Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding the mechanisms and translational implications of the microbiome for cancer therapy innovation

Abstract

The intersection of the microbiota and cancer and the mechanisms that define these interactions are a fascinating, rapidly evolving area of cancer biology and therapeutics. Here we present recent insights into the mechanisms by which specific bacteria or their communities contribute to carcinogenesis and discuss the bidirectional interplay between microbiota and host gene or epigenome signaling. We conclude with comments on manipulation of the microbiota for the therapeutic benefit of patients with cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Community and individual microbiota contributions to carcinogenesis.
Fig. 2: Microbial metabolite-mediated signaling in the colonic epithelium.
Fig. 3: Mechanisms of host–microbiota and tumor gene–microbiota interactions.

References

  1. Elaskandrany, M. et al. Fungi, host immune response, and tumorigenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 321, G213–G222 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liang, G. & Bushman, F. D. The human virome: assembly, composition and host interactions. Nat. Rev. Microbiol. 19, 514–527 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Valm, A. M. The structure of dental plaque microbial communities in the transition from health to dental caries and periodontal disease. J. Mol. Biol. 431, 2957–2969 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar, P. S., Matthews, C. R., Joshi, V., de Jager, M. & Aspiras, M. Tobacco smoking affects bacterial acquisition and colonization in oral biofilms. Infect. Immun. 79, 4730–4738 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thomas, A. M. et al. Alcohol and tobacco consumption affects bacterial richness in oral cavity mucosa biofilms. BMC Microbiol. 14, 250 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stashenko, P. et al. The oral mouse microbiome promotes tumorigenesis in oral squamous cell carcinoma. mSystems 4, e00323-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Binder Gallimidi, A. et al. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 6, 22613–22623 (2015).

    Article  PubMed  Google Scholar 

  8. Drewes, J. L. et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes 3, 34 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dejea, C. M. et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl Acad. Sci. USA 111, 18321–18326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tomkovich, S. et al. Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic. J. Clin. Invest. 130, 1699–1712 (2019).

    Article  Google Scholar 

  11. Saffarian, A. et al. Crypt- and mucosa-associated core microbiotas in humans and their alteration in colon cancer patients. mBio 10, e01315-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pédron, T. et al. A crypt-specific core microbiota resides in the mouse colon. mBio 3, e00116-12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Earle, K. A. et al. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe 18, 478–488 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Donaldson, G. P. et al. Spatially distinct physiology of Bacteroides fragilis within the proximal colon of gnotobiotic mice. Nat. Microbiol. 5, 746–756 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Higashi, H. et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683–686 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Uemura, N. et al. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 345, 784–789 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Blaser, M. J. et al. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res. 55, 2111–2115 (1995).

    CAS  PubMed  Google Scholar 

  18. Covacci, A. et al. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc. Natl Acad. Sci. USA 90, 5791–5795 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi, I. J. et al. Helicobacter pylori therapy for the prevention of metachronous gastric cancer. N. Engl. J. Med. 378, 1085–1095 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Yan, L. et al. Effect of Helicobacter pylori eradication on gastric cancer prevention: updated report from a randomized controlled trial with 26.5 years of follow-up. Gastroenterology 163, 154–162 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Evans, A. S. Causation and disease: the Henle–Koch postulates revisited. Yale J. Biol. Med. 49, 175–195 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Imai, S. et al. Helicobacter pylori CagA elicits BRCAness to induce genome instability that may underlie bacterial gastric carcinogenesis. Cell Host Microbe 29, 941–958 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 61. Schistosomes, Liver Flukes and Helicobacter pylori (IARC, 1994).

  24. Xue, M. et al. Structure elucidation of colibactin and its DNA cross-links. Science 365, eaax2685 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wilson, M. R. et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science 363, eaar7785 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nougayrède, J. P. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313, 848–851 (2006).

