617 0.71 0.692 0.634 0.689 0.788 0.789 0.786

Statins 0.654 0.658 0.662 0.652 0.71 0.736 0.728 0.802

Average 0.867 0.843 0.845 0.833 0.894 0.896 0.913 0.917

Methods P-value

*Ours - Co-Style 2.117069e-06

*Ours - Entropy 8.262105e-05

*Ours - Random 6.659463e-06

*Ours - Simple 4.388736e-02

Entropy - Co-Style 9.440947e-01

Random - Co-Style 9.984764e-01

Methods P-value

Ours - Ideal 0.847950316

*Ours - Self 0.000171719

*Ours - UnSup 0.013007246

Self - *Ideal 0.004517434

UnSup - Ideal 0.117659114

UnSup - Self 0.683464011
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Table 4.4: Average AUC and P-values calculated by Friedman’s and Nemenyi test on

Text data sets (Setting: 5 labeled instances, 50 attributes, J48)

Sim Ran Entr Co- Un

ple dom opy Style Sup Self Ours Ideal

fbis(111,142) 0.962 0.916 0.924 0.921 0.908 0.841 0.946 0.987

fbis(111,189) 0.834 0.921 0.92 0.895 0.869 0.844 0.936 0.989

fbis(142,189) 0.982 0.922 0.925 0.937 0.925 0.919 0.994 0.989

new3s(111,142) 0.891 0.928 0.928 0.904 0.848 0.854 0.965 0.995

new3s(189,142) 0.854 0.855 0.87 0.878 0.875 0.823 0.875 0.847

new3s(189,301) 0.789 0.911 0.916 0.875 0.789 0.789 0.943 0.966

ohscal(An,Ca) 0.793 0.849 0.853 0.801 0.793 0.793 0.893 0.95

ohscal(An,Dn) 0.693 0.923 0.923 0.867 0.693 0.693 0.89 0.963

ohscal(Ca,Dn) 0.65 0.825 0.82 0.79 0.659 0.659 0.848 0.912

ohscal(Ca,To) 0.572 0.652 0.661 0.649 0.633 0.598 0.662 0.607

ACEInhibitors 0.891 0.92 0.919 0.922 0.891 0.891 0.934 0.776

ADHD 0.542 0.613 0.617 0.62 0.591 0.572 0.606 0.595

AtypicalA 0.583 0.62 0.62 0.642 0.6 0.6 0.67 0.699

ProtonP 0.573 0.6 0.621 0.617 0.605 0.599 0.621 0.627

Statins 0.56 0.574 0.578 0.59 0.617 0.612 0.648 0.6

Average 0.745 0.802 0.806 0.794 0.753 0.739 0.829 0.833

Methods P-value

*Ours - Co-Style 4.433658e-02

Ours - Entropy 2.294131e-01

*Ours - Random 1.580284e-02

*Ours - Simple 9.933368e-07

Entropy - Co-Style 9.581112e-01

Random - Co-Style 9.969144e-01

Methods P-value

Ours - Ideal 0.9916246481

*Ours - Self 0.0001307217

*Ours - UnSup 0.0309404987

Self - *Ideal 0.0005864788

UnSup - Ideal 0.0675156171

UnSup - Self 0.4721436347
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Table 4.5: Average AUC and P-values calculated by Friedman’s and Nemenyi test on

Text data sets(Setting: 5 labeled instances, 100 attributes, Näıve Bayes)

Sim Ran Entr Co- Un

ple dom opy Style Sup Self Ours Ideal

fbis(111,142) 0.97 0.93 0.917 0.909 0.989 0.986 0.996 0.986

fbis(111,189) 0.983 0.984 0.984 0.956 0.993 0.998 1 1

fbis(142,189) 0.952 0.902 0.934 0.884 0.987 0.918 0.996 0.959

new3s(111,142) 0.958 0.936 0.935 0.939 0.994 0.984 0.998 0.992

new3s(189,142) 0.933 0.909 0.884 0.91 0.98 0.971 0.995 0.987

new3s(189,301) 0.866 0.836 0.816 0.889 0.884 0.902 0.978 0.958

ohscal(An,Ca) 0.866 0.887 0.902 0.822 0.952 0.947 0.974 0.962

ohscal(An,Dn) 0.723 0.769 0.808 0.668 0.92 0.877 0.965 0.941

ohscal(Ca,Dn) 0.87 0.919 0.923 0.834 0.94 0.951 0.971 0.975

ohscal(Ca,To) 0.807 0.841 0.865 0.823 0.947 0.94 0.958 0.959

ACEInhibitors 0.719 0.691 0.692 0.715 0.75 0.765 0.791 0.805

ADHD 0.949 0.917 0.915 0.919 0.954 0.934 0.946 0.955

AtypicalA 0.653 0.677 0.676 0.651 0.642 0.714 0.688 0.75

ProtonP 0.694 0.699 0.694 0.686 0.778 0.715 0.724 0.797

Statins 0.692 0.672 0.652 0.641 0.733 0.752 0.748 0.788

Average 0.842 0.838 0.84 0.817 0.896 0.89 0.915 0.921

Methods P-value

*Ours - Co-Style 3.729910e-07

*Ours - Entropy 3.145261e-04

*Ours - Random 8.409118e-04

*Ours - Simple 1.080850e-02

Entropy - Co-Style 7.096187e-01

Random - Co-Style 5.617369e-01

Methods P-value

Ours - Ideal 0.998991680

*Ours - Self 0.003915183

*Ours - UnSup 0.036169506

Self - *Ideal 0.002242829

UnSup - *Ideal 0.023956682

UnSup - Self 0.894325730
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the benchmark experiment which helps to conclude that regardless of the base classifier

our approach is statistically significantly better than other approaches while it is not

significantly different from ideal classifier. The only approach which is not statistically

significantly different from our approach in this experiment is the entropy split, however

the average AUC of our approach is still better.

Comparing the average AUC with that of the benchmark experiment shows that the

average AUC of the ideal classifier in this experiment is lower while the other three

approaches have higher values. This confirms the expectations. According to Kohavi

(1996), when the labeled training set is small Näıve Bayes tends to have better perfor-

mance, while, when there is enough labeled instances J48 performs much better.

The same settings as the benchmark experiment, except that 100 attributes are used

instead of 50, are used in an experiment to explore the effect of the size of the feature

set on the results. Again the results of the significant tests, which are shown in table

4.5, are the same. The only difference is that the accuracy of our approach and ideal

classifier are increased because more attributes provide more information.

We have also evaluated our approach on microarray gene expression data using the

GEMLeR data sets (Stiglic and Kokol, 2010) to show that our approach works on other

domains. In one experiment we used the same settings as our benchmark experiment

to perform experiments on the GEMLeR data sets. In two another complementary

experiments we used benchmark setting except that 3 and 10 training instances are

used. Table 4.6, 4.7 and 4.8 show the average AUC and the result of Friedman’s and

Nemenyi test on all 42 data sets in the GEMLeR repository for these three experiments.

More detailed results including the average AUC of each approach on each dataset is

provided in the Appendix. The final conclusion obtained from the statistical tests are

the same for these experiments, the performance of our approach, applied on microarray

gene expression data, tends to be close to the ideal classifier, while it is statistically

significantly better than other approaches. The difference in our approach and other

existing ones is more clear because the p-values are much smaller. The reason is that the

number of data sets used in experiments on Microarray data is larger than the number

of text datasets which are used in our experiments.

4.3 Advantages, Limitations and Future Work

This new approach provides a solution to use multi-view learning on single view data sets,

specifically when labeled data is limited. One of the main advantages of this approach is
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Table 4.6: Average AUC and P-values calculated by Friedman’s and Nemenyi test On

Microarray data sets (3 labeled instances, 50 attributes, Näıve Bayes)

Sim Ran Entr Co- Un

ple dom opy Style Sup Self Ours Ideal

Average 0.86 0.916 0.918 0.911 0.938 0.937 0.958 0.963

*Ours - Co-Style 3.358526e-09

*Ours - Entropy 1.520047e-08

*Ours - Random 3.601730e-09

*Ours - Simple 0.000000e+00

Entropy - Co-Style 9.996098e-01

Random - Co-Style 9.999753e-01

Ours - Ideal 7.948115e-01

*Ours - Self 1.318843e-09

*Ours - UnSup 5.127753e-09

Self - *Ideal 1.799215e-07

UnSup - *Ideal 3.036622e-07

UnSup - Self 9.997912e-01
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Table 4.7: Average AUC and P-values calculated by Friedman’s and Nemenyi test On

Microarray data sets (5 labeled instances, 50 attributes, Näıve Bayes)

Sim Ran Entr Co- Un

ple dom opy Style Sup Self Ours Ideal

Average 0.933 0.919 0.919 0.924 0.939 0.931 0.958 0.963

*Ours - Co-Style 7.336999e-10

*Ours - Entropy 3.996803e-15

*Ours - Random 1.110223e-16

*Ours - Simple 6.521918e-06

Entropy - Co-Style 4.736980e-01

Random - Co-Style 1.863368e-01

Ours - Ideal 3.383465e-01

*Ours - Self 3.430589e-12

*Ours - UnSup 2.231946e-08

Self - *Ideal 3.068284e-07

UnSup - *Ideal 1.627455e-04

UnSup - Self 5.921200e-01
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Table 4.8: Average AUC and P-values calculated by Friedman’s and Nemenyi test On

Microarray data sets (10 labeled instances, 50 attributes, Näıve Bayes)

Sim Ran Entr Co- Un

ple dom opy Style Sup Self Ours Ideal

Average 0.939 0.922 0.923 0.927 0.939 0.938 0.959 0.963

*Ours - Co-Style 6.158845e-10

*Ours - Entropy 1.110223e-16

*Ours - Random 1.110223e-16

*Ours - Simple 1.169602e-02

Entropy - Co-Style 3.484508e-01

Random - Co-Style 3.484143e-01

Ours - Ideal 5.921217e-01

*Ours - Self 1.997162e-10

*Ours - UnSup 5.789313e-11

Self - *Ideal 1.294623e-06

UnSup - *Ideal 1.428770e-07

UnSup - Self 9.871074e-01
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that it improves the views during semi-supervised learning. This is done by integrating

attribute clustering with multi-view learning. This advantage addressed the problem

recently identified by Du et al. (2011): given a small labeled training sets the view

splitting methods are unreliable.

Another advantage of our approach is that, unlike some of the proposed view splitting

methods, it is not limited only to two separate views. This approach creates multiple

overlapping views and uses those which represent enough information about the class,

in terms of Chi-Squared measure. Di and Crawford (2012) showed that increasing the

number of views increases the diversity and consequently improves the performance of

multi-view learning.

