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Abstract
Pittie (Proc Indian Acad Sci Math Sci 98:117-152, 1988) proved that the Dolbeault coho-
mology of all left-invariant complex structures on compact Lie groups can be computed by
looking at the Dolbeault cohomology induced on a conveniently chosen maximal torus. We
generalized Pittie’s result to left-invariant Levi-flat CR structures of maximal rank on com-
pact Lie groups. The main tools we used was a version of the Leray–Hirsch theorem for CR
principal bundles and the algebraic classification of left-invariant CR structures of maximal
rank on compact Lie groups (Charbonnel and Khalgui in J Lie Theory 14:165-198, 2004) .
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1 Introduction

In thiswork,we prove a version of theLeray–Hirsch theorem forCRprincipal bundles,which,
combined with a result by Charbonnel and Kalgui [6], allows us to study the ∂b cohomology
of left-invariant Levi-flat CR structures of maximal rank on compact Lie groups.

Let G be a connected and compact Lie group with Lie algebra g and let Cg be the
complexification of g. We assume that G is odd-dimensional and is endowed with a left-
invariant Levi-flat CR structure V of CR codimension 1. Since V is left-invariant, there is a
corresponding Lie algebra h ⊂ Cg defined by the restriction of V to the identity of G. Notice
that this is a one-to-one correspondence, that is, given a Lie subalgebra h ⊂ Cg, we define
by left-translation an involutive vector bundle V ⊂ CTG and if we assume that h ∩ h = {0}
the vector bundle V is an abstract CR structure. Notice that the rank of the vector bundle V is
just the dimension of the Lie algebra h and that the commutator bracket and the Lie algebra
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bracket agree. Further, because we use induced CR structure on a maximal torus, we restrict
the rank of G to be bigger than or equal to 3.

We consider the ∂b complex on G

∂b : C∞(G;�0,q) → C∞(G;�0,q+1)

with 0 ≤ q ≤ rank V with cohomology spaces denoted by H0,q(G;V).
Given ξ ∈ h⊥ = {u ∈ Cg∗ : u(L) = 0 ∀L ∈ h}, ξ �= 0, the Levi form at ξ ∈ h⊥ is the

Hermitian form on h defined by Lξ (L, M) = (1/2i)ξ([L, M]) in which L and M are any
smooth local sections of h. Notice that the Levi-form is left-invariant. We shall say that L is
Levi-flat if given any point ξ ∈ h⊥, with ξ �= 0, the Hermitian form Lξ is zero.

By the classification theorem of Charbonnel and Kalgui [6], there is a maximal torus
T ⊂ G such that Wt

.= Vt ∩ CTt T defines a bi-invariant CR structure W = ⋃
t∈T Wt on

T . We call W the toric component of V (relative to the maximal torus T ). For each g ∈ G,
we denote by gT the set {gt : t ∈ T } and by gW the pushforward by left-translation by g,
that is, gW .= (Lg)∗(W) with Lg(x) = gx . We usually denote the toric component W by
its corresponding Lie algebra m ⊂ Ct with t the Lie algebra of T .

We say thatW (orm) satisfies the divisor condition (DC) if there exist a basis {L1, . . . , Ln}
for W (or m) and constants C, ρ > 0 such that

max
j

|L̂ j (ξ)| ≥ C(1 + |ξ |)−ρ, ∀ξ ∈ Z
N ,

with L̂ j being the symbol of the vector field L j and N the dimension of T .
The following theorem is the main result of this work.

Theorem 1 Let G be a connected, odd-dimensional, and compact Lie group endowed with a
left-invariant Levi-flat CR structure V of maximal rank. Suppose thatW , the toric part of V ,
satisfies the (DC) condition, then there exists an isomorphism H0,q(G;V) ∼= H0,q(T ;W).

Notice that the toric part of left-invariant complex structures always satisfies the (DC)
condition and so our theorem is a generalization, and a new proof, of a result by Pittie [14].

Here is a simple example to show that the hypothesis of Theorem 1 is not vacuous.

Example 1 The Lie algebra of SU(2) is generated by the matrices

X =
(
0 i
i 0

)

, Y =
(
0 −1
1 0

)

, T =
(
i 0
0 −i

)

.

It is easy to verify that these matrices satisfy the following commutation relations:

[T , X ] = 2Y , [T , Y ] = −2X , [X , Y ] = 2T . (1)

Using coordinates (x, y) on T
2, we can easily verify that the involutive structure defined

by h
.= spanC{λ∂/∂x + ∂/∂ y − iT , L} is CR and Levi-flat. This follows a general technique

found in [7]. Additionally, it can be shown that this structure satisfies the (DC) condition if
λ is chosen as a non-Liouville number [10].

The proof of Theorem 1 is an adaptation to the CR case of a proof of the complex case
we found in [1], and follows from the next two theorems: Theorem 2 is a version of Leray–
Hirsch theorem for CR bundles assuming a cohomological condition and that the structure is
Levi-flat, and Theorem 3 shows that (DC) condition implies such a cohomological condition.
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Theorem 2 Let G be a connected and compact Lie group endowed with a left-invariant Levi-
flat CR structure V . Let T andW be as Theorem 1. A sufficient condition for the existence of
an isomorphism for all q

H0,q(G;V) ∼= H0,q(T ;W)

is that for each q and for every cohomology class u in H0,q(T ;W) there exists a cohomology
extension u′ in H0,q(G;V) such that for all g ∈ G, u′, when restricted to gT , defines a
cohomology class H0,q(gT ; gW).

The proof of this theorem can be obtained using the general Leray–Hirsch theorem [16,
Theorem 9 of Section 7, Chapter 5]. The hypothesis that h is Levi-flat is used to show that the
principal bundle G with structure group T and base space G/T admits a CR trivialization.
Instead of just citing that reference, we prove Theorem 2 using only the theory of partial
differential equations and complex analysis.

The next theorem shows that the (DC) condition on the toric component of theCR structure
guarantees that a cohomology extension exists.

Theorem 3 Let G be a connected and compact Lie group endowed with left-invariant CR
structure V of maximal rank, and let W be its toric component. If W satisfies the (DC)
condition, then there exists a cohomology extension H0,q(T ;W) → H0,q(G;V) satisfying
the conditions from Theorem 2.

It follows from Theorem 3 that computation of the cohomology of Example 1 can be
reduced to the maximal torus. We compute the dimension of the cohomology spaces in
Example 6.

The paper is organized in the following way. In Sect. 2, we briefly introduce the nota-
tion regarding locally integrable structures, the associated differential complexes, and their
cohomology spaces.

In Sect. 3, we define the main object of study of this work, namely the left-invariant CR
structures of maximal rank.We also state the theorem of Charbonell and Kalgui [6] that gives
a classification of such CR structures in the language of Lie algebras. We finish this section
with examples of such structures.

In Sect. 4, we briefly recall some concepts related to principal and CR bundles and prove
a version of the Leray–Hirsch theorem for CR bundles.