    Article  PubMed  Google Scholar 

  27. Dziubanska-Kusibab, P. J. et al. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat. Med. 26, 1063–1069 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 580, 269–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu, S., Morin, P. J., Maouyo, D. & Sears, C. L. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology 124, 392–400 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Wu, S., Rhee, K. J., Zhang, M., Franco, A. & Sears, C. L. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and γ-secretase-dependent E-cadherin cleavage. J. Cell Sci. 120, 1944–1952 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Chung, L. et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe 23, 203–214 (2018).

    Article  Google Scholar 

  34. Allen, J. et al. Colon tumors in enterotoxigenic Bacteroides fragilis (ETBF)-colonized mice do not display a unique mutational signature but instead possess host-dependent alterations in the APC gene. Microbiol. Spectr. 10, e0105522 (2022).

    Article  PubMed  Google Scholar 

  35. Zhou, Y. et al. Association of oncogenic bacteria with colorectal cancer in South China. Oncotarget 7, 80794–80802 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Viljoen, K. S., Dakshinamurthy, A., Goldberg, P. & Blackburn, J. M. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between Fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS ONE 10, e0119462 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Boleij, A. et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin. Infect. Dis. 60, 208–215 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Haghi, F., Goli, E., Mirzaei, B. & Zeighami, H. The association between fecal enterotoxigenic B. fragilis with colorectal cancer. BMC Cancer 19, 879 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592–597 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Namavar, F. et al. Epidemiology of the Bacteroides fragilis group in the colonic flora in 10 patients with colonic cancer. J. Med. Microbiol. 29, 171–176 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. Kordahi, M. C. et al. Genomic and functional characterization of a mucosal symbiont involved in early-stage colorectal cancer. Cell Host Microbe 29, 1589–1598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brennan, C. A. et al. Fusobacterium nucleatum drives a pro-inflammatory intestinal microenvironment through metabolite receptor-dependent modulation of IL-17 expression. Gut Microbes 13, 1987780 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yang, Y. et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating Toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21. Gastroenterology 152, 851–866 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Bullman, S. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443–1448 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Queen, J. et al. Comparative analysis of colon cancer-derived Fusobacterium nucleatum subspecies: inflammation and colon tumorigenesis in murine models. mBio 13, e0299121 (2022).