When labeled data is more common, this approach will not be so beneficial. With

sufficient labeled instances supervised attribute clustering could be used to create views

and there is little point in using a semi-supervised approach. We will investigate, in our

future work, the effect of the proposed view splitting method for creating the views in a

supervised manner.

In our experiments, we used two class text and microarray gene expression data sets.

In future work, we will extend the experiments to multi-class data sets. We will also

investigate the effect of applying attribute clustering in additional ways to improve the

classifier in the iterative process, i.e. the use of attribute clustering to improve missing

attribute value handling.

4.4 Summary

In this chapter, we have proposed a methodology for creating effective views, for single

view data sets with a very small number of labeled instances, to improve the learning

performance of multi-view learners. In this new approach we integrate view splitting

with the learning process. We combine attribute clustering with multi-view learning, in

a semi-supervised manner, to solve the problem of automatic view definition for multi-

view learning, when the labeled data is limited. The proposed approach is evaluated

using experiments on real world text and microarray gene expression data sets. Our ex-

perimental results showed that the proposed approach is significantly better than all the

other existing methods, while it is close to and not significantly different from the ideal,

yet unrealistic, supervised classifier which has access to the labels for all the instances

during the learning. These experiments show that when the labeled set is very small,

unlike other approaches, our approach is applicable and the result is not significantly
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inferior to using a completely labeled data set.



Chapter 5

Improving Missing Attribute-value

Handling

This chapter proposes the use of attribute clustering to improve missing attribute value

handling. When talking about missing attribute-value handling, we should distinguish

between missing attribute-values at induction time in the training data (Grzyma la-Busse

and Grzymala-Busse, 2005), and at prediction time in test data or the upcoming new

instances (Saar-Tsechansky and Provost, 2007). The first section shows how attribute

clustering can be used to improve missing value handling at induction time by limiting

the attributes used to find the missing value. The second section shows how attribute

clustering can be used to make reduced-feature models, a missing attribute-value han-

dling method for prediction time, applicable on data sets with large number of attributes.

We show, how these two usages of attribute clustering for improving missing attribute-

value handling, can be used in our proposed framework to improve attribute clustering,

missing attribute-value handling and classification, when labeled data is limited.

5.1 Improving Missing Attribute-value Handling at

Induction Time

Various approaches have been proposed for handling missing attribute-values at induction

time. A group of well-known missing attribute-value handling methods are designed

based on the idea of closest fit. This idea originated in Grzyma la-Busse et al. (1999) and

it has two different variations: The Global and Concept Closest Fit.

The Global Closest Fit method looks into the pool of instances with known values

71
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and replaces a missing value by the value of another instance which is the closest fit to the

one with missing value, based on Manhattan distance measure. This method considers

the class label as one of the attributes. It leads to find the closest fit from other classes

in some cases. Another variation of this method, the Concept Closest Fit method is

proposed to solve this problem. The only difference, comparing to the global closest fit

method, is that the search space is limited to the subset of instances with the same class

label. This decreases the search time and also improves the accuracy of the value found

for missing attribute-value.

Acording to Suguna and Thanushkodi (2011), although several approaches are pro-

posed for missing attribute value handling at induction time, many based on the idea of

closest fit (Gaur and Dulawat, 2011; Gaur, 2012, 2014), the one used more frequently is

deleting instances containing at least one missing value. If many instances have missing

attribute-values, different variations of common value methods, such as assigning an av-

erage or the most common value, are used alternatively. Grzymala-Busse et al. (2002)

and Grzymala-Busse et al. (2005) concluded that even though the closet fit methods, un-

like common value methods, consider the attribute-values of each instance when looking

for its missing values, they are not better than common value methods. The computa-

tional time of closest fit methods are high because in order to find the missing value of

an instance, they need to calculate its distance to all other instances. Additionally, the

feature space can include attributes which are completely unrelated to the attribute with

missing value and such attributes mislead the process of finding the closest fit. Common

Value methods, have actually removed all the attributes except the one with missing at-

tribute value from consideration. This removes the misleading attributes but it removes

useful ones as well.

When looking for the closest fit in such cases, using a subset of the feature space,

reduces the computational time. If the subset includes all the related attributes, it will

improve the accuracy of the value found for replacing the missing attribute-value. Aha

(1992); Aha et al. (1991) improved instance based learning in IBK4 and IBK5 by using

the idea of removing (limiting) irrelevant attributes from feature set, when calculating

the distance measure. This is done by weighting attribute values in the computation of

distance measure, based on the relevance of attributes to the concept. When weights are

0 and 1 it will remove the irrelevant attributes by assigning weight 0 to them. The same

idea could be used in missing attribute value handling, when calculating the distance

measure to find the closest fit. In this case, when handling a missing attribute-value, the

irrelevant attributes to that attribute needs to be removed from the feature set.
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Li and Cercone (2006) used rough set theory to limit the attributes used to find the

closest fit, to the core or one of the reducts. Each reduct is a subset of the attributes

which is sufficient enough to represent the whole data. The core is the intersection of all

the reducts. This approach reduces the computational time but it is not effective in terms

of removing irrelevant attributes from the search. The reducts are generated considering

that each one should be able to represent the whole data, so it is not necessarily gathering

related attributes in each reduct. There also may be more than one reduct which contain

the attribute with missing value so it is not clear which one to use. According to Du

et al. (2011), when labeled data is limited it is difficult to find the underlying relationships

between attributes, therefore the reducts and the core would not be reliable.

We address these problems in this research, proposing a new approach, which uses

attribute clustering to limit the feature space to the related attributes. In other words,

we are changing the definition of closest fit to be the closest instance from the pool,

considering the subset of related attributes to the one with missing attribute-value. In

first step, the attribute clustering is used to create clusters of related attributes. Then,

in order to find a missing attribute-value, the cluster which the attribute belongs to will

be used as the feature set to find the closest fit. This will remove the irrelevant attributes

while it is drastically decreasing the computational time. When there is not enough la-

beled instances available to perform supervised attribute clustering, the proposed semi-

supervised framework in chapter 3 would be applicable. The result of attribute clustering

would be used in each iteration to improve the classifier by improving the missing at-

tribute value handling and the classifier will be used in each iteration to improve the

attribute clustering by augmenting its training set. Therefore the result would be a

better missing attribute value handling and also an improved semi-supervised classifier.

5.1.1 Attribute Clustering for Missing Attribute-value Han-

dling at Induction Time

The closest fit methods for missing attribute value handling, use a distance measure

between the instance with missing attribute-value and all other instances, to find the

closest fit. Then the missing attribute-value will be replaced with the value of the

corresponding attribute in the closest fit. The vectors of the attribute-values, which

are used to calculate the distances, in conventional closest fit methods, include all the

known attributes. However, the feature space can include attributes which are completely

irrelevant to the attribute with missing attribute-value. Such attributes not only mislead
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the process of finding the closest fit but they also increase the computational time of

calculating the distance.

The following section shows a simple example which illustrates how irrelevant at-

tributes can mislead the closest fit algorithms in calculating the distance and consequently

selecting the correct closest fit. This example also shows how attribute clustering could

be applied in such cases to filter the irrelevant attributes and improve the accuracy and

computational time of missing attribute value handling.

An Example of Missing Attribute-value Handling in the Presence of Irrelevant

Attributes

Table 5.1 shows a simple example with three cases. The attributes include symptoms of a

disease and the class shows whether the patient has the disease or not. The feature space,

symptoms, include three groups of correlated attributes. The three cases in this example

are positive. In first case the first and third group of symptoms are strong. In second

case only the third group of symptoms are obvious. The last case only shows strong

appearance of the first group of symptoms. In order to find the distance between two

cases we compare the vectors of attribute values. For any difference between attribute

values of a specific index we add 1 to the distance.

Considering the whole feature space to find the closest fit to the first case, the distance

of first case to the second and third one is 2 and 4, respectively. Therefore we will consider

the second case as the closest fit to the first case. However, the first group of symptoms

are strongly appeared in first case while the second case does not show any of these

symptoms. Consequently this case is not a good choice to find the missing attribute-

value in the first group of symptoms of the first case. Additionally, the first group of

symptoms are strongly appeared in first and third case so the third case is a better

candidate for this purpose. As we see in this example the irrelevant attributes in second

and third group mislead the calculation of the distance and consequently the closest fit

selection.

Now let’s consider that we use the correlated attributes, the attributes in the same

group, to calculate the distance measure and find the closest fit. Considering the first

group of correlated symptoms, the distance of first case to the second and third one is 2

and 0, respectively. It means that the third case is the closest fit to the first case. As we

see in this example, using correlated attributes, to the one with missing attribute-value,

removes the effect of misleading attributes and leads to a better calculation of missing

attribute-value.
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Table 5.1: An example data set including three groups of disease symptoms for three

patients.

Case Symptom group 1 Symptom group 2 Symptom group 3 Decision

1 Yes Yes ? Yes No No Yes Yes Yes Yes

2 No No No Yes No No Yes Yes Yes Yes

3 Yes Yes Yes No No No No No No Yes

In order to find the distance between two instances,in first approach, all the attributes

will be used, so 9 comparisons need to be done. When the cluster of relevant attributes

are used this number reduced to 3 comparisons.

This example shows how we can improve the accuracy and computational time of the

closest fit-based missing attribute-value handling methods by applying attribute cluster-

ing in the first step and then calculating the distance based on the relevant attributes.

Attribute Clustering in the Presence of Missing Attribute-values

Different methods have been proposed for attribute clustering. All of these approaches

use a distance matrix for the attributes to perform attribute clustering. The entry at

index (i , j ) of this matrix represents the distance between attribute i and j. Once the

distance matrix is calculated any clustering algorithm could be applied to cluster the

attributes. We use Aglomerative Nesting (AGNES) (Kaufman and Rousseeuw, 2009),

which is a hierarchical clustering method. It takes as input the distance matrix and

returns hierarchical clustering results in the form of a tree. For supervised attribute

clustering, a supervised similarity measure needs to be used. Pairwise partial correlation

between two attributes given a third one, in this case the class, is used as the supervised

similarity measure to calculate the distance matrix. It is used to generate a matrix

which contains the partial correlation between every two attributes. The inverse of this

similarity matrix is used as distance matrix, for attribute clustering.

When performing attribute clustering in the presence of missing attribute-values, the

missing data will be handled in the calculation of the distance matrix. So the second

part which uses the distance matrix as an input will not be changed. When filling the

entry (i, j ) of the distance matrix, we find the distance between two attributes i and j

given the class. So we use the vector of attribute values for each of the two attributes
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Figure 5.1: Calculating the distance between 2 attributes in presence of missing values.

and we calculate the similarity. In case of missing attribute values we will ignore the

instances with missing values when creating the two vectors for the two attributes and

the class. This process is illustrated in figure 5.1. So the two vectors which will be used

to calculate the distance between attribute i and j will not include any missing values.

