
Algorithmic Transparency:
Being Clear with the Public

This letter was written by an interdisciplinary group at the University of Michigan and includes
co-signatories from other institutions. It was developed and informed by research conducted by those
involved in building predictive decision support interventions (DSIs), those studying public attitudes
about data and artificial intelligence in clinical decision support systems, and those in current practice at
academic medical centers. The views expressed in this letter represent those of the signatories and not
of their institutions.

On April 18, 2023, the Office of the National Coordinator (ONC) issued a notice of proposed rulemaking
(NPRM) with the goal of increased transparency about the use of algorithms being used in health
information systems and in care settings. As currently drafted, the proposed rule would also require
certified health information technology (IT) developers to make information about intervention risk
management practices, such as risk analysis, mitigation, and governance, available to the general
public. However, the proposal limits the availability of “source attributes” for a given predictive decision
support intervention, or DSI, to end users only. The current source attributes include bibliographic
citations relevant to the clinical decision support (CDS) intervention (e.g., citation of guideline), the
developer of the CDS intervention, the funding source of CDS intervention development, and release
and revision dates. In the proposed rule, the ONC proposes to expand these attributes to include the
use of three additional specific types of data in a DSI in § 170.315(b)(11)(vi)(A) – demographic data
elements in § 170.315(b)(11)(vi)(A)(5), SDOH data elements in § 170.315(b)(11)(vi)(A)(6), and Health
Status Assessment data elements in § 170.315(b)(11)(vi)(A)(7).

We support the notion of making information about risk management practices available to the general
public. We also believe that this same level of transparency should be extended to include source
attributes and variables identified in § 170.315(b)(11)(vi). Additionally, we recommend that both the
datasets used to train and evaluate predictive DSIs, as well as all variables used as predictors and
outcomes in predictive DSIs, should also be considered as new source attributes. This is because
recent backlash and harm resulting from the use of predictive DSIs in healthcare can largely be
attributed to lack of public awareness around which datasets and variables were used by the predictive
DSIs to make recommendations about people’s healthcare, as discussed below.

Predictive DSIs capture biases through the inclusion of biased training and evaluation datasets. Health
datasets can be biased because they are commonly created through the digitization of routine clinical
practices, which are known to be inequitable in both the access to and quality of care.1 Avoidance of
biased predictive DSIs is a key component of every responsible artificial intelligence (AI) framework,
including the White House Blueprint for an AI Bill of Rights,2 the Coalition of Health AI,3 and the Health
AI Partnership.4 The use of biased datasets produces biased DSIs,5,6 and algorithms produced from
datasets in one healthcare setting often do not generalize to other healthcare settings.7 Given the
important role that datasets play in the resulting DSIs, we recommend