    Article  Google Scholar 

  46. Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hieken, T. J. et al. The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci. Rep. 6, 30751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parhi, L. et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat. Commun. 11, 3259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamamura, K. et al. Intratumoral Fusobacterium nucleatum levels predict therapeutic response to neoadjuvant chemotherapy in esophageal squamous cell carcinoma. Clin. Cancer Res. 25, 6170–6179 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, T. et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170, 548–563 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Serna, G. et al. Fusobacterium nucleatum persistence and risk of recurrence after preoperative treatment in locally advanced rectal cancer. Ann. Oncol. 31, 1366–1375 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Kalaora, S. et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 592, 138–143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Balachandran, V. P. et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512–516 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Han, S. et al. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature 595, 415–420 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yachida, S. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968–976 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Coker, O. O. et al. Altered gut metabolites and microbiota interactions are implicated in colorectal carcinogenesis and can be non-invasive diagnostic biomarkers. Microbiome 10, 35 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Dmitrieva-Posocco, O. et al. β-Hydroxybutyrate suppresses colorectal cancer. Nature 605, 160–165 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim, M., Friesen, L., Park, J., Kim, H. M. & Kim, C. H. Microbial metabolites, short-chain fatty acids, restrain tissue bacterial load, chronic inflammation, and associated cancer in the colon of mice. Eur. J. Immunol. 48, 1235–1247 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lavoie, S. et al. Expression of free fatty acid receptor 2 by dendritic cells prevents their expression of interleukin 27 and is required for maintenance of mucosal barrier and immune response against colorectal tumors in mice. Gastroenterology 158, 1359–1372 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, Q. et al. Multi-omic profiling reveals associations between the gut mucosal microbiome, the metabolome, and host DNA methylation associated gene expression in patients with colorectal cancer. BMC Microbiol. 20, 83 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Okumura, S. et al. Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion. Nat. Commun. 12, 5674 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim, M. et al. Fecal metabolomic signatures in colorectal adenoma patients are associated with gut microbiota and early events of colorectal cancer pathogenesis. mBio 11, e03186-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang, Y. G. et al. Vitamin D receptor protects against dysbiosis and tumorigenesis via the JAK/STAT pathway in intestine. Cell. Mol. Gastroenterol. Hepatol. 10, 729–746 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ferrer-Mayorga, G. et al. Vitamin D receptor expression and associated gene signature in tumour stromal fibroblasts predict clinical outcome in colorectal cancer. Gut 66, 1449–1462 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Li, C. et al. Squalene epoxidase drives cancer cell proliferation and promotes gut dysbiosis to accelerate colorectal carcinogenesis. Gut 71, 2253–2265 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Kadosh, E. et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 586, 133–138 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bell, H. N. et al. Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance. Cancer Cell 40, 185–200 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Abuqwider, J., Altamimi, M. & Mauriello, G. Limosilactobacillus reuteri in health and disease. Microorganisms 10, 522 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mendez, R. et al. Microbial dysbiosis and polyamine metabolism as predictive markers for early detection of pancreatic cancer. Carcinogenesis 41, 561–570 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Cai, J., Sun, L. & Gonzalez, F. J. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe 30, 289–300 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang, J. et al. High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites. Gastroenterology 162, 135–149 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Song, X. et al. Microbial metabolite deoxycholic acid promotes vasculogenic mimicry formation in intestinal carcinogenesis. Cancer Sci. 113, 459–477 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Hansen, L. et al. Intake of dietary fiber, especially from cereal foods, is associated with lower incidence of colon cancer in the HELGA cohort. Int. J. Cancer 131, 469–478 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Schatzkin, A. et al. Dietary fiber and whole-grain consumption in relation to colorectal cancer in the NIH–AARP Diet and Health Study. Am. J. Clin. Nutr. 85, 1353–1360 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Venkataraman, A. et al. Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome 4, 33 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Deehan, E. C. et al. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe 27, 389–404 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137–4153 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, M. et al. Phytoestrogens and lung cancer risk: a nested case–control study in never-smoking Chinese women. Am. J. Clin. Nutr. 115, 643–651 (2022).