Then we use the distance matrix to perform the attribute clustering.

Filtering out the Irrelevant Attributes Using the Result of Attribute Clus-

tering

According to Grzyma la-Busse and Grzymala-Busse (2005), conventional distance be-

tween attributes x and y is computed as follows

Distance(x, y) =
n∑

i=1

distance(xi, yi), (5.1)

where
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distance(xi, yi) =



0 if xi = yi;

1 if x and y are symbolic and xi 6= yi,

or xi =? or yi =?;

|xi−yi|
r

if xi and yi are numbers and xi 6= yi, where r is the

difference between the maximum and minimum of

the values of the numerical attribute i.

(5.2)

Equation 5.1 calculates the Manhattan distance between two attributes, x and y, as

the sum of the distances between their attribute-values. Equation 5.2 shows that the

distance between two attribute-values, xi and yi, is 0 if they are equal, 1 if one of the

values is missing or they are not equal but symbolic, and in other cases it is equal to the

normalized distance between the two attribute values.

We propose the use of attribute clustering to limit the attributes used in calculating

the distance measure. Our new approach calculates the sum of the distances between

values of the attributes, from the cluster of attributes to which belongs the attribute with

missing attribute-value. In order to do so the Equation 5.1 is changed in our approach

to Equation 5.3 which shows the new sum of distances as follows

Distance(x, y|Clusterj) =
∑

∀i∈Clusterj

distance(xi, yi), (5.3)

where Clusterj is the cluster of attributes to which the attribute with missing attribute-

value belongs to.

Therefore different distances between two cases x and y will be calculated based on

the cluster to which belongs the attribute with missing attribute value. In other words,

for missing values in different attributes of the same instance but different clusters, we

may find different closest fits. This will improve the value found for missing attribute-

value by filtering the misleading attributes when looking for the closest fit.

Removing the irrelevant attributes, when looking for the closest fit, speeds up the

search because less comparisons need to be made to calculate the distance and find the

closest fit. It also dramatically decreases the range of possible values for distance. Let’s

consider we have n attributes. If we use the whole feature set to calculate the distance

could vary from 0 to n but if we use a subset of size m relevant attributes, it will vary

from 0 to m. Decreasing the range of possible values for distance will increase the chance
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of having more closest fit instance for a particular instance. In case of multiple closest

fits we will calculate the average in case of numeric attributes and most frequently seen

value in case of symbolic attributes. Beside the removal of irrelevant attributes, this

averaging or voting will decrease the variance of the calculated value and consequently

will improve the results.

We call these new versions of Global Closest Fit and Concept Closest Fit methods,

with limited feature sets using attribute clustering, as Limited Global Closest Fit (LGCF)

and Limited Concept Closest Fit (LCCF), respectively.

Combining Missing Attribute-value Handling and Attribute Clustering Using

the Semi-supervised Framework

We proposed the use of attribute clustering for an improved missing attribute-value

handling method. The supervised attribute clustering can provide more accurate results

than unsupervised one because it considers more information, the class labels of the

instances, while clustering attributes. Therefore, it is able to extract patterns, in the

data, which the unsupervised attribute clustering is not able to catch. However, empirical

experiments (e.g. (Du et al., 2011; Palanikkumar and Scholar, 2013; Maji, 2012, 2011))

in machine learning literature proved that the result of supervised attribute clustering is

not reliable when we only use a small labeled dataset for training. The small number of

samples is not enough to distinguish the real relationships between attributes. This is

where we need semi-supervised attribute clustering to get benefit from both the labeled

and unlabeled instances.

In many real world learning tasks very few labeled instances are available. When

there is not enough labeled instances available to perform supervised attribute cluster-

ing, we can use the proposed semi-supervised framework in Semi-supervised ‘Attribute

Clustering’/Classification Framework chapter. This framework combines attribute clus-

tering with classification to create a semi-supervised attribute clustering approach. The

result of attribute clustering will be used, in each iteration, to improve the classifier.

In this case, this improvement will be done by using attribute clustering for improving

missing attribute value handling. Additionally, the classifier will be used, in each itera-

tion, to improve the attribute clustering by augmenting its training set. This process is

illustrated in figure 5.2.

The general algorithm for this semi-supervised approach is shown in algorithm 3.

It receives, as input, a labeled training set L with M instances and A attributes and

an unlabeled training set U with N instances and A attributes. This algorithm has two
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Algorithm 3 Proposed semi-supervised attribute clustering approach used for missing

attribute-value handling

1: Input Labeled training set L with M instances and A attributes, Unlabeled train-

ing set U with N instances and A attributes, Number of Clusters of attributes P

(optional)

2: repeat

3: if First Iteration then

4: Perform initial missing attribute-value handling

5: else

6: Use new clusters of attributes F to perform missing attribute-value handling

7: end if

8: Train a classifier C on the Labeled training set L

9: Classify unlabeled instances U

10: Add K most confident new labeled instances to the labeled set (M = M+K,L =

L ∪ {K most confident new labeled instance})
11: Use new labeled set with an attribute clustering method to provide clusters of

attributes F

12: until No new instances added

13: Output: The set of clusters, missing attribute-value handling and the classifier

trained in the final iteration
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Figure 5.2: Iterative semi-supervised multi-view learning combined with attribute clus-

tering.

main steps, the classification and attribute clustering.

In the first iteration of the algorithm, the initialization in line 4 obtains an initial value

for missing attribute-values. Then the iterative process starts by training the classifier

on the labeled set in line 8. The classifier is then used to label unlabeled data in line

9. The output of this step is a set of new labeled instances paired with a measure of

confidence in the new label. This confidence is used in line 10 to add most confident new

labeled instances to the labeled training set.

Then, in line 11, the new labeled training set is used with the supervised attribute

clustering algorithm to find more accurate clusters of attributes. The output of the

attribute clustering algorithm is then used in the next iteration, in line 6, to perform an

improved missing attribute-value handling and improve the classifier.

The algorithm iterates until all the unlabeled data is used to augment the training set

or there is no more confident new labeled instances to be added to the labeled training

set. At the end, the algorithm outputs the missing attribute-value handling results,

attribute clustering results and the classifier trained on the final iteration.

5.1.2 Evaluation

In this section the proposed method for missing attribute-value handling is evaluated

using real UCI data sets (Bache and Lichman, 2013). Our approach is compared, from
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Table 5.2: The 10 UCI data sets used in our experiments.

Number of Number of Class

Data set Instances Attributes Distribution

Spambase (Spamb) 4601 57 1813/2788

First-order theorem 3059 51 1286/1773

proving (heuristic 0) (FOTP)

QSAR biodegradation (QSAR) 1055 41 356/699

Breast Cancer Wisconsin 569 32 212/357

(Diagnostic) (BCWD)

Climate Model Simulation 540 18 46/494

Crashes (All) (CMSC)

Ionosphere (IoPh) 351 34 225/126

Climate Model Simulation 180 18 20/160

Crashes (Study 1) (CMSC1)

Climate Model Simulation 180 18 12/168

Crashes (Study 2) (CMSC2)

Climate Model Simulation 180 18 14/166

Crashes (Study 3) (CMSC3)

Connectionist Bench 208 60 97/111

(Sonar, Mines vs. Rocks) (CB)

different aspects, with other methods. Our experimental results show that not only the

performance of our new approach is better than others, in terms of AUC, but also the

extracted missing values are statistically significantly closer to the real values as well as

the computational time is statistically significantly lower than original closest fit method.

Configuration and Data Preparation

In order to show better the effectiveness of our proposed missing attribute-value handling

method at induction time, we used 10 different UCI data sets which has numerical

attributes with high variance in these experiments experiments. The higher variance

of the attribute-values increases the negative effect of the missing attribute-values on

the performance of the classifier trained on the data set. This helps to better show the

difference between different missing value handling methods. These data sets and their
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Table 5.3: Average AUC on UCI data sets (Setting: 3 missing values per instance

in one third of training instances)

Data set NMV GCA CCA GCF CCF LGCF LCCF Real

CMSC 0.5 0.583 0.583 0.566 0.546 0.551 0.546 0.596

CMSC1 0.631 0.605 0.605 0.614 0.628 0.616 0.66 0.68

CMSC2 0.5 0.509 0.509 0.538 0.551 0.524 0.531 0.549

CMSC3 0.5 0.49 0.49 0.513 0.503 0.531 0.504 0.575

CB 0.605 0.607 0.612 0.639 0.643 0.651 0.682 0.642

BCWD 0.848 0.888 0.888 0.896 0.871 0.864 0.866 0.92

FOTP 0.549 0.549 0.542 0.542 0.554 0.554 0.539 0.592

IoPh 0.68 0.812 0.812 0.806 0.814 0.799 0.815 0.841

QSAR 0.601 0.711 0.711 0.7 0.69 0.732 0.719 0.713

Spamb 0.723 0.76 0.758 0.753 0.759 0.759 0.751 0.749

Average 0.614 0.651 0.651 0.657 0.656 0.658 0.661 0.686

basic properties are listed in table 5.2. 30 instances are used as training set in each of

our experiments. The missing attribute-values are added to one third of the training

instances. We use different number of missing attribute-values per instance, 3, 5 and

10, in different experiments, to see the effect of the ratio of missing attribute values on

the results. The missing attribute-values are added to the attributes which has more

information about the class, to make the problem more challenging. In order to do

this, the attributes are sorted based on their chi-squared measure and the 3, 5 and 10

missing values are distributed between 5, 10 and 15 of the most important attributes,

respectively.

AUC is used as one of our evaluation measures to compare the performance of the

new variations of closest fit method with others. The Manhattan distance between the

calculated vector of missing values by our approach and the real ones is compared with

that of the other methods to show that more accurate values are calculated using our

approach. The time elapsed to find the missing values is also compared with closest fit

methods to show how these new variations are faster.
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Table 5.4: Top: Manhattan Distance between the vector of calculated values by different

approaches and the real values. Bottom: P-values calculated by Friedman’s and Nemenyi

test. (Setting: 3 missing values per instance)

Data set GCA CCA GCF CCF LGCF LCCF

CMSC 14.925 14.379 12.254 11.869 10.728 10.129

CMSC1 13.901 12.984 11.452 12.24 11.522 11.314

CMSC2 15.32 14.941 12.063 11.46 10.402 9.96

CMSC3 16.699 16.004 11.982 11.844 11.276 11.804

CB 10.498 9.529 9.987 7.903 6.824 7.006

BCWD 8.639 5.813 11.218 6.466 3.01 3.313

FOTP 8.454 9.754 9.563 8.555 3.101 4.304

IoPh 8.518 11.176 8.121 7.626 4.268 4.09

QSAR 9.444 8.98 20.59 13.427 4.835 4.911

Spamb 6.261 6.205 7.377 7.331 6.615 6.368

Average 11.266 10.977 11.461 9.872 7.258 7.32

Methods P-value Methods P-value

CCF - CCA 0.979939284 LGCF - CCF 0.205948576

GCA - CCA 0.979939449 GCF - GCA 0.999227027

GCF - CCA 0.999227046 *LCCF - GCA 0.001847451

*LCCF - CCA 0.023172573 *LGCF - GCA 0.002896250

*LGCF - CCA 0.033507144 *LCCF - GCF 0.006987019

GCA - CCF 0.706084176 *LGCF - GCF 0.010585561

GCF - CCF 0.891213535 LGCF - LCCF 0.999996612

LCCF - CCF 0.159554971
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Table 5.5: Top: Computational time in seconds. Bottom: P-values calculated by

Friedman’s and Nemenyi test. (Setting: 3 missing values per instance)

Data set GCF CCF LGCF LCCF

CMSC 30.672 25.704 15.428 12.924

CMSC1 33.33 24.948 13.922 12.138

CMSC2 29.274 26.544 14.958 12.252

CMSC3 24.87 19.716 11.962 9.642

CB 99.156 49.224 57.918 28.666

BCWD 46.734 24.474 25.746 13.52

FOTP 71.868 35.412 41.968 20.558

IoPh 51.096 27.36 31.116 16.824

QSAR 45.114 23.316 27.134 14.55

Spamb 47.778 23.808 19.494 9.572

Average 47.989 28.051 25.965 15.065

Methods P-value Methods P-value

GCF - CCF 4.632077e-02 *LCCF - GCF 9.765876e-07

*LCCF - CCF 4.610257e-02 *LGCF - GCF 4.613030e-02

LGCF - CCF 1.000000e+00 LGCF - *LCCF 4.625145e-02
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Competitor Algorithms

According to Grzymala-Busse et al. (2002) and Grzymala-Busse et al. (2005) the closest

fit methods are not preferred comparing to simple approaches like the one which removes

instances with missing attribute-values from training set or the one which replaces them

with common values. One reason is the poor accuracy of closest fit methods because

of the existence of irrelevant attributes, to the one with missing value, in the feature

set. Another reason is that it is computationally expensive comparing to the other

approaches. In our approach we changed the definition of closest fit by removing the

irrelevant attributes using attribute clustering. Therefore we compare our approach

with original closest fit methods to show that it is faster and more accurate. It is also

compared with the other methods, mentioned above, to show that it calculates better

values. Therefore, the competitor algorithms in our experiments include:

• No Missing Value (NMV) method simply removes all the instances which in-

clude at least one missing attribute-value. This approach is fast and easy to im-

plement and if sufficient training instances without any missing attribute-value are

available, it will not affect the performance of the learning algorithms.

• Global Closest Fit (GCF) looks into the pool of instances with known values

and replaces a missing attribute-value by the value of another instance which is the

closest fit to the one with missing attribute-value. To find the closest fit, Manhattan

distance measure is computed between the vector of attribute-values for the case

with missing attribute-value and all other cases and the instance with the smallest

distance is selected as the closest fit. This method does not consider the class of

instances when looking for the closest fit. It leads to find the closest fit from other

classes in some cases. This might be problematic because the two instances, which

found very close to each other, can be dramatically different and this difference can

come from the value of the attribute with missing attribute-value. Therefore, the

corresponding attribute-value of the closest fit can be far from the real value of the

missing attribute-value.

• Concept Closest Fit (CCF) splits the data set, in first step, into subsets based

on the class label of instances. Then, for replacing each missing attribute-value,

it finds the closest fit in the subset of the instances with the same class label and

replaces the missing attribute-value with the known value in the closest fit. The

only difference, comparing to the global closest fit method, is that the search space
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Table 5.6: Average AUC on UCI data sets (Setting: 5 missing values per instance

in one third of training instances)

Data set NMV GCA CCA GCF CCF LGCF LCCF Real

CMSC 0.5 0.594 0.594 0.59 0.59 0.59 0.59 0.596

CMSC1 0.631 0.627 0.624 0.608 0.614 0.615 0.623 0.68

CMSC2 0.5 0.534 0.519 0.535 0.539 0.55 0.52 0.549

CMSC3 0.5 0.528 0.528 0.5 0.516 0.505 0.514 0.575

CB 0.605 0.636 0.636 0.642 0.64 0.618 0.703 0.642

BCWD 0.848 0.833 0.832 0.902 0.883 0.877 0.866 0.92

FOTP 0.549 0.556 0.556 0.562 0.549 0.569 0.56 0.592

IoPh 0.68 0.728 0.787 0.726 0.759 0.813 0.806 0.841

QSAR 0.601 0.689 0.684 0.734 0.697 0.73 0.725 0.713

Spamb 0.723 0.743 0.743 0.742 0.738 0.737 0.759 0.749

Average 0.614 0.647 0.65 0.654 0.652 0.661 0.667 0.686

is limited to the subset of instances with the same class label. This decreases

the search time and also improves the accuracy of the value found for missing

attribute-value.

• Global Common Attribute-Value (GCA) is a simple approach which replaces

the missing attribute-value by the most common or the average value of that at-

tribute, in case of symbolic or numeric attributes, respectively.

• Concept Common Attribute-Value (CCA) is similar to Global Common

Attribute-Value approach, which calculates the value within the same concept to

which belongs the case with a missing attribute-value.

Results and Discussion

Our experimental results show that, limiting attributes, to those which are correlated

to the attribute with missing attribute-value, improves the closet fit methods. It not

only improves the AUC of the classifier trained on the corrected training set, but also

makes better prediction of the missing values, as well as decreases the computational

complexity.
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Table 5.7: Top: Manhattan Distance between the vector of calculated values by different

approaches and the real values. Bottom: P-values calculated by Friedman’s and Nemenyi

test. (Setting: 5 missing values per instance)

Data set GCA CCA GCF CCF LGCF LCCF

CMSC 24.9 23.954 21.343 20.774 18.579 18.319

CMSC1 23.528 22.014 20.648 20.91 19.875 18.994

CMSC2 24.828 24.153 22.054 20.409 19.454 19.537

CMSC3 27.112 26.692 22.92 22.659 18.728 19.465

CB 16.27 14.988 15.976 13.072 10.98 10.96

BCWD 15.46 10.666 21.607 13.113 6.642 6.012

FOTP 14.027 15.092 14.745 13.503 5.411 7.327

IoPh 14.447 18.092 13.1 12.882 6.46 7.066

QSAR 12.463 12.696 33.026 21.275 7.58 7.946

Spamb 8.943 8.776 10.911 10.25 10.807 9.998

Average 18.198 17.712 19.633 16.885 12.452 12.563

Methods P-value Methods P-value

CCF - CCA 0.891190647 LGCF - CCF 0.323994389

GCA - CCA 0.991223298 GCF - GCA 0.999894113

GCF - CCA 0.999227051 *LCCF - GCA 0.001898770

*LCCF - CCA 0.015750864 *LGCF - GCA 0.002870613

*LGCF - CCA 0.023141411 *LCCF - GCF 0.004473095

GCA - CCF 0.549500178 *LGCF - GCF 0.007104076

GCF - CCF 0.706045867 LGCF - LCCF 0.999996612

LCCF - CCF 0.260984468
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Table 5.8: Top: Computational time in seconds. Bottom: P-values calculated by

Friedman’s and Nemenyi test. (Setting: 5 missing values per instance)

Data set GCF CCF LGCF LCCF

CMSC 43.78 37.82 22.634 17.438

CMSC1 44.31 36.17 19.736 14.756

CMSC2 41.27 36.96 18.468 16.252

CMSC3 37.51 29.79 17.54 14.872

CB 157.21 76.67 70.296 34.38

BCWD 75.5 37.13 28.58 14.81

FOTP 117.01 56.33 61.528 30.272

IoPh 81.68 44.24 36.134 19.368

QSAR 70.71 37.52 43.926 23.852

Spamb 78.14 38.79 34.128 16.744

Average 74.712 43.142 35.297 20.274

Methods P-value Methods P-value

GCF - CCF 1.601002e-01 *LCCF - GCF 9.055305e-07

*LCCF - CCF 9.780764e-03 *LGCF - GCF 9.960305e-03

LGCF - CCF 7.263500e-01 LGCF - LCCF 1.600525e-01
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Table 5.9: Average AUC on UCI data sets (Setting: 10 missing values per instance

in one third of training instances)

Data set NMV GCA CCA GCF CCF LGCF LCCF Real

CMSC 0.5 0.571 0.571 0.571 0.59 0.578 0.579 0.596

CMSC1 0.631 0.563 0.563 0.589 0.643 0.561 0.633 0.68

CMSC2 0.5 0.532 0.532 0.574 0.561 0.539 0.539 0.549

CMSC3 0.5 0.553 0.529 0.514 0.514 0.54 0.534 0.575

CB 0.605 0.64 0.64 0.639 0.652 0.641 0.695 0.642

BCWD 0.848 0.885 0.885 0.879 0.868 0.888 0.879 0.92

FOTP 0.549 0.57 0.579 0.568 0.579 0.587 0.577 0.592

IoPh 0.68 0.736 0.727 0.754 0.761 0.778 0.771 0.841

QSAR 0.601 0.64 0.64 0.702 0.677 0.655 0.674 0.713

Spamb 0.723 0.751 0.75 0.744 0.752 0.777 0.756 0.749

Average 0.614 0.644 0.642 0.654 0.659 0.654 0.664 0.686

We performed different experiments with different number of missing attribute-values

to investigate the effect of the missing attribute-value ratio in the data. Table 5.3, 5.6

and 5.9 show the AUC of different approaches on the UCI data sets, having 3,5 and 10

missing values in each instance of one third of the training set. The average AUC of NMV

is the lowest one because this approach throws away a major part of the training set, one

third of instances in this case, by removing all the instances with at least one missing

attribute-value. The approach which uses the Real values has the highest average of

AUC. The goal of missing attribute value handling methods is to get as close as possible

to this approach. These tables show that the two proposed methods, LGCF and LCCF,

have the highest average of AUC among other missing value handling methods, however,

the differences are not statistically significant. AUC is not a good measure to show

how these methods are different because the results are very close to each other. The

missing attribute-values added to the training set does not have much impact on the

AUC. Adding a lot more missing attribute-values will degrade all the missing attribute

value handling methods because the number of instances are limited and there would

not be enough information available to handle the missing values well. Adding more

instances, on the other hand, will remove the effect of the missing attribute values.

AUC is not able to completely show the difference between the missing attribute-
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Table 5.10: Top: Manhattan Distance between the vector of calculated values by

different approaches and the real values. Bottom: P-values calculated by Friedman’s

and Nemenyi test. (Setting: 10 missing values per instance)

Data set GCA CCA GCF CCF LGCF LCCF

CMSC 48.942 46.738 46.128 44.992 35.464 35.37

CMSC1 49.856 46.896 46.536 45.353 34.18 33.121

CMSC2 50.435 49.085 44.871 41.642 36.564 36.523

CMSC3 54.824 53.949 48.451 47.641 37.263 39.096

CB 34.679 32.423 34.011 29.073 24.049 22.678

BCWD 32.304 23.987 49.549 31.498 19.158 15.588

FOTP 27.22 30.533 28.587 25.961 12.775 15.616

IoPh 29.229 35.525 27.189 25.549 14.993 14.439

QSAR 24.621 25.053 63.941 41.325 17.712 16.964

Spamb 15.197 14.94 18.801 18.652 18.007 19.295

Average 36.731 35.913 40.806 35.169 25.016 24.869

Methods P-value Methods P-value

CCF - CCA 0.839358992 LGCF - CCF 0.470221626

GCA - CCA 0.991226281 GCF - GCA 0.999894113

GCF - CCA 0.999226991 *LCCF - GCA 0.001771404

*LCCF - CCA 0.015651952 *LGCF - GCA 0.004513406

*LGCF - CCA 0.033422593 *LCCF - GCF 0.004562116

GCA - CCF 0.470366301 *LGCF - GCF 0.010649723

GCF - CCF 0.629200724 LGCF - LCCF 0.999894115

LCCF - CCF 0.324114573
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Table 5.11: Top: Computational time in seconds. Bottom: P-values calculated by

Friedman’s and Nemenyi test. (Setting: 10 missing values per instance)

Data set GCF CCF LGCF LCCF

CMSC 62.56 54.04 29.526 26.28

CMSC1 57.74 48.5 28.342 22.722

CMSC2 58.72 53.7 24.118 22.992

CMSC3 53.86 44.24 25.514 21.31

CB 284.68 138.3 133.108 66.352

BCWD 123.38 63.22 53.232 28.004

FOTP 211.12 103.84 104.242 50.836

IoPh 144.46 76.92 63.398 34.264

QSAR 126.3 67.5 75.95 41.442

Spamb 146.86 73.94 63.74 31.616

Average 126.968 72.42 60.117 34.582

Methods P-value Methods P-value

GCF - CCF 1.602034e-01 *LCCF - GCF 7.739482e-07

*LCCF - CCF 1.004063e-02 *LGCF - GCF 9.687821e-03

LGCF - CCF 7.263464e-01 LGCF - LCCF 1.601898e-01
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value handling methods because the classifier is not only trained on the calculated values

but it has access to other attribute-values and consequently is not much affected by the

missing attribute-values. In order to show the accuracy of calculated values we use the

Manhattan distance, between the vector of calculated values and the real values, for

those approaches which calculate a missing value. The result of these experiments are

shown in table 5.4, 5.7 and 5.10. These tables show that, in all the three experiments,

the average value of Manhattan distance for LGCF and LCCF are smaller than other

approaches. In other words, the new proposed approaches calculated the missing values

which are more close to the real ones comparing to the other approaches. As Japkowicz

and Shah (2011) suggested in their book, Friedman’s test with 95% confidence interval, is

applied to see if the proposed algorithms are significantly different in terms of the average

value for the Manhattan distance. The calculated p-value for Friedman’s test is equal

to 2.887e-05, 1.814e-05 and 2.742e-05,1 in these three experiments respectively, which

means that the null hypothesis, the classifiers being compared are alike, rejected and

therefore the compared algorithms are significantly different. The Nemenyi test is used

as post hoc test to find out what these differences correspond to precisely. The second

part of these tables show the p-values calculated by Nemenyi test. These values show

that in all the experiments, both of the new proposed approaches, LGCF and LCCF, are

statistically significantly better than GCA, CCA and GCF.

We have also compared computational complexity of the new proposed methods,

LGCF and LCCF, with their predecessors, GCF and CCF, to show how faster the new

variations are. Table 5.5, 5.8 and 5.11 show the time elapsed to calculate missing values,

in seconds, using these four approaches. The average of elapsed time for LGCF is lower

than GCF and for LCCF is lower than CCF. The result of statistical tests on the bottom

of these tables show that these differences are statistically significant. It means that each

of these new variations of closest fit is statistically significantly faster than its predecessor.

These experiments show that, removing irrelevant attributes from the feature set,

using attribute clustering, will not only improve the AUC of the classifier, trained on the

training set, but it will also calculate values which are statistically significantly closer to

the real ones and it will perform statistically significantly faster.
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5.2 Improving Missing Attribute-value Handling at

Prediction Time

When talking about missing attribute value handling, we should distinguish between

missing attribute-values at induction time in the training data, and at prediction time in

test data or the upcoming new instances. The missing attribute value handling methods

at prediction time are generally categorized as two groups, the imputation and reduced-

feature models. Reduced-feature models are known to have better predictive performance

comparing to imputation-based methods but they have computational difficulties when

faced with high dimensionality. To make reduced-feature models practical in such cases

we propose the use of multi-view learning as classifier and attribute clustering to create

the views for multi-view learner automatically. The splitting of the selected attributes

into views, significantly reduces the number of possible patterns and consequently the

number of models which need to be precomputed and stored for reduced-feature models.

Our experimental results show that not only the number of models to be trained is sig-

nificantly reduced but also the classification results, when using reduced-feature models,

is statistically significantly improved.

5.2.1 Missing Attribute-value Handling at Prediction Time

When facing a missing attribute-value at prediction time, one of the following strategies

could be applied:

Discarding the Instance with Missing Attribute Value

The simplest missing attribute value handling method at prediction time is to discard

the instances with missing attribute-values. But this means that we decline to provide

prediction for some of the instances which is not acceptable most of the time.

Obtaining the Missing Value by Paying a Cost

Another approach is to obtain the missing value by paying the cost to run some com-

plimentary tests or to get it from a third party. This method may not be applicable in

some cases or the cost may not be acceptable.
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Imputation

Imputation is a group of methods which handle missing attribute-values, at prediction

time, by replacing it with an estimation of its value or its distribution from the data.

According to Hastie et al. (2001), imputation-based methods are the most common

approaches used for handling missing attribute-values.

Reduced-feature Models

Another approach is to apply a specific prediction model for each instance, based on its

available attributes, or in other words, its pattern of missing values. Saar-Tsechansky

and Provost (2007) called such approaches as reduced-feature models. Their empirical

evaluation showed that, although imputation methods are the most common, reduced-

feature models have substantial better predictive performance. The difficulty of reduced-

feature models is that for each instance with a particular pattern of missing values, a

different model should be applied. The models can be created on-line, which involves

computation time, or precomputed and stored, which involves storage of different models.

The reduced-feature models are not practical, when faced with high dimentionality, since

it requires to build a large number of models which is exponential in the number of

attributes, n:

Number of possible patterns = 2n (5.4)

Saar-Tsechansky and Provost (2007) tried to address this problem by proposing a

hybrid method that uses the reduced-feature models for frequent patterns of missing

values, and imputation for other cases. It allows the user to manage the tradeoff between

predictive performance and storage/computation cost. Their empirical results show that

when reduced-feature models used, even for a few patterns, it improves the predictive

performance substantially. This method still does not offer the use of reduced-feature

model for all the cases and also the maximum number of precomputed models is still

exponential in the number of attributes.

To reduce the number of attributes and consequently the number of precomputed

models for reduced-feature models, Hong et al. (2009b) proposed an unsupervised at-

tribute clustering approach for feature selection. The number of possible models, in this

approach, is exponential to the number of all selected attributes, m:

Number of possible patterns = 2m m <= n (5.5)
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Therefore, if the number of selected attributes m is large, it is still problematic,

because of the huge number of possible models. Additionally, if the dataset has many

missing values, the reduced-feature models for m selected attributes will be problematic.

In some cases very few attributes of the m selected ones may contain values, making it

difficult to extract the pattern in the data. To address this problem Hong et al. (2009b)

suggested to replace selected features that have missing attribute values, with another

from the same cluster. This replacement will help to create effective feature sets, in such

cases, by replacing the attribute with missing value with one of the available attributes

from the same cluster. Then a new model will be trained on the new feature set. However,

the feature replacement increases the number of possible models. The number of possible

models with replacement is the m-combination of attribute set:

Number of possible patterns =

(
n

m

)
m <= n (5.6)

where n is the size of attribute set and m is the number of selected attributes by

feature selection. The size of each model to create, is also based on the size of all selected

attributes, m. If the number of selected attributes is high, this model, as a reduced-

feature model, will still have high storage/computation cost. The attribute clustering

method in this approach is unsupervised and it will also reduce the effectiveness of this

approach, in terms of placing attributes into related clusters.

5.2.2 Multi-view learning with reduced-feature models

To make reduced-feature models practical, when faced with high dimensionality, we

propose the use of multi-view learning as classifier and attribute clustering to create

the views for multi-view learner automatically. The splitting of the selected attributes

into views significantly reduces the number of possible patterns and, consequently, the

number of models which need to be precomputed and stored for reduced-feature models.

The number of possible patterns for each view is exponential in the number of attributes

in that view. So the total number of possible patterns for all possible models for reduced-

feature model is the sum of possible patterns of different views:

Number of possible patterns =
k∑

i=1

2xi ,
k∑

i=1

xi = m (5.7)

Where k is the number of views, xi is the number of attributes in view i and m is

the total number of selected attributes which distributed into different views.
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Table 5.12: Comparing the number of possible models for reduced-feature model, using

each approach; where n is the total number of attributes, m is the number of selected

attributes, k is the number of views and is considered to be 2, and xi is the number of

attributes in view i.

n, m and xi 2n
(
n
m

)
2m

∑k
i=1

(
n
xi

) ∑k
i=1 2xi

50, 20 and 10 1e+15 4e+13 1e+6 2e+10 2,048

20, 10 and 5 1e+6 1e+5 1024 3e+4 64

10, 6 and 2 1,024 210 64 135 12

In the proposed framework, each attribute of a view comes from a cluster of relevant

attributes. If there is a missing value for such an attribute, it could be replaced with

an attribute from the same cluster in that view. This replacement will only affect the

learner corresponding to that view and that is the only part of the model which will be

changed and we just need to create a small model for the learner which used the view.

If attribute replacement is used in our model, the upper boundary of the number of the

possible patterns for view i is xi-combination of the n attributes. Therefore the upper

boundary for the total number of possible patterns with replacement is

Number of possible patterns =
k∑

i=1

(
n

xi

)
,

k∑
i=1

xi = m (5.8)

Equation 5.9 illustrates the relationship between the models without replacement, in

terms of the size of the possible patterns. It shows how the size of the possible patterns

is reduced respectively.

2n � 2m �
k∑

i=1

2xi (5.9)

Equation 5.10 illustrates the relationship between the different models with replace-

ment, in terms of the size of the possible patterns

2n �
(
n

m

)
�

k∑
i=1

(
n

xi

)
(5.10)

For a better illustration of the differences between these approaches, table 5.12 com-

pares the number of possible models for reduced-feature models in each approach. In
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this table specific values are considered for n, m, k and xi. For convenience we assume

equal size views for our model in this table, so xi is a constant for every i. This table

shows how significantly our approach reduced the number of possible models which need

to be precomputed and stored.

Table 5.13 also shows the number of possible models for reduced-feature models in

each approach, for some of the well-known UCI data sets which contain missing attribute

values. In this table, the number of selected attributes m is considered to be half of the

total number of attributes n. The number of views k is considered to be fixed to 2. For

convenience we assume equal size views for our model in this table, so xi is a constant for

every i and it is equal to m/k. This table shows how significantly our approach reduced

the number of possible models which need to be precomputed and stored.

5.2.3 Evaluation

We theoretically showed that, applying reduced-feature models with multi-view learning,

significantly reduces the number of possible models and makes it practical. As a new

variation of reduced-feature models we need to run experiments to show if it still has

better predictive performance comparing to imputation-based models. To show this we

perform experiments using the data sets used in our previous experiments on multi-view

learning.

Data Preparation and Configuration

The data sets used in our experiments include all the text data sets that defined and

used in our experiments in chapter 4. Text data sets contain thousands of attributes,

including many which does not have any helpful information for classification. Therefore,

the classifiers applied on the whole feature set are not able to learn the pattern in the

data and consequently are close to the random classifier. This problem is usually solved

by selecting a subset of attributes using a feature selection algorithm (Jiang et al., 2004;

Raskutti et al., 2002b). In these experiments, chi-squared measure is used to select

50 attributes and reduce the size of the problem. One fifth of each data set is used

for testing, with a minimum of 100 instances for small data sets. The rest is used for

training. 5 missing attribute-values are randomly added to each instance of the test data

set.

J48 is used as the base classifier in these experiments. The average AUC has been

calculated in each experiment, using five-fold cross validation. Five-fold cross validation
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is used because the number of instances is limited in these experiments. As Japkowicz

and Shah (2011) suggested in their book, Friedman’s test with 95% confidence interval, is

applied to see if the proposed algorithms are significantly different in terms of AUC and

the Nemenyi test is used as post hoc test to find out what these differences correspond

to.

Competitor Algorithms

The proposed algorithm is compared with two different imputation-based methods and

also the ideal case without missing attribute-values:

• The Central Imputation (Batista and Monard, 2002; Torgo, 2010) is one of the

most frequently used imputation methods. It replaces the missing attribute-value

by the mean (quantitative attribute) or mode (qualitative attribute) of all known

values of that attribute.

• The KNN Imputation (Batista and Monard, 2002; Torgo, 2010) uses the k-

nearest neighbors to fill in the missing attribute-values in a data set. For each

instance with missing attribute-values, it will search for its k most similar instances

and use the values of them to fill in the missing attribute-values. For discrete

attributes it uses the most frequent value and for continuous attributes it uses the

mean in the k-nearest neighbors.

• The Ideal Case With No Missing Attribute-value is an approach which has

access to all the attribute-values and is used to show how accurate each missing

attribute value handling method is in calculating or predicting the missing values.

Results and Discussion

Table 5.14 shows our experimental results. The first part includes the average AUC of

different approaches compared on different data sets. It shows that the average AUC of

reduced-feature models is higher than the ones of the two imputation-based methods,

while it is pretty close to the average AUC of the case without any missing attribute

value.

To find out if these differences are statistically significant we used Friedman’s test

with 95% confidence interval. The resulting p-value is 0.0001023 which indicates that the

results are statistically significantly different. The Nemenyi test is used as post hoc test

to find out what these differences correspond to. The second part of table 5.14 contains
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Table 5.13: Comparing the number of possible models for reduced-feature model, using

each approach for UCI datasets; where n is the total number of attributes, m is the

number of selected attributes and is considered to be half of n, k is the number of views

and is considered to be 2, xi is the number of attributes in view i, and is considered to

be equal to m/k

UCI Dataset n, m and xi 2n
(
n
m

)
2m

∑k
i=1

(
n
xi

) ∑k
i=1 2xi

Spambase 57 , 28 and 14 1e+17 1e+16 2e+8 7e+12 32768

Annealing 38 , 19 and 10 2e+12 3e+10 5e+5 4e+8 2048

Soybean 35 , 18 and 9 3e+10 4e+9 2e+5 7e+7 1024

Ionosphere 34 , 17 and 8 1e+10 2e+9 1e+5 1e+7 512

Dermatology 33 , 16 and 8 8e+9 1e+9 6e+4 1e+7 512

HIGGS 28 , 14 and 7 2e+8 4e+7 1e+4 1e+6 256

Cardiotocography 23 , 12 and 6 8e+6 1e+6 4096 1e+5 128

Parkinsons 23 , 12 and 6 8e+6 1e+6 4096 1e+5 128

Mushroom 22 , 11 and 6 4e+6 7e+5 2048 7e+4 128

Hepatitis 19 , 10 and 5 5e+5 9e+4 1024 1e+4 64

Lymphography 18 , 9 and 4 2e+5 4e+4 512 3092 32

Bank Marketing 17 , 8 and 4 1e+5 2e+4 256 2412 32

Adult 14 , 7 and 4 1e+4 3432 128 1033 32

Statlog (Heart) 13 , 6 and 3 8192 1716 64 302 16
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the p-values of this post hoc test. It indicates that reduced-feature models is statistically

significantly better than both imputation based methods in terms of AUC, while the two

imputation-based methods are not considered different.

5.3 Summary

This chapter proposes two new usages for attribute clustering to improve missing at-

tribute value handling at induction and prediction time. When labeled data is limited,

these approaches are applicable using our semi-supervised attribute clustering framework.

In first approach, closet fit-based attribute clustering approaches are improved by

changing the definition of closest fit to be the closest instance from the pool, considering

the subset of related attributes to the one with missing attribute-value. Attribute cluster-

ing is used in this approach to create the clusters of related attributes. Our experimental

results, on real world data sets from the UCI data repository, show that removing the

irrelevant attributes from the feature set using attribute clustering in the new variation

of closest fit method, will not only improve the AUC of the classifier, trained on the

training set, but it will also calculate values which are statistically significantly closer to

the real ones and it will perform statistically significantly faster.

In second part of this chapter, the attribute clustering and multi-view learning are

used to make the reduced-feature models practical, by decreasing the number of possible

patterns for missing attribute values. We theoretically showed that splitting attributes in

views will significantly decrease the number of precomputed classifiers, needed in order

to apply reduced-feature models as a missing attribute-value handling method. Using

some of the well known UCI data sets, we showed that how this approach significantly

reduces the number of possible models which need to be precomputed and stored to apply

reduced-feature models. Our experimental results also showed that applying reduced-

feature models with multi-view learning and attribute clustering, not only reduces the

number of models, but it also increases the predictive performance of the classifer com-

paring to imputation-based missing attribute-value handling methods.

Next chapter summarizes the proposed framework and the usages of it to solve dif-

ferent problems. It mentions the limitations of proposed approach and our future work

to address them.
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Table 5.14: Comparing the AUC of applying reduced-feature models in multi-view

learning with central and KNN imputation.

UCI Central KNN Reduced Ideal (No

Dataset Imputation Imputation -feature missing

Models value)

fbis(111,142) 0.931 0.989 0.998 1

fbis(111,189) 0.92 0.985 0.999 1

fbis(142,189) 0.838 0.898 0.996 0.997

new3s(111,142) 0.881 0.978 0.992 0.999

new3s(189,142) 0.898 0.987 0.994 0.999

new3s(189,301) 0.745 0.91 0.986 0.996

ohscal(An,Ca) 0.886 0.895 0.964 0.981

ohscal(An,Dn) 0.894 0.903 0.94 0.944

ohscal(Ca,Dn) 0.928 0.912 0.968 0.967

ohscal(Ca,To) 0.808 0.853 0.915 0.931

ACEInhibitors 0.54 0.569 0.52 0.535

ADHD 0.876 0.738 0.937 0.955

BB 0.601 0.589 0.587 0.565

CalciumC 0.646 0.678 0.696 0.733

Average 0.787 0.82 0.869 0.872

Methods P-value

KNN Imputation - Central Imputation 2.495400e-01

Reduced-feature - Central Imputation 6.821229e-05

Reduced-feature - KNN Imputation 2.184101e-02



Chapter 6

Conclusion

This thesis proposed a novel iterative approach to attribute clustering and semi-supervised

learning. This iterative approach exploits the strength of semi-supervised classification

to gradually improve the quality of attribute clustering, particularly when labeled data

is limited. It also applies the result of attribute clustering to improve the classification

results iteratively. This improvement is done based on the usages of attribute clus-

tering. In this study, we proposed two new usages for attribute clustering to improve

classification: solving the automatic view definition problem for multi-view learning and

improving missing attribute-value handling at induction and prediction time. The fol-

lowing two sections talk about these two specific contributions of this study. The third

section discusses the overarching framework, which is used and evaluated in these two

applications and is anticipated to be helpful in solving many other machine learning

problems. The advantages, limitations and future work come in different sorts. Those

of the overarching framework itself and those of its applications. Therefore, a separate

subsection is included for this in each of the following sections.

6.1 Automatic View Definition for Multi-view Learn-

ing

Recent work has shown that utilizing the agreement between learners, based on different

views, improves performance. Yet, a methodology for creating views automatically from

data sets, in real world applications for which we do not have large labeled data sets,

has not been proposed. In this study, we proposed the use of attribute clustering in

our semi-supervised framework, in order to create effective views for single view data

102
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sets, when only a small number of labeled instances are available. This will make the

multi-view learners applicable and improve their learning performance. In this new

approach we integrate view splitting with the learning process by combining the attribute

clustering with multi-view learning, in a semi-supervised manner. The proposed approach

is evaluated using experiments on real world text and microarray gene expression data

sets. Our experimental results showed that the proposed approach is significantly better

than other methods. In fact, in many cases it is close to and not significantly different

from the ideal, yet unrealistic, supervised classifier, which has access to labels for all

instances.

6.1.1 Advantages, Limitations and Future Work

This new approach provides a solution to use multi-view learning on single view data sets,

specifically when labeled data is limited. This is done by integrating attribute clustering

with multi-view learning. This approach addresses the problem recently identified by Du

et al. (2011): given small labeled training sets the view splitting methods are unreliable.

Another advantage is that, unlike other proposed view splitting methods, it is not

limited to two separate views. This approach creates multiple overlapping views and

uses those which represent enough information about the class, in terms of, Chi-Squared

measure.

When labeled data is more common, this approach will not be so beneficial. With

sufficient labeled instances supervised attribute clustering could be used to create views

and there is little point in using a semi-supervised approach. We will investigate, in our

future work, the effect of the proposed view splitting method for creating the views in a

supervised manner.

6.2 Missing Attribute-value Handling

Many well-known missing attribute-value handling methods, where the value is replaced

during induction, are designed based on the idea of closest fit. However, the computa-

tional cost of such methods is high because to find the missing value of an instance, they

need to calculate its distance to all other instances. Additionally, the feature space can

include attributes which are completely unrelated to the one with the missing value and

these make the distance estimate unreliable. When looking for the closest fit in such

cases, using a subset of the feature space, reduces the computational cost. If the subset
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includes all of the related attributes, it will improve the accuracy of the value found for

replacing the missing attribute-value.

In this study we proposed a new approach, which uses attribute clustering to limit

the feature space to the related attributes. This will remove the irrelevant attributes

while it is drastically decreasing the computational cost. When there is not enough

labeled instances available to perform supervised attribute clustering, the proposed semi-

supervised framework in chapter 3 would be applicable. The result of attribute clustering

is used in each iteration to improve the classifier by improving the missing attribute value

handling and the classifier is used in each iteration to improve the attribute clustering

by augmenting its training set. Therefore the result should be a better missing attribute

value handling and also an improved semi-supervised classifier. Our experimental results

show that removing irrelevant attributes from the feature set using attribute clustering

will not only improve the AUC of the classifier, trained on the training set, but it will

also calculate values which are statistically significantly closer to the real ones and it will

calculate the values statistically significantly faster.

Empirical evaluation showed that, among different approaches which are proposed

for missing attribute-value handling at prediction time, reduced-feature models have

substantial better predictive performance. This approach applies a specific prediction

model for each instance, based on its available attributes, or in other words, its pattern

of missing values. The difficulty of reduced-feature models is that for each instance with

a particular pattern of missing values, a different model should be applied. The models

can be created on-line, which involves long computational cost, or precomputed and

stored, which involves storage of different models which is exponential in the number of

attributes. Some new variations of reduced-feature models slightly reduced the number of

precomputed models needed. We addressed this problem in our proposed semi-supervised

attribute clustering framework, when multi-view learner is used as classifier and attribute

clustering is used to create the views for multi-view learner automatically. We showed

that splitting of the selected attributes into views, in our approach, significantly reduces

the number of possible patterns and consequently the number of the models which need

to be precomputed and stored for reduced-feature model.

6.2.1 Advantages, Limitations and Future work

One of the main advantages of the proposed missing attribute value handling method

is that it calculates values which are very close to the real ones. It is also faster than
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other methods. Another advantage is that, using the semi-supervised attribute clustering

framework, it could be applied in many real world problems, which do not have a large

labeled training set.

If the relationships between attributes is weak then the attribute clustering approach

might not create meaningful clusters of attributes. In that case, removing part of the

feature set will increase the speed to find the closest fit but it will not necessarily help to

find a better closest fit. If the number of missing attribute-values is high in the remaining

attributes in the feature set it might also be problematic. Therefore, a decision needs to

be made for handling each missing value, whether to use the cluster of attributes to reduce

the size of feature set or not, based on the relevance of the attributes in corresponding

cluster. We will investigate this in future work. We will also investigate the effect of the

new definition for closest fit on other closest fit-based missing attribute value handling

methods.

The main advantage of the proposed variation of the reduced-feature models method

for missing value handling at prediction time is that it significantly reduced the number

of the models which need to be precomputed. This makes the reduced-feature models

approach applicable in many real world problems with large number of attributes.

Although the proposed method, significantly decreased the size of the reduced-feature

models, but the number of precomputed models could still be high, depending on the

number of attributes in the clusters. This new approach, if used with other missing

attribute value handling methods in a hybrid model, which creates the reduced-feature

models only for frequent patterns of missing values, would even reduce the number of

precomputed models more. We will investigate the performance of such a hybrid model

in our future work.

6.3 The Overarching Semi-supervised Attribute Clus-

tering Framework

In real world problems, usually labeled data is limited, while large number of unlabeled

instances are available. The machine learning techniques, which rely on the relationships

between attributes, extracted using supervised similarity or distance measures, are not

reliable, because these measures are not able to find the real relationships between at-

tributes. Unsupervised measures, which are used as an alternative in such cases, are not

able to extract the relationships between attributes which are based on the class values.
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Therefore, a semi-supervised approach would be beneficial in such cases. Attribute clus-

tering is a machine learning technique, which uses the relationships between attributes

to cluster similar or related attributes. Although there is a strong appeal for a more

efficient and effective attribute clustering method, most of the work in this area is con-

centrated on supervised and unsupervised attribute clustering. This problem motivated

us, in this study, to propose an iterative semi-supervised attribute clustering framework,

shown in figure 1.4. In this framework, in each iteration, a classifier will be used to

improve attribute clustering by augmenting its labeled training set. Then attribute clus-

tering will be used to improve the classifier in the first step of the next iteration. How

this improvement is realized will depend on the usages of attribute clustering: feature

selection, extraction or replacement.

6.3.1 Advantages, Limitations and Future work

One of the main advantages of this semi-supervised attribute clustering framework is that,

it could be applied on many real world problems in which we have limited training set and

large number of unlabeled instances. This framework not only outputs semi-supervised

attribute clustering but it also outputs an improved semi-supervised classifier.

The usage of attribute clustering in real world problems used to be limited because

of the lack of a semi-supervised attribute clustering approach. One of the advantages of

the proposed semi-supervised approach is that the attribute clustering could be used in

different ways to improve the classifier in the framework. We have proposed two new

usages for attribute clustering and investigated their performance when used in our semi-

supervised attribute clustering framework. In our future work we will extend the usages

of attribute clustering using our semi-supervised attribute clustering framework.

Although one of the primary goals of using attribute clustering is to reduce the

computational complexity, the iterative algorithm of the proposed framework tends to

be computationally expensive, especially when unlabeled data is unlimited. Therefore,

the conventional stopping criterion for semi-supervised algorithms, which continues while

more new confident labeled instances are available, is not of much interest here. A stricter

stopping criterion would stop the iterative algorithm after a few iterations, when the

learning curve becomes almost a straight line. Future work will investigate altering the

stopping criterion to eliminate this problem.
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Sim Ran Entr Co- Un

ple dom opy Style Sup Self Ours Ideal

OVA:

Ovarian 0.941 0.918 0.948 0.935 0.99 0.991 0.998 0.996

Uterus 0.678 0.836 0.785 0.824 0.866 0.843 0.894 0.92

Prostate 0.967 0.935 0.939 0.948 0.925 0.944 0.971 0.992

Ovary 0.774 0.863 0.85 0.861 0.855 0.841 0.888 0.922

Omentum 0.6 0.752 0.746 0.795 0.81 0.783 0.821 0.899

Lung 0.797 0.884 0.889 0.876 0.836 0.854 0.886 0.94

Kidney 0.881 0.947 0.949 0.952 0.935 0.95 0.976 0.978

Endometrium 0.667 0.832 0.852 0.859 0.855 0.881 0.901 0.946

Colon 0.795 0.896 0.903 0.897 0.849 0.853 0.94 0.947

Breast 0.753 0.925 0.929 0.925 0.916 0.89 0.965 0.971

AP:

Uterus Kidney 0.986 0.964 0.958 0.967 0.986 0.987 0.993 0.99

Prostate Uterus 0.988 0.994 0.993 0.993 0.991 0.991 0.999 0.994

Prostate Ovary 0.99 0.979 0.981 0.985 0.99 0.984 0.994 0.982

Prostate Lung 0.989 0.962 0.962 0.99 0.976 0.98 0.995 0.977

Prostate Kidney 0.98 0.969 0.965 0.973 0.978 0.981 0.991 0.992

Ovary Uterus 0.667 0.848 0.873 0.828 0.878 0.891 0.905 0.92

Ovary Lung 0.864 0.929 0.933 0.898 0.958 0.96 0.971 0.954

Ovary Kidney 0.977 0.922 0.91 0.891 0.984 0.984 0.984 0.989

Omentum Uterus 0.73 0.895 0.888 0.904 0.958 0.94 0.963 0.951
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Omentum Ovary 0.633 0.744 0.737 0.663 0.785 0.804 0.822 0.831

Omentum Lung 0.909 0.9 0.903 0.877 0.962 0.966 0.97 0.969

Omentum Kidney 0.971 0.977 0.974 0.974 0.977 0.963 0.974 0.984

Lung Uterus 0.89 0.937 0.926 0.921 0.975 0.976 0.986 0.967

Lung Kidney 0.965 0.966 0.963 0.944 0.989 0.989 0.994 0.995

Endomet Uterus 0.505 0.611 0.715 0.591 0.798 0.816 0.828 0.867

Endomet Ovary 0.604 0.838 0.85 0.814 0.887 0.881 0.928 0.952

Endomet Lung 0.86 0.949 0.953 0.957 0.978 0.981 0.986 0.983

Endomet Kidney 0.839 0.975 0.979 0.988 0.978 0.977 0.998 0.989

Endomet Colon 0.889 0.967 0.973 0.968 0.959 0.957 0.979 0.985

Endomet Breast 0.898 0.936 0.934 0.944 0.96 0.951 0.975 0.974

Colon Uterus 0.977 0.956 0.963 0.927 0.966 0.965 0.982 0.973

Colon Prostate 0.987 0.982 0.98 0.988 0.988 0.989 0.996 0.995

Colon Ovary 0.866 0.894 0.9 0.88 0.929 0.928 0.966 0.966

Colon Omentum 0.91 0.915 0.908 0.917 0.943 0.942 0.956 0.952

Colon Lung 0.933 0.954 0.956 0.947 0.971 0.968 0.982 0.972

Colon Kidney 0.983 0.97 0.978 0.955 0.986 0.988 0.994 0.987

Breast Uterus 0.891 0.942 0.945 0.911 0.953 0.95 0.964 0.967

Breast Prostate 0.979 0.962 0.95 0.986 0.983 0.982 0.994 0.993

Breast Ovary 0.832 0.962 0.949 0.938 0.972 0.975 0.988 0.972

Breast Omentum 0.851 0.935 0.929 0.933 0.914 0.91 0.932 0.931

Breast Lung 0.9 0.934 0.925 0.945 0.967 0.958 0.976 0.963

Breast Kidney 0.905 0.963 0.965 0.924 0.98 0.98 0.984 0.985

Breast Colon 0.959 0.957 0.96 0.959 0.99 0.987 0.991 0.989

Average 0.86 0.916 0.918 0.911 0.938 0.937 0.958 0.963

Table A.1: Average AUC calculated by Friedman’s and

Nemenyi test On Microarray data sets (3 labeled

instances, 50 attributes, Näıve Bayes)