In Sect. 5, we discuss some examples to emphasize why some hypotheses are necessary
and we also show that there are no Levi-flat CR structures of maximal rank on semisimple
Lie groups.

In Sect. 6, we show that (DC) suffices to guarantee that cohomology class extensions exist.
In Sect. 7, we describe some open problems that would nicely complement our results.

2 Involutive structures

Let � be a smooth and orientable manifold of dimension N . An involutive structure on �

is a smooth subbundle V of the complexified tangent bundle CT� of � such that the Lie
bracket of any two smooth local sections of V is again a smooth section of V . We denote the
rank of V by n, and we denote by �k the bundle �k

CT ∗�. If W is a smooth vector bundle,
we denote by C∞(�;W ) the space of sections of W with smooth coefficients.
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For 0 ≤ p ≤ m
.= N − n, 0 ≤ q ≤ n and each open set U ⊂ �, there is a natural

differential operator d′ associated with V defining a complex

d′ : C∞(U ;�0,q) → C∞(U ;�0,q+1) (2)

with cohomology spaces denoted by H0,q(U ;V). We refer to [2] and [17] for a detailed
construction of this complex.

When V ⊕ V = CT�, the structure V is called a complex structure and the differential
operator d′ is the usual ∂ operator, and when V∩V = {0}, the structure V is called a (abstract)
CR structure and the differential operator d′ denoted by ∂b.

3 Left-invariant involutive structures on compact Lie groups

Let G be a compact Lie group of dimension N . We denote by g the Lie algebra of G. If
h ⊂ g is any subalgebra, we denote by Ch its complexification. Let Lg : G → G be the
left-multiplication by g ∈ G, that is, Lg(x) = g · x . Notice that the push-forward (Lg)∗
induces a vector bundle isomorphism between G×Cg and CTG. Therefore, we can identify
subbundles of CTG with subbundles of G × Cg.

A subbundle V ⊂ CTG is said to be left-invariant if (Lg)∗X ∈ Vg·x for all X ∈ Vx .

We identify left-invariant involutive subbundles of CTG with Lie subalgebras of Cg. For a
subalgebra h ⊂ Cg, we denote by Vh the associated subbundle. Notice that the rank of the
bundle Vh is the complex dimension of h.

3.1 Left-invariant CR structures of maximal rank on compact Lie groups

In this section, we make a brief exposition of some results from [6].
Let t ⊂ g be a maximal abelian subalgebra. We denote by � the set of roots of Ct in

Cg and by �+ a maximal subset of positive roots of �. For α ∈ �, we denote by gα the
eigenspace associated with α. Each gα is one dimensional [11, Theorem 7.23]. We can easily
show that

bt =
⊕

α∈�+
gα (3)

is a Lie subalgebra of Cg.
Since t is abelian, any choice of vector space m ⊂ Ct is a Lie algebra and h = m ⊕ bt is

a Lie algebra. If m is elliptic (resp. CR), then h is elliptic (resp. CR). Also, notice that bt is
an ideal of h.

Let us focus on the CR case. We denote by d the dimension of t and, since the dimension
of each gα is one, we can easily see that N = d + 2l with l being the number of elements
of �+. If m is a Lie subalgebra of Ct of dimension [d/2]1 such that its intersection with g

is null; the sum 
(m) of m and bt is a subalgebra of dimension [N/2] and null intersection
with g.

We recall the two subalgebras h1 and h2 of g are called conjugate if there exist a g ∈ G
such that Ad(g)h1 = h2. Here Ad(g) is the differential at e ∈ G of the map Cg : G → G
given by Cg(h) = ghg−1.

1 For x ∈ R, we define [x] = max{n ∈ Z : n ≤ x}.
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Definition 1 We shall say that a subalgebra h ⊂ Cg is of type CR0 if it is conjugate to a
subalgebra of the form


(m) = m ⊕ bt (4)

in which m is a subspace of dimension [d/2] of Ct and null intersection with g.

When N is odd, we introduce the setD(�+) of all elements of the form (α,m, x, t)with α

a simple root in�+,m a subspace of dimension [d/2] of the kernel of α with null intersection
with g such that x is an element not null of gα and t ∈ t. For every (α,m, x, t) in D(�+),
we define

�(α,m, x, t) = m ⊕
⊕

β∈�+\{α}
gβ ⊕ spanC{t + x}. (5)

Therefore, �(α,m, x, t) is a subalgebra of Cg of dimension [N/2] and null intersection
with g.

Definition 2 We shall say that a subalgebra h ⊂ Cg is of type CR1 if it is conjugate to a
subalgebra of the form �(α,m, x, t) in which (α,m, x, t) is an element of D(�+).

Without loss of generality, we take h to be of the form (4) or (5) instead of conjugate to
this form.

For an algebra h of type CR0 or CR1, we call the subalgebra m the toric part of h.
In Sect. 5, simple examples of both types of CR structures are given for the group SU (2).
The main theorem of [6] is the following:

Theorem 4 Let V be a left-invariant CR structure of maximum rank over a Lie group G.
Then, the rank of V is [N/2]. If N is even, then the corresponding subalgebra h given by the
set of all left-invariant vector fields of V is a complex structure and it is of type CR0. If N is
odd, the corresponding subalgebra h is of type CR0 or CR1.

Theorem 5 A semisimple Lie group G does not admit a Levi-flat CR structure of type CR0.

Proof Recall that we limit ourselves to CR structures of maximal rank, i.e., the codimension
of V ⊕ V̄ is one. Thus, we only consider odd dimensional Lie groups.

Let g be the complexified Lie algebra of the group. If g is not semisimple, then G is not
semisimple. And to show g is not semisimple it suffices to show that [g, g] is a proper subset
of g. A CR structure of type CR0 has the form

V = m ⊕
⊕

β∈�+
gβ

where m ⊕ m̄ is of codimension one in some maximal toral subalgebra of g. Call this toral
subalgebra t. Note that there is an element T in the real Lie algebra of G with

t = {T } ⊕ m ⊕ m̄

We have the corresponding decompositions

g = t ⊕
⊕

β∈�

gβ = {T } ⊕ V ⊕ V̄.

From

[T ,m] = 0

123



4 Page 6 of 21 Annals of Global Analysis and Geometry (2023) 64 :4

and

[T , gβ ] ⊂ gβ

we see that

[T ,V] ⊂ V and [T , V̄] ⊂ V̄.

The involutivity and Levi flatness conditions give us

[V ⊕ V̄,V ⊕ V̄] ⊂ V ⊕ V̄
and so we now have

[g, g] ⊂ V ⊕ V̄
which is a proper subset of g. ��

Note that this proof doesn’t apply to structures of type CR1. In place of [T ,V] ⊂ V , we
only obtain

[T ,V] ⊂ V ⊕ gα

(in the notation of Definition 2), from which we cannot conclude

[T ,V ⊕ V̄] ⊂ V ⊕ V̄.