    Article  PubMed  Google Scholar 

  84. Chlebowski, R. T. et al. Oestrogen plus progestin and lung cancer in postmenopausal women (Women’s Health Initiative trial): a post-hoc analysis of a randomised controlled trial. Lancet 374, 1243–1251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Thompson, E. A. & Powell, J. D. Inhibition of the adenosine pathway to potentiate cancer immunotherapy: potential for combinatorial approaches. Annu. Rev. Med. 72, 331–348 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Allen, J., Hao, S., Sears, C. L. & Timp, W. Epigenetic changes induced by Bacteroides fragilis toxin. Infect. Immun. 87, e00447-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Dayama, G., Priya, S., Niccum, D. E., Khoruts, A. & Blekhman, R. Interactions between the gut microbiome and host gene regulation in cystic fibrosis. Genome Med. 12, 12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Purcell, R. V., Visnovska, M., Biggs, P. J., Schmeier, S. & Frizelle, F. A. Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Sci. Rep. 7, 11590 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Guo, W. et al. Tumor microbiome contributes to an aggressive phenotype in the basal-like subtype of pancreatic cancer. Commun. Biol. 4, 1019 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Priya, S. et al. Identification of shared and disease-specific host gene–microbiome associations across human diseases using multi-omic integration. Nat. Microbiol. 7, 780–795 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sobhani, I. et al. Colorectal cancer-associated microbiota contributes to oncogenic epigenetic signatures. Proc. Natl Acad. Sci. USA 116, 24285–24295 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xia, X. et al. Bacteria pathogens drive host colonic epithelial cell promoter hypermethylation of tumor suppressor genes in colorectal cancer. Microbiome 8, 108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Allen, J. & Sears, C. L. Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: contributions to colorectal cancer development. Genome Med. 11, 11 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. DeStefano Shields, C. E. et al. Bacterial-driven inflammation and mutant BRAF expression combine to promote murine colon tumorigenesis that is sensitive to immune checkpoint therapy. Cancer Discov. 11, 1792–1807 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Derosa, L. et al. Microbiota-centered interventions: the next breakthrough in immuno-oncology? Cancer Discov. 11, 2396–2412 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Sorbara, M. T. & Pamer, E. G. Microbiome-based therapeutics. Nat. Rev. Microbiol. 20, 365–380 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Fernandes, M. R., Aggarwal, P., Costa, R. G. F., Cole, A. M. & Trinchieri, G. Targeting the gut microbiota for cancer therapy. Nat. Rev. Cancer 22, 703–722 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Wargo, J. A. Modulating gut microbes. Science 369, 1302–1303 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Kelly, C. P. & LaMont, J. T. Clostridium difficile—more difficult than ever. N. Engl. J. Med. 359, 1932–1940 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Borgers, J. S. W. et al. Conversion of unresponsiveness to immune checkpoint inhibition by fecal microbiota transplantation in patients with metastatic melanoma: study protocol for a randomized phase Ib/IIa trial. BMC Cancer 22, 1366 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Koo, H. & Morrow, C. D. Incongruence between dominant commensal donor microbes in recipient feces post fecal transplant and response to anti-PD-1 immunotherapy. BMC Microbiol. 21, 251 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ianiro, G. et al. Faecal microbiota transplantation for the treatment of diarrhoea induced by tyrosine-kinase inhibitors in patients with metastatic renal cell carcinoma. Nat. Commun. 11, 4333 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. de Clercq, N. C. et al. Fecal microbiota transplantation from overweight or obese donors in cachectic patients with advanced gastroesophageal cancer: a randomized, double-blind, placebo-controlled, phase II study. Clin. Cancer Res. 27, 3784–3792 (2021).

    Article  PubMed  Google Scholar 

  108. Peled, J. U. et al. Microbiota as predictor of mortality in allogeneic hematopoietic-cell transplantation. N. Engl. J. Med. 382, 822–834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Taur, Y. et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci. Transl. Med. 10, eaap9489 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kakihana, K. et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood 128, 2083–2088 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Segal, J. P. et al. Mechanisms underpinning the efficacy of faecal microbiota transplantation in treating gastrointestinal disease. Therap. Adv. Gastroenterol. 13, 1756284820946904 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection. N. Engl. J. Med. 386, 220–229 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Ott, S. J. et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 152, 799–811 (2017).

    Article  PubMed  Google Scholar 

  115. Li, S. S. et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 352, 586–589 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Smillie, C. S. et al. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe 23, 229–240 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ianiro, G. et al. Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases. Nat. Med. 28, 1913–1923 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Podlesny, D. et al. Identification of clinical and ecological determinants of strain engraftment after fecal microbiota transplantation using metagenomics. Cell Rep. Med. 3, 100711 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shaikh, F. Y. et al. Murine fecal microbiota transfer models selectively colonize human microbes and reveal transcriptional programs associated with response to neoadjuvant checkpoint inhibitors. Cancer Immunol. Immunother. 71, 2405–2420 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Drewes, J. L. et al. Transmission and clearance of potential procarcinogenic bacteria during fecal microbiota transplantation for recurrent Clostridioides difficile. JCI Insight 4, e130848 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. U.S. Food & Drug Administration. Fecal Microbiota for Transplantation: New Safety Information—Regarding Additional Protections for Screening Donors for COVID-19 and Exposure to SARS-CoV-2 and Testing for SARS-CoV-2 https://www.fda.gov/safety/medical-product-safety-information/fecal-microbiota-transplantation-new-safety-information-regarding-additional-protections-screening (2020).