Sim Ran Entr Co- Un

ple dom opy Style Sup Self Ours Ideal

OVA:

Ovarian 0.936 0.98 0.976 0.972 0.991 0.991 0.998 0.996

Uterus 0.803 0.833 0.836 0.817 0.874 0.835 0.887 0.92
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Prostate 0.956 0.928 0.933 0.935 0.937 0.943 0.972 0.992

Ovary 0.891 0.833 0.846 0.843 0.854 0.824 0.881 0.922

Omentum 0.804 0.777 0.759 0.797 0.763 0.757 0.809 0.898

Lung 0.93 0.855 0.861 0.846 0.803 0.829 0.863 0.941

Kidney 0.97 0.921 0.921 0.935 0.916 0.937 0.976 0.978

Endometrium 0.868 0.84 0.848 0.86 0.863 0.866 0.9 0.945

Colon 0.917 0.862 0.864 0.87 0.837 0.854 0.933 0.947

Breast 0.955 0.886 0.888 0.902 0.936 0.883 0.966 0.971

AP:

Uterus Kidney 0.973 0.976 0.98 0.979 0.984 0.984 0.993 0.99

Prostate Uterus 0.991 0.991 0.99 0.993 0.993 0.993 0.999 0.993

Prostate Ovary 0.99 0.973 0.97 0.984 0.987 0.987 0.993 0.982

Prostate Lung 0.968 0.953 0.954 0.974 0.977 0.974 0.992 0.977

Prostate Kidney 0.98 0.958 0.956 0.972 0.981 0.98 0.987 0.992

Ovary Uterus 0.908 0.872 0.876 0.862 0.898 0.861 0.92 0.921

Ovary Lung 0.947 0.932 0.913 0.928 0.965 0.957 0.978 0.954

Ovary Kidney 0.981 0.963 0.963 0.964 0.983 0.985 0.985 0.989

Omentum Uterus 0.91 0.884 0.898 0.92 0.954 0.922 0.967 0.952

Omentum Ovary 0.755 0.738 0.744 0.736 0.811 0.799 0.833 0.829

Omentum Lung 0.945 0.903 0.91 0.892 0.96 0.965 0.97 0.967

Omentum Kidney 0.972 0.98 0.976 0.971 0.977 0.976 0.979 0.984

Lung Uterus 0.965 0.952 0.942 0.93 0.982 0.977 0.984 0.968

Lung Kidney 0.951 0.967 0.973 0.964 0.989 0.989 0.994 0.995

Endomet Uterus 0.704 0.818 0.759 0.761 0.835 0.769 0.879 0.874

Endomet Ovary 0.859 0.847 0.843 0.863 0.909 0.827 0.933 0.95

Endomet Lung 0.977 0.954 0.956 0.959 0.978 0.978 0.985 0.983

Endomet Kidney 0.986 0.975 0.971 0.98 0.974 0.975 0.997 0.989

Endomet Colon 0.94 0.964 0.964 0.966 0.961 0.959 0.978 0.985

Endomet Breast 0.953 0.923 0.925 0.941 0.953 0.943 0.977 0.974

Colon Uterus 0.972 0.954 0.96 0.961 0.975 0.966 0.983 0.973

Colon Prostate 0.993 0.98 0.98 0.983 0.99 0.99 0.996 0.995

Colon Ovary 0.905 0.896 0.907 0.904 0.93 0.925 0.955 0.966

Colon Omentum 0.926 0.919 0.912 0.927 0.931 0.937 0.952 0.951

Colon Lung 0.968 0.955 0.953 0.951 0.972 0.969 0.983 0.972

Colon Kidney 0.985 0.981 0.983 0.985 0.986 0.988 0.995 0.987
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Breast Uterus 0.943 0.926 0.93 0.943 0.957 0.949 0.971 0.967

Breast Prostate 0.98 0.941 0.941 0.974 0.976 0.98 0.986 0.993

Breast Ovary 0.964 0.96 0.965 0.967 0.975 0.977 0.986 0.975

Breast Omentum 0.944 0.913 0.92 0.923 0.913 0.911 0.933 0.931

Breast Lung 0.963 0.934 0.938 0.946 0.968 0.96 0.974 0.964

Breast Kidney 0.954 0.971 0.969 0.97 0.98 0.983 0.981 0.985

Breast Colon 0.959 0.969 0.961 0.963 0.991 0.987 0.992 0.989

Average 0.933 0.919 0.919 0.924 0.939 0.931 0.958 0.963

Table A.2: Average AUC calculated by Friedman’s and

Nemenyi test On Microarray data sets (5 labeled in-

stances, 50 attributes, Näıve Bayes)

Sim Ran Entr Co- Un

ple dom opy Style Sup Self Ours Ideal

OVA:

Ovarian 0.985 0.98 0.978 0.978 0.991 0.991 0.998 0.996

Uterus 0.825 0.83 0.844 0.829 0.87 0.832 0.91 0.919

Prostate 0.969 0.935 0.938 0.94 0.939 0.948 0.974 0.992

Ovary 0.879 0.851 0.849 0.846 0.851 0.839 0.881 0.923

Omentum 0.666 0.748 0.765 0.77 0.746 0.789 0.792 0.899

Lung 0.829 0.852 0.856 0.866 0.799 0.842 0.855 0.941

Kidney 0.951 0.928 0.928 0.928 0.923 0.936 0.973 0.978

Endometrium 0.906 0.858 0.859 0.856 0.858 0.877 0.898 0.945

Colon 0.88 0.866 0.863 0.887 0.842 0.858 0.935 0.947

Breast 0.929 0.882 0.888 0.891 0.942 0.891 0.965 0.971

AP:

Uterus Kidney 0.982 0.98 0.981 0.981 0.986 0.984 0.992 0.99

Prostate Uterus 0.994 0.991 0.991 0.993 0.991 0.991 0.998 0.993

Prostate Ovary 0.98 0.966 0.956 0.986 0.987 0.987 0.99 0.985

Prostate Lung 0.99 0.948 0.95 0.977 0.981 0.978 0.991 0.978

Prostate Kidney 0.989 0.959 0.958 0.969 0.981 0.981 0.987 0.992

Ovary Uterus 0.928 0.866 0.884 0.884 0.886 0.903 0.934 0.922

Ovary Lung 0.951 0.943 0.921 0.945 0.963 0.965 0.974 0.954

Ovary Kidney 0.985 0.959 0.968 0.966 0.984 0.987 0.982 0.989
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Omentum Uterus 0.931 0.887 0.884 0.899 0.944 0.933 0.966 0.953

Omentum Ovary 0.823 0.735 0.748 0.733 0.81 0.799 0.833 0.827

Omentum Lung 0.968 0.917 0.922 0.921 0.969 0.97 0.97 0.969

Omentum Kidney 0.983 0.977 0.972 0.976 0.978 0.977 0.979 0.984

Lung Uterus 0.974 0.954 0.946 0.944 0.978 0.971 0.983 0.965

Lung Kidney 0.988 0.976 0.978 0.958 0.989 0.99 0.994 0.995

Endomet Uterus 0.752 0.821 0.812 0.803 0.865 0.837 0.897 0.878

Endomet Ovary 0.874 0.857 0.853 0.88 0.906 0.864 0.944 0.952

Endomet Lung 0.981 0.956 0.956 0.957 0.984 0.981 0.986 0.984

Endomet Kidney 0.985 0.975 0.974 0.979 0.974 0.978 0.999 0.987

Endomet Colon 0.976 0.964 0.962 0.969 0.965 0.964 0.983 0.985

Endomet Breast 0.98 0.932 0.932 0.955 0.94 0.944 0.977 0.975

Colon Uterus 0.975 0.953 0.957 0.963 0.975 0.968 0.981 0.973

Colon Prostate 0.99 0.979 0.98 0.984 0.988 0.989 0.995 0.995

Colon Ovary 0.955 0.918 0.911 0.916 0.937 0.938 0.97 0.967

Colon Omentum 0.934 0.923 0.92 0.928 0.933 0.937 0.957 0.949

Colon Lung 0.967 0.946 0.963 0.955 0.968 0.968 0.983 0.972

Colon Kidney 0.985 0.983 0.983 0.983 0.985 0.99 0.994 0.987

Breast Uterus 0.959 0.936 0.936 0.943 0.957 0.951 0.969 0.967

Breast Prostate 0.98 0.948 0.956 0.972 0.981 0.984 0.994 0.993

Breast Ovary 0.977 0.964 0.964 0.968 0.972 0.974 0.986 0.977

Breast Omentum 0.931 0.911 0.917 0.924 0.911 0.91 0.934 0.93

Breast Lung 0.957 0.948 0.939 0.946 0.967 0.961 0.97 0.963

Breast Kidney 0.983 0.973 0.971 0.969 0.98 0.98 0.983 0.985

Breast Colon 0.963 0.966 0.957 0.959 0.987 0.983 0.988 0.989

Average 0.939 0.922 0.923 0.927 0.939 0.938 0.959 0.963

Table A.3: Average AUC calculated by Friedman’s and

Nemenyi test On Microarray data sets (Setting:10 la-

beled instances, 50 attributes, Näıve Bayes)
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Figure A.1: Parallel coordinates plot for experiments on Microarray data sets (3

labeled instances, 50 attributes, Näıve Bayes)

Figure A.2: Parallel coordinates plot for experiments on Microarray data sets (5

labeled instances, 50 attributes, Näıve Bayes)

Figure A.3: Parallel coordinates plot for experiments on Microarray data sets (Set-

ting:10 labeled instances, 50 attributes, Näıve Bayes)
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