The following result was communicated to the authors by a referee.

Theorem 6 A compact Lie group G does not admit a Levi-flat CR structure of type CR1.

Proof Let G be a compact Lie group with Lie algebra g and let h ⊂ Cg be a Levi-flat
structure of hypersurface type. Since h is Levi-flat, we have that h+ h is a subalgebra of Cg.
Let k

.= (h + h) ∩ g and because h is of hypersurface type, we have that dim k = dim g − 1.
By the compactness of G, it follows that g admits a positive ad-invariant inner product 〈, 〉

(see Proposition 4.24 of [13] and its proof) andwe can consider the decomposition g = k⊥⊕k.
Let X ∈ k⊥ and Y ∈ k. By ad-invariance, we have

0 = 〈[X , X ], Y 〉 = 〈X , [X , Y ]〉
and so [X , Y ] ∈ k = (k⊥)⊥ which means that k is an ideal in g.

Notice thatCk = h⊕h, and thus, h defines a complex structure onCk. SinceG is compact,
we have that g is reductive, and since k is an ideal in g, it follows that k is reductive. Now the
result follows from [15, Section 3, Theorem 1]. ��

The compactness is crucial, as can be seen in the following.

Example 2 Consider the usual basis of sl2

T =
(
1 0
0 −1

)

, X =
(
0 1
0 0

)

, Y =
(
0 0
1 0

)

with bracket products

[T , X ] = 2X , [T , Y ] = −2Y , [X , Y ] = T .

Thus,

C ⊗ sl2 = M ⊕ g2 ⊕ g−2
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with

m = {T }, g2 = {X}, g−2 = {Y }.
Take L = X + iT and note that L is of type CR1. Also note that

[L, L̄] = 2i(L + L̄).

So the semi-simple group SL2 admits a Levi-flat CR structure (of type CR1).

This example is taken from Section 4 of [4]. It follows from the methods of that section
that up to CR equivalence this is the only left-invariant Levi-flat CR structure on SL2.

4 Leray–Hirsch theorem for CR bundles

LetG be an odd-dimensional compact Lie group and let h be a Lie algebra in the form (4).We
define T = expG(t) and thus T is maximal torus endowed with a maximal CR structure m.
We have that the inclusion i : T ⊂ G is a map compatible with the involutive structures on T
and on G, meaning that i∗(m) ⊂ h. We also have that the quotient map π : G → �

.= G/T
induces a complex structure on �, that is, � is endowed with the involutive structure π∗(h)
(see [9, Problem 2.57] for details).

In the following, we recall the definition of principal bundle, andwe prove that T
i−→ G

π−→
� is a smooth principal bundle. We also prove that if h is a Levi-flat CR subalgebra, then the
local smooth trivialization for the bundle G is compatible with the involutive structure on the
fiber and on the base space.

Definition 3 A principal fiber bundle P with structure group H is a triple (P, H , R) with
P being a manifold, H a Lie group and R : P × H → P a smooth right action of H on P
satisfying:

1. �
.= P/H has a manifold structure making the projection π : P → � smooth;

2. P is locally trivial, i.e., there is an open cover {Uj } of � and diffeomorphisms 
 j :
π−1(Uj ) → Uj × H satisfying


−1
j (x, hg) = 
−1

j (x, h)g

for all x ∈ Uj and all g, h ∈ H .

Example 3 Let G be a compact Lie group and let K ⊂ G be a closed subgroup. Then, G
can be regarded as a principal bundle with structure group K endowed with a right action
R : G × K → G. The quotient by this action defines a manifold � = {gK : g ∈ G} with
the projection π : G → � being smooth.

By [12, Corollary 10.1.11], it is possible to find a covering {Uj } of� and smooth sections
σ j of the quotient map π : G → � such that

(u, t) ∈ Uj × K �→ � j (u, t)
.= σ j (u)t ∈ σ j (Uj )K (6)

is a diffeomorphism onto an open subset of G which we denote by Vj .
The local trivialization follows from the fact that � has an open cover {Uj } and local

sections σ j : Uj → G for the projection π such that � j : (u, k) ∈ Uj × K �→ σ j (u)k ∈
π−1(Uj ) is a diffeomorphism. We define 
 j = �−1

j and notice that


−1
j (x, hg) = � j (x, hg) = σ j (x)hg = � j (x, h)g = 
−1

j (x, h)g.
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We define the analogous principal fiber bundle for CR structures.

Definition 4 A CR principal bundle P with structure group H is a triple (P, H , R) with P
being a CR manifold, H a Lie group and R : P × H → P a free CR right action of H on P
satisfying:

1. �
.= P/H has a CR structure making the projection π : P → � a CR map;

2. P is locally CR trivial, i.e., there is an open cover {Uj } of � and CR diffeomorphisms

 j : π−1(Uj ) → Uj × H satisfying


−1
j (x, hg) = 
−1

j (x, h)g

for all x ∈ U and all g, h ∈ H .

Proposition 1 Let G be a compact Lie group endowed with a left-invariant Levi-flat CR
structure h of maximal rank and let m ⊂ h be its toric part. Let t be the Lie algebra of the
maximal torus T such that m ⊂ Ct. Then, G is CR principal bundle with structure group T
and base space � = G/T .

In order to prove Proposition 1, we need: a few results:

Lemma 1 Let G be a compact Lie group endowed with a left-invariant CR structure h of
maximal rank and let m ⊂ h be its toric part and let T be the associated maximal torus. Let
G×T be endowed with the CR structure given by h⊕m. Thenμ : (g, t) ∈ G×T �→ gt ∈ G
is a CR map.

Proof Let X ⊕ Y ∈ h ⊕ m and notice that

(μ∗)(a,b)(X ⊕ Y ) = (Rb)∗(X) + (La)∗(Y ).

Let hg denote (Lg)∗h, so (La)∗(Y ) ∈ hab; hence, we only need to verify that (Rb)∗(X) ∈ hab.
We write X = X ′ + ∑

α∈�+ Xα with X ′ ∈ m and Xα ∈ gα . Clearly, we have that
(Rb)∗(X ′) ∈ hab, and by linearity, we just need to know what happens with (Rb)∗(Xα). Let
W ∈ CTbT and recall that [W , Xα] = α(W )Xα . Also, notice that

[Wab, (Rb)∗(Xα)] = [(Rb)∗(Wa), (Rb)∗(Xα)] = (Rb)∗[Wa, Xα] = (Rb)∗α(W )Xα.

Therefore, (Rb)∗(Xα) ∈ Ker (adW −α(W ) id) = g, with adW (X) = [W , X ]. Now, since
dimC gα = 1, we have that there exists a λb,α ∈ C such that

(Rb)∗(Xα) = λb,αXα.

��
Lemma 2 Let M be a smooth manifold endowed with a complex or a Levi-flat CR structure
V and N be a smooth manifold endowed with a complex structure S. Let f : M → N be
a map such that f∗(Vx ) = S f (x) for all x ∈ M. Then, for every y ∈ N there exist an open
neighborhood U of y and a map σ : U → M such that f ◦ σ(x) = x for all x ∈ U and
σ∗(Sx ) ⊂ Vσ (x) for all x ∈ U.

Proof Let y ∈ N , x ∈ f −1({y}) and V ⊂ M be an open neighborhood of x with coordinates
φ : V → V ′ × V ′′ ⊂ C

ν × R
n−ν with V ′ ⊂ C

ν and V ′′ ⊂ R
n−ν . When V is complex, we

take ν = n. We choose the coordinates

φ = (z1, . . . , zν, t1, . . . , tn−ν)
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such that over V the involutive structure V is generated by the vector fields

∂

∂z1
, . . . ,

∂

∂zν
.

Let U ⊂ N be a neighborhood of y with coordinates ψ : U → U ′ ⊂ C
l written as

ψ = (w1, . . . , wl)

such that over U the involutive structure S is generated by the vector fields

∂

∂w1
, . . . ,

∂

∂wl
.

Now, by using these coordinates, we write a local representation of f , namely f̃ : V ′ → U ′,
as f̃ = ψ ◦ f ◦ φ−1. Notice that since f∗(Vx ) = S f (x), we have that

f∗(Vx + Vx ) = S f (x) + S f (x) = CT f (x)N .

Let J f̃ (z, t) denote the Jacobian matrix of f̃ . Since f̃∗ is surjective, by shrinking the open
sets V , V ′,U andU ′ if necessary, and by rearranging the indices, we can assume that first l×l
blockof the Jacobianmatrix of f̃ is invertible.Wewrite z′ = (z1, . . . , zl), (z′0, z′′0, t0) = φ(x),
w0 = ψ(y), and we define the function F(z′, z′′, t) = ( f̃ (z′, z′′, t0), z′′, t). Therefore, from
the Inverse Function Theorem there exist F−1 and this function is holomorphic in the z′, z′′
and smooth in t . Let F ′(z, t) = (F(z), t), notice that this function is invertible, and define
φ′ = F ′ ◦φ. Notice that with φ′ as new coordinate on V we have that the local representation
of f is the projection on z′.

Therefore, we can define a holomorphic section for f by defining σ ′(z′, z′′, t) =
(z′, z′′0, t0) and then defining σ : U → M as σ = φ−1◦ σ̃ ◦φ. Thus, we have that f ◦σ = IdU
and by construction, since σ̃ , φ̃ and ψ are compatible with the structures V and S, we have
that σ∗(w) ∈ Vσ(x) for all w ∈ Wx . ��
Proof of Proposition 1 We apply Lemma 2 with M = G and N = �(= G/T ) and thus have
for every small open set U and every t ∈ T , the CR diffeomorphism


 : (u, t) ∈ U × T �→ σ(u)t ∈ σ(U )T = π−1(U ). (7)

Let X ⊕ Y ∈ π∗(h|u ⊕ m). We want to prove that (
∗)(u,t)(X ⊕ Y ) ∈ hσ(u)t . First,
we compute (
∗)(u,t)(0 ⊕ Y ). Let α, β : (−ε, ε) → G be two smooth curves satisfying
α(0) = β(0) = t and α′(0) + iβ ′(0) = Y . Then,

(
∗)(u,t)(0 ⊕ Y ) = d

ds

∣
∣
∣
∣
s=0

σ(u)α(s) + i
d

ds

∣
∣
∣
∣
s=0

σ(u)β(s)

= (Lσ(u))∗(α′(0)) + i(Lσ(u))∗(β ′(0))
= (Lσ(u))∗(Y ) ∈ hσ(u)t

Now, we compute (
∗)(u,t)(X ⊕ 0). Let α, β : (−ε, ε) → G be two smooth curves
satisfying α(0) = β(0) = u and α′(0) + iβ ′(0) = X . Then,

(
∗)(u,t)(X ⊕ 0) = d

ds

∣
∣
∣
∣
s=0

σ(α(s))t + i
d

ds

∣
∣
∣
∣
s=0

σ(β(t))t

= (Rt )∗ ◦ σ∗α′(0) + i(Rt )∗ ◦ σ∗β ′(0)
= (Rt )∗ ◦ σ∗(X)

We use that Rt and σ are CR maps, and the proof is complete. ��
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Remark 1 Notice that the existence of local sections for π implies that (7) is a CR diffeo-
morphism, and since the set U × T is endowed with a Levi-flat structure, we conclude that
the existence of local sections implies that the original structure is Levi-flat. Therefore, the
Levi-flat condition from Proposition 1 cannot be dropped.

In the following, we show an example of a left-invariant CR structure of type CR0 such
that the mapμ, as defined in Lemma 1, is a CRmap, but, since such structure is not Levi-flat,
it fails to be a CR principal bundle with structure group T .

Example 4 Let G be the compact Lie group

SU(2)
.=

{(
z1 −z2
z2 z1

)

: z1, z2 ∈ C, |z1|2 + |z2|2 = 1

}

and let T ⊂ G given by

T =
{(

eiθ 0
0 e−iθ

)

: θ ∈ R

}

.

It is easy to prove that T is a maximal torus. Recall that the Lie algebra of SU(2), which
we denote by su(2), is generated by

X =
(
0 i
i 0

)

, Y =
(
0 −1
1 0

)

, T =
(
i 0
0 −i

)

.

The vector field L = X ⊗1−Y ⊗ i defines a left-invariant CR structure h = spanC{L} ⊂
Cg. For t ∈ T, we can easily compute (Rt )∗(L) = (Rt )∗(X) ⊗ 1 − (Rt )∗(Y ) ⊗ i . In fact,
we write

t =
(
eiθ 0
0 e−iθ

)

for a t ∈ R and we get

(Rt )∗(X) = Xt =
(
0 i
i 0

)(
eiθ 0
0 e−iθ

)

=
(

0 ie−iθ

ieiθ 0

)

,

and

(Rt )∗(Y ) = Y t =
(
0 −1
1 0

)(
eiθ 0
0 e−iθ

)

=
(

0 −e−iθ

eiθ 0

)

thus

(Rt )∗(L) =
(

0 ie−iθ

ieiθ 0

)

⊗ 1 −
(

0 −e−iθ

eiθ 0

)

⊗ i

and we easily verify that (Rt )∗(L) = e−iθ L . Thus, μ is a CR map.

We will use the following special case of the Künneth formula.

Proposition 2 Let D ⊂ C
n be a polydisk with its natural complex structure V and let U be a

smooth manifold endowed with a CR structureW . We assume that there are globally defined
linearly independent ∂b-closed forms ζ1, . . . , ζm spanning W⊥. Then,

H0,q(D ×U ;V ⊕ W) ∼= O(D) ⊗ H0,q(U ;V)

with O(D) the set of all holomorphic functions on D.
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Proof We denote by ∂ the differential operator associated with V , by ∂b the differential
operator associated with W , and by d′ the differential operator associated with V ⊕ W .
Notice that d′ = ∂ +∂b and since d′ ◦d′ = 0 we conclude that ∂ ◦∂b +∂b ◦∂ = 0. We denote
by πD the projection on the first variable and by πU the projection on the second variable.

Notice that if f ∈ O(D) and [u] ∈ H0,q(U ;V), then π∗
D( f )π∗

U (u) defines an element in
H0,q(D × U ;V ⊕ W) and since the elements of the form π∗

D( f )[π∗
U (u)] form a basis for

O(D) ⊗ H0,q(U ;V), we have a homomorphism

ψ : O(D) ⊗ H0,q(U ;V) �→ H0,q(D ×U ;V ⊕ W).

We will prove that ψ is an isomorphism.
First we prove that ψ is surjective. Let [u] ∈ H0,q(D × U ;V ⊗ W). We write u =∑
|J |+|K |=q u J K dz J ∧ τK . We can decompose u as a finite sum u = ∑

j+k=q u jk with
u jk = ∑

|J |= j,|K |=k u I J dz J ∧ τK . Let u jk be such that j is as big as possible with u jk �= 0.

From d′u = 0 and the maximality of j , we have that ∂u jk = 0. Since D is a polydisk, we
can find v jk in D with parameters inU such that ∂v jk = u jk . Nowwe can take u′ = u−∂v jk .
Notice that u′ and u are in the same cohomology class. Now, let u′

jk be a nonzero form such
that j is as big as possible. This j is less than the one obtained with u jk . By repeating this
process, after a finite number of stepswefind a ũ that can be represented as ũ = ∑

|K |=q ũK τK
with ũK ∈ C∞(D ×U ) holomorphic in D.

Now we write the Taylor series at 0 ∈ D for each ũK and we obtain

ũK =
∑

α∈Zn+

∂αuK

∂zα
(0, t)

zα

α! , z ∈ D, t ∈ U

with uniform convergence over compact sets. Notice that

ũ =
∑

α∈Zn+

zα

α!

⎛

⎝
∑

|K |=q

∂αuK

∂zα
(0, t)τK

⎞

⎠

and each term
∑

|K |=q
∂αuK
∂zα (0, t)τK defines a cohomology class in H0,q(U ;V). This proves

surjectivity.
Now assume that [u] ∈ O(D) ⊗ H0,q(U ;V) is such that ψ([u]) = 0. This means that

there exists v such that d′v = u. We write v = ∑
|J |+|K |=q−1 vJ K dz I ∧ τK , and we see that

∂vJ K = 0 if |J | ≥ 1 and with a process similar to the one we did in the surjectivity case
conclude that we have a solution ṽ with ∂ṽ = u with ṽ ∈ O(D) ⊗ H0,q−1(U ;V). ��

Let (P,G, R) be a principal CR bundle with base space B. Let U,V and W be the CR
structures of, respectively, G, P and B and denote by rx : H0,q(P;V) → H0,q(Px ;V|Px )
the restriction to the fiber Px . A homomorphism e : H0,q(G;U) → H0,q(P;V) is called

a cohomology extension of the fiber if for every x ∈ P the composition H0,q(G;U)
e−→

H0,q(P;V)
rx−→ H0,q(Px ;V|Px ) is an isomorphism.We also assume that if V ⊂ P is a small

neighborhood such that there exist a trivialization � : V → U × G with U = π(V ) and if
prG is the projection prG : U × G → G, then

�∗ ◦ pr∗G(u) = e(u) (8)

for all u ∈ H0,q(G;U) and any q = 0, 1, 2, . . . .

Theorem 7 (Leray–Hirsch theorem for CR principal bundles) Let (P, H , R) be a principal
CR bundle. Let V be the CR structure of P and assume that there are globally defined linearly
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independent ∂b-closed forms ζ1, . . . , ζm spanning V⊥. Suppose that each H0,q(H) is finite-
dimensional and that there is a cohomology extension e : H0,q(H) → H0,q(P), then there
is an isomorphism

H0,q(P;V) ∼=
∑

r+s=q

H0,s(H ;U) ⊗ H0,r (�;W),

with U the CR structure of H and W the CR structure of the base space �.

Proof Let {Uj } be an open covering of � by sets such that each Uj is biholomorphic to a
polydisk, and there exists a local CR trivialization 
 j : Vj → Uj × � of � with Vj =
π−1(Uj ). Notice that {Vj } is an open covering for P . Now we have an isomorphism

H0,q(Vj ;V) = H0,q(Uj × H ;S ⊕ U)

and we have a homomorphism

ψ :
∑

r+s=q

H0,r (Uj ;W) ⊗ H0,s(H ;U) → H0,q(Uj × H ;S ⊕ U)

given by [u] ⊗ [v] �→ π∗
Uj

(u) ∧ π∗
H (v). By Lemma 2, this last homomorphism is an isomor-

phism. These two isomorphisms, combined with the fact that e is a cohomology extension,
imply that we have for each Vj an isomorphism

φ :
∑

r+s=q

H0,r (Uj ;W) ⊗ H0,s(H ;U) → H0,q(Uj × H ;S ⊕ U)

given by [u] ⊗ [v] �→ π∗(u) ∧ e(v).
On the other hand, for any two sets U ,U ′ ∈ {Uj } we can use Mayer–Vietoris sequence

to get an exact sequence

· · · → H0,r (U ∪U ′;W) → H0,r (U ;W) ⊕ H0,r (U ′;W) → H0,r (U ∩U ′;W)

→ H0,r+1(U ∪U ′;W) → · · · .

Now, we tensor each term with the finite vector space H0,s(H ;U) and we sum all terms
satisfying r + s = q and we obtain another exact sequence. We define Vj = π−1(Uj ). We
take V = π−1(U ) and V ′ = π−1(U ′). Now we have two sequences, which we show side
by side emphasizing the isomorphism between each element. Notice that the only missing
isomorphism is the term in the middle.
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.

.

.
.
.
.

H0,q−1(V ;V) ⊕ H0,q−1(V ′;V)
∑

H0,s (H ;U) ⊗ H0,r (U ;W) ⊕ ∑
H0,s (H ;U) ⊗ H0,r (U ′;W)

H0,q−1(V ∩ V ′;V)
∑

H0,s (H ;U) ⊗ H0,r (U ∩U ′;W)

H0,q (V ∪ V ′;V)
∑

H0,s (H ;U) ⊗ H0,r (U ∪U ′;W)

H0,q (V ;V) ⊕ H0,q (V ′;V)
∑

H0,s (H ;U) ⊗ H0,r (U ;W) ⊕ ∑
H0,s (H ;U) ⊗ H0,r (U ′;W)

H0,q (V ∩ V ′;V)
∑

H0,s (H ;U) ⊗ H0,r (U ∩U ′;W)

.

.

.
.
.
.

Now, since this diagram is commutative, we can apply the Five Lemma and construct
the missing isomorphism. Since � is compact, it has a finite covering; thus, we can use a
induction on the covering and construct an isomorphism defined in the union of all {Uj } and
{Vj }. That is, we obtain

H0,q(P;V) =
∑

r+s=1

H0,s(H ;U) ⊗ H0,r (�;W).

��

Lemma 3 Let G be a compact Lie group endowed with a left-invariant involutive structure
h of the form

h = m ⊕ u

with m ⊂ Ct and t the Lie algebra of a maximal torus T and u an ideal of h. Let
u ∈ C∞(T ;�0,q) be a left-invariant and ∂

′
b-closed, with ∂

′
b being the differential oper-

ator associated with m on T . Then, u can be extended to a ∂b-closed form in G which
restricts to a left-invariant form on each leaf gT .

Proof Since u is left-invariant, we can regard it as an element of the dual of m and we can
extend u as an element of Cg∗ by defining it as zero if any of its arguments are in u or u. We
denote u + u as m⊥. Let wg = (Lg−1)∗u and notice that

(Lg)
∗ : H0,q(gT ;m) → H0,q(T ;m)

is an isomorphism and so w is a smooth (0, q)-form in G which restricts to a cohomology
class in each leaf gT .

We are going to see that w also is ∂
′
b-closed. We just need to show that w satisfies

du(X1, . . . , Xq+1) = 0 if all the arguments are in h. Let X1, . . . , Xq+1 ∈ h. Since the
exterior derivative commutes with the pullback, we have

dwg = d[(Lg−1)∗u] = (Lg−1)∗(du)
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and we just need to do the following computation

du(X1, . . . , Xq+1) =
q+1∑

j=1

(−1) j+1X ju(X1, . . . , X̂ j , . . . , Xq+1)

+
∑

j<k

(−1) j+k+1u([X j , Xk], X1, . . . , X̂ j , . . . , X̂k, . . . , Xq+1)

=
∑

j<k

(−1) j+k+1u([X j , Xk], X1, . . . , X̂ j , . . . , X̂k, . . . , Xq+1).

Notice that by left-invariance, we have that X ju(X1, . . . , X̂ j , . . . , Xq+1) is zero. If we

assume that X j ∈ m for all j , then (dwg)(X1, . . . , Xq+1) = 0 because ∂
′
bu = 0 and if we

assume that X1 ∈ u and that X j ∈ u for some j > 1. Then,
∑

j<k

(−1) j+k+1u([X j , Xk], X1, . . . , X̂ j , . . . , X̂k, . . . , Xq+1)

=
∑

1<k

(−1)1+k+1u([X1, Xk], X2, . . . , X̂ j , . . . , X̂k, . . . , Xq+1) = 0

because u is an ideal and so [X1, Xk] ∈ u.
If we assume that two or more elements are X1, X2 ∈ m⊥, we use the fact that u is an

ideal and an argument similar to the one above proves that we have

(dwg)(X1(g), . . . , Xq+1(g)) = 0.

��
Remark 2 Notice that if h is a CR algebra of type CR0, then we can use Lemma 3 with
u = ⊕

α∈�+ gα . We refer to [6] for a proof that, in both cases, u is an ideal of h.

Lemma 4 Let G, T , h and m be as in Lemma 3 and assume that every cohomology class of
H0,q(T ;m) admits a left-invariant representative. Then, the cohomology extension

e : H0,q(T ;m) ↪−→ H0,q(G; h)
satisfies

pr∗T (u) = 
∗
U (e(u))

for all cohomology classes [u] ∈ H0,q(T ;m) with 
U : (u, t) ∈ U ×T �→ σ(u)t ∈ σ(U )T
being the local trivialization map and prT being the projection of U × T onto T .

Proof Let [u] be a cohomology class in H0,q(T ;m) with u left-invariant. Let X1 ⊕
Y1, . . . , Xq ⊕ Yq ∈ π∗(h) ⊕ m.

On the left hand side, we have

pr∗T (u)(X1 ⊕ Y1, . . . , Xq ⊕ Yq ) = u((prT )∗(X1 ⊕ Y1), . . . , (prT )∗(Xq ⊕ Yq )) = u(Y1, . . . , Yq ).

And, on the right hand side, we have


∗
U (e(u))(X1 ⊕ Y1, . . . , Xq ⊕ Yq) = e(u)((
U )∗(X1 ⊕ Y1), . . . , (
U )∗(Xq ⊕ Yq)).

Notice that (
U )∗(X j ⊕ Y j ) = (Rt )∗ ◦ σ∗(X j ) + (Lσ(u))∗(Y j ) (see proof of Lemma 1),
and if we prove that (Rt )∗ ◦ σ∗(X j ) ∈ m⊥, then e(u)((
U )∗(X1 ⊕ Y1), . . . , (
U )∗(Xq ⊕
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0)(
U )∗(Xq ⊕ Yq)) = 0 and by linearity e(u)((
U )∗(X1 ⊕ Y1), . . . , (
U )∗(Xq ⊕ Yq)) =
u(Y1, . . . , Yq).

Let L j ∈ ⊕
α∈� gα be such that π∗(L j ) = X j . We can write L j = ∑

α∈�+ L j,α with
L j,α ∈ gα and X j = ∑

α∈�+ X j,α with X j,α = π∗(L j,α).
Notice that π∗((Rt )∗ ◦ σ∗(X j,α) − L j,α) = π∗(σ∗(X j,α)) − π∗(L j,α) = 0 and thus

π∗((Rt )∗ ◦ σ∗(X j,α) − L j,α) ∈ CTσ(u)t (σ (u)T ) = Ctσ(u)t .

Now, for any W ∈ Ctσ(u)t , we have

0 = [W , π∗((Rt )∗ ◦ σ∗(X j,α) − L j,α] = [W , π∗((Rt )∗ ◦ σ∗(X j,α)] − [W , L j,α]
and so [W , π∗((Rt )∗ ◦ σ∗(X j,α)] = α(W )L j,α for all W . This means that π∗((Rt )∗ ◦
σ∗(X j,α) ∈ gα and thus (Rt )∗ ◦ σ∗(X j ) ∈ ⊕

�+ gα . ��
Now we have all we need to prove Theorem 2. Let G be a connected and compact Lie

group endowed with a left-invariant Levi-flat CR structure V which we represent by the Lie
algebra h. We are assuming that that for every degree q and every cohomology class u in
H0,q(T ;m) there exist a cohomology extension u′ in H0,q(G;V) such that, when restricted
to gT , it defines a cohomology class H0,q(gT ; gW).

By Theorem 7, we have

H0,q(G;V) =
∑

r+s=q

H0,s(T ;W) ⊗ H0,r (�;U).

Notice that, from Chapter 8 of [3], � = G/T has positive first Chern class, so we can apply
Corollary 11.25 of [3] to obtain that H0,r (�;W) = 0 for all r > 0. We conclude that

H0,q(G;V) = H0,q(T ;W)

which proves Theorem 2.
Let G be a compact Lie group with Lie algebra g and let h ⊂ Cg be a Levi-flat CR

algebra of maximal rank. That is, we are assuming that 2 dimC h + 1 = dimC g and since
h is Levi-flat, we have that h + h is a Lie algebra so k = (h + h) ∩ g is a real Lie algebra.
We can easily verify that h + h = Ck and the group K = expG(k) has a complex structure
induced by h.

Proposition 3 Let G be a compact Lie group with Lie algebra g. Let h ⊂ Cg be a Levi-flat
CR algebra of maximal rank and let k = (h+h)∩g and suppose that K = expG(k) is closed.
Then,

H0,q(G; h) = H0,q(K ; h) ⊗ C∞(G/K ).

Proof The proof can be obtained by adapting the ideas from Theorem 1. ��
Remark 3 Let G, K and h be as in the proposition above. Notice that h is a left-invariant
complex structure and so it is of type CR0; therefore, we can decompose h as h = m ⊕ bt
with t ⊂ k a maximal abelian subalgebra defining a maximal torus T . We have that

H0,q(K ; h) = H0,q(T ;m)

and so

H0,q(G; h) = H0,q(K ; h) ⊗ C∞(G/K ) = H0,q(T ;m) ⊗ C∞(G/K ).
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5 Examples

Recall that SU(2) is the group of all 2 × 2 unitary matrices having determinant 1. The Lie
algebra of SU(2) is denoted by su(2) and is the set of all skew-Hermitian and traceless 2× 2
matrices. Let k ⊂ su(2) be any one-dimensional subalgebra. Since every connected subgroup
of SU(2) is closed and the rank of SU(2) is 1, we have that K = expSU(2)(k) is a maximal
torus. Therefore, we can decompose Csu(2) by using the roots associated with Ck. That is,
we have

Csu(2) = Ck ⊕ su(2)α ⊕ su(2)−α.

Example 5 Let X ∈ k be any element and let Z ∈ su(2)β be nonzero. We define h =
spanC{X + Z}. If X = 0, the subalgebra h = su(2)β is of type CR0 and if X �= 0, h is of
type CR1. These examples aren’t Levi-flat.

The following a family of Levi-flat CR structures satisfying (DC).

Example 6 Let T = T
3 be the 3-torus with Lie algebra t, with coordinates (x, y, t), and

endowed with the CR structure v = spanC{L} with L = ∂x + λ∂y + i∂t and λ ∈ R. We have
that {L, L, ∂y} is a basis forCt. By taking v = (1/2)(dx−idt) andw = −λdx+dy, we have
a dual basis {v, v,w} for Ct∗. In this case, we have that �0,1 = spanC{dv}, C∞(T;�0,1) ∼=
{ f v} and ∂b f = (L f )u for all f ∈ C∞(T). Notice that if λ ∈ R\Q, then L f = 0, by means
of Fourier series, implies that f is a constant, this means that H0,0(T; v) ∼= C and if λ in
addition is a non-Liouville number, then H0,1(T; v) ∼= C.

6 Invariant CR structures of maximal rank on the torus

Let T be a torus of dimension N = 2n + 1. Assume it is endowed with a left-invariant
CR structure m ⊂ Ct of rank n. Since T is abelian, the structure m is bi-invariant.
We choose a basis {L1, . . . , Ln} for m which we complete to a basis for Ct denoted by
{L1, . . . , Ln, Ln+1, . . . , L2n+1}. Notice that we can take Ln+ j = L j for j = 1, . . . , n and
take L2n+1 to be real.

We denote by {τ1. . . . , τ2n+1} the basis dual to {L1, . . . , Ln, Ln+1, . . . , L2n+1}. For a
ordered multi-index I , we write L I = (Li1 , . . . , Liq ) and τI = τi1 ∧ . . . ∧ τiq .

With the notation we just described, each u ∈ C∞(T,�0,q) can be written as

u =
∑

|I |=q

u I τI

and we have an expression for ∂b acting on u:

∂bu =
n∑

k=1

∑

|I |=q

Lku I τk ∧ τI

Wewant to prove that under certain conditions on theCR structurem, for each cohomology
class [u] ∈ H0,q

C (T;m) there exist a bi-invariant form u0 such that u − u0 = ∂bv for some
v ∈ C∞(T;�0,q−1), that is, we have that [u] = [u0] in H0,q(T;m).
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Sinceweare assuming that each L j is bi-invariant,we canwrite it as L j = ∑N
j=1 a jk∂/∂xk

with a jk ∈ C and we denote write the symbol of L j as

L̂ j (ξ) = i
N∑

j=1

a jkξk

for ξ ∈ Z
N . Next, we state a condition that is sufficient for obtaining such bi-invariant

representatives in every bi-degree.

Definition 5 We say that a CR subalgebra m ⊂ Ct satisfies the (DC) condition if there exist
a basis {L1, . . . , Ln} for m and constants C, ρ > 0 such that

max
j

|L̂ j (ξ)| ≥ C(1 + |ξ |)−ρ, ∀ξ ∈ Z
N .

The definition of the (DC) condition does not depend on the choice of basis, in fact, let
{L ′

1, . . . , L
′
1} be any other basis for m, then there are constants a jk ∈ C such that L ′

j =
∑n

k=1 a jk Lk and we have

|L̂ ′
j (ξ)| ≤

n∑

k=1

|a jk ||L̂k(ξ)| ≤ nAmax
j

|L̂ j (ξ)|

with A = max j,k |a jk |. That is, there are constants c,C > 0 such that

cmax
j

|L̂ ′
j (ξ)| ≤ max

j
|L̂ j (ξ)| ≤ C max

j
|L̂ ′

j (ξ)|

6.1 Fourier series on forms

Some of the computations in this section were inspired by [8] and [5].
For u ∈ C∞(T;�0,q), we write u = ∑

|I |=q u I τI and since each uI is a smooth function
on T, by using Fourier transform, we can write

u(x) =
∑

ξ∈ZN

eiξ x
∑

|I |=q

û I (ξ)τI =
∑

ξ∈ZN

eiξ x û(ξ)

with

û(ξ) =
∑

|I |=q

û I (ξ)τI .

We denote by ‖ · ‖ the value

‖û(ξ)‖ = max|J |=q
{|û J (ξ)|}.

Since u ∈ C∞(T;�0,q), each uI is smooth, so for each ν ∈ Z+ there is Cν > 0 such that

‖û(ξ)‖ ≤ Cν(1 + |ξ |)−ν

for all ξ ∈ Z
N .

Lemma 5 A (0, q)-form u ∈ C∞(T;�0,q) is ∂b-closed if, and only if,
(

n∑

k=1

L̂k(ξ)τk

)

∧ û(ξ) = 0, ∀ξ ∈ Z
N . (9)
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Proof We have

∂bu =
∑

|I |=q

n∑

k=1

∑

ξ∈ZN

L̂ku I (ξ)eiξ xτk ∧ τI

=
∑

ξ∈ZN

⎛

⎝
n∑

k=1

∑

|I |=q

L̂ku I (ξ)τk ∧ τI

⎞

⎠ eiξ x

=
∑

ξ∈ZN

[(
n∑

k=1

L̂k(ξ)τk

)

∧ û(ξ)

]

eiξ x

From the last equality,we easily see that ∂bu = 0 if and only if
(∑n

k=1 L̂k(ξ)τk
)∧û(ξ) = 0

for all ξ ∈ Z
N . ��

Notice that if f is a ∂b-closed function on T and m satisfied the (DC) condition, then f
is constant. From now on, we assume that q > 0.

For J = ( j1, . . . , jq) and σ = jk , we write J\σ to denote the multi-index
( j1, . . . , ĵk, . . . , jq) and let εσ,J be the signature of the permutation (σ, J\σ).

Lemma 6 Let u ∈ C∞(T;�0,q) be a ∂b-closed and suppose that
∑n

k=1 L̂k(ξ)τk �= 0 and let
σ ∈ {1, . . . , n} be such that |L̂σ (ξ)| = max{|L̂k(ξ)| : k = 1, . . . , n}. Then, the (q−1)-form

v̂(ξ) =
∑

|J |=q; σ∈J

εσ,J
1

L̂σ (ξ)
û J (ξ)τJ\σ

satisfies

(
n∑

k=1

L̂k(ξ)τk

)

∧ v̂(ξ) = û(ξ) (10)

and there exist C > 0 not depending on ξ such that

‖̂v(ξ)‖ ≤ C

|L̂σ (ξ)| ‖û(ξ)‖. (11)

Proof Notice that Eq. (11) follows directly from the definition of v̂(ξ). To prove Eq. (10),
we adapt the proof of Lemma 2.1 of [5]. By definition, we have

(
n∑

k=1

L̂k(ξ)τk

)

∧ v̂(ξ) =
(

n∑

k=1

L̂k(ξ)τk

)

∧
∑

|J |=q; σ∈J

εσ,J
1

L̂σ (ξ)
û J (ξ)τJ\σ . (12)

On the other hand, we can write

τσ = 1

L̂σ (ξ)

n∑

k=1

L̂k(ξ)τk − 1

L̂σ (ξ)

n∑

k=1,k �=σ

L̂k(ξ)τk
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and now

û(ξ) =
∑

|J |=q;σ∈J

û J (ξ)εσ,J τσ ∧ τJ\σ +
∑

|J |=q;σ /∈J

û J (ξ)τJ

=
∑

|J |=q;σ∈J

û J (ξ)εσ,J

(
1

L̂σ (ξ)

n∑

k=1

L̂k(ξ)τk

)

∧ τJ\σ

+
∑

|J |=q;σ /∈J

û J (ξ)τJ −
∑

|J |=q;σ∈J

û J (ξ)εσ,J

⎛

⎝ 1

L̂σ (ξ)

n∑

k=1,k �=σ

L̂k(ξ)τk

⎞

⎠ ∧ τJ\σ

(13)

We define

ûσ (ξ) =
∑

|J |=q;σ∈J

û J (ξ)εσ,J

(
1

L̂σ (ξ)

n∑

k=1

L̂k(ξ)τk

)

∧ τJ\σ

and

û−σ (ξ) =
∑

|J |=q;σ /∈J

û J (ξ)τJ −
∑

|J |=q;σ∈J

û J (ξ)εσ,J

⎛

⎝ 1

L̂σ (ξ)

n∑

k=1,k �=σ

L̂k(ξ)τk

⎞

⎠ ∧ τJ\σ .

Now we have û(ξ) = ûσ (ξ)+ û−σ (ξ). Since u is ∂b-closed, it holds that
(∑n

k=1 L̂k(ξ)τk
)∧

û(ξ) = 0 and, by construction, we have that
(

n∑

k=1

L̂k(ξ)τk

)

∧ ûσ (ξ) = 0

and thus
(

n∑

k=1

L̂k(ξ)τk

)

∧ û−σ (ξ) = 0.

By expanding this last equality, and using the fact that τk ∧ τJ form a basis for all (q + 1)-
forms, we obtain that û−σ (ξ) = 0 and thus û(ξ) = ûσ (ξ) = (∑n

k=1 L̂k(ξ)τk
) ∧ v̂(ξ).

��
Lemma 7 Let u ∈ C∞(T;�0,q) ∂b-closed and suppose that m satisfies condition (DC).
Then, the form

u∗ =
∑

ξ∈ZN \{0}
eiξ x û(ξ)

is ∂b-exact.

Proof For each ξ ∈ Z
N with ξ �= 0, by the condition (DC) we have

∑n
k=1 L̂k(ξ)τk �= 0,

and by Lemma 6, there exist v̂(ξ) such that
(∑n

k=1 L̂k(ξ)τk
) ∧ v̂(ξ) = û(ξ) and so we can

define v = ∑
ξ∈ZN \{0} eixξ . Notice that by (11) the form v is smooth and by construction we

have ∂bv = u∗. ��
If [u] is a cohomology class in H0,q(T ;m), we have that if we define

u0 = û(0) =
∑

|I |=q

û J (0)τJ ,
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then [u] = [u0]. In fact, u∗ = u − u0 is ∂b-exact by the last lemma and it follows that each
cohomology class has a left-invariant representative. In particular, the cohomology groups
H0,q(T ;m) are finite-dimensional.

7 Open problems

Here we list a few open problems that can give us some directions for future research.

1. The main tool we used in this project was the Leray–Hirsch theorem which can be
understood as a restricted version of the Leray spectral sequence. What more could be
obtained if the spectral sequence was used in full generality?

2. We imposed a strong condition to guarantee the existence of a cohomology extension.
Is it possible to find weaker conditions that still guarantee the existence of cohomology
extensions?

3. The classification theorem for CR algebras of maximal rank was very useful in the study
of the related cohomology spaces. Therefore, it is only natural to ask: Is it possible to
find a classification theorem for left-invariant CR structures in general, without assuming
that they are of maximal rank?

4. Let G be a compact Lie group endowed with an elliptic Lie algebra h. We assume that
there exist a maximal torus T ⊂ G such that h can be decomposed as

h = e ⊕
⊕

α∈�+
gα (14)

with e a bi-invariant elliptic structure over T . Since every elliptic structure is Levi-flat,
the smooth bundle T → G → G/T admits local trivializations that are compatible with
the elliptic structures. We also have that every cohomology class on the torus T has a
bi-invariant representative. Therefore, the proof of Theorem 1 can easily be adapted to
this context. This raises the following question: what are the necessary and sufficient
conditions so that left-invariant elliptic structures h admit a decomposition as in (14)?
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