  122. Skiba, M. B. et al. The association between prebiotic fiber supplement use and colorectal cancer risk and mortality in the Women’s Health Initiative. Cancer Epidemiol. Biomarkers Prev. 28, 1884–1890 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang, X. et al. The BE GONE trial study protocol: a randomized crossover dietary intervention of dry beans targeting the gut microbiome of overweight and obese patients with a history of colorectal polyps or cancer. BMC Cancer 19, 1233 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Suez, J., Zmora, N., Segal, E. & Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 25, 716–729 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. O’Toole, P. W., Marchesi, J. R. & Hill, C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2, 17057 (2017).

    Article  PubMed  Google Scholar 

  126. Alizadeh, S., Esmaeili, A., Barzegari, A., Rafi, M. A. & Omidi, Y. Bioengineered smart bacterial carriers for combinational targeted therapy of solid tumours. J Drug Target. 28, 700–713 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Charbonneau, M. R., Isabella, V. M., Li, N. & Kurtz, C. B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat. Commun. 11, 1738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. U.S. Food & Drug Administration. Early clinical trials with live biotherapeutic products: chemistry, manufacturing, and control information. Guidance for Industry. https://www.fda.gov/files/vaccines,%20blood%20%26%20biologics/published/Early-Clinical-Trials-With-Live-Biotherapeutic-Products--Chemistry--Manufacturing--and-Control-Information--Guidance-for-Industry.pdf (2016).

  129. Khawaldeh, A. et al. Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection. J. Med. Microbiol. 60, 1697–1700 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61, e00954-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. LaVergne, S. et al. Phage therapy for a multidrug-resistant Acinetobacter baumannii craniectomy site infection. OpenForum Infect. Dis. 5, ofy064 (2018).

    Google Scholar 

  132. Dedrick, R. M. et al. Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection. Nat. Med. 27, 1357–1361 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gogokhia, L. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285–299 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lam, K. N. et al. Phage-delivered CRISPR–Cas9 for strain-specific depletion and genomic deletions in the gut microbiome. Cell Rep. 37, 109930 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rubin, B. E. et al. Species- and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 7, 34–47 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Zhu, W. et al. Precision editing of the gut microbiota ameliorates colitis. Nature 553, 208–211 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhu, W. et al. Editing of the gut microbiota reduces carcinogenesis in mouse models of colitis-associated colorectal cancer. J. Exp. Med. 216, 2378–2393 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mirzayi, C. et al. Reporting guidelines for human microbiome research: the STORMS checklist. Nat. Med. 27, 1885–1892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180, 221–232 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Vermeulen, R., Schymanski, E. L., Barabási, A. L. & Miller, G. W. The exposome and health: where chemistry meets biology. Science 367, 392–396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of the Sears laboratory and our collaborators for their helpful discussions and contributions over time. We also thank the many individuals who have participated in our studies, enabling our work on the human microbiome and CRC. Figures were created with https://biorender.com. For funding, this work was supported by Bloomberg Philanthropies, a Cancer Grand Challenges OPTIMISTICC team grant (A27140) funded by Cancer Research UK (C.L.S.); National Cancer Institute grant K08CA263316-02 (F.S.); the Biocodex Microbiota Foundation, a Pearl M. Stetler award, a Burroughs Wellcome Fund Career Award for Medical Scientists (1022128) and a Black in Cancer award funded by the Emerald Foundation (J.Q.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia L. Sears.

Ethics declarations

Competing interests

C.L.S. has research funding from Bristol Myers Squibb and Janssen. The other authors declare no competing interests.

Peer review

Peer review information

Nature Cancer thanks Giorgio Trinchieri and Laurence Zitvogel for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Queen, J., Shaikh, F. & Sears, C.L. Understanding the mechanisms and translational implications of the microbiome for cancer therapy innovation. Nat Cancer 4, 1083–1094 (2023). https://doi.org/10.1038/s43018-023-00602-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-023-00602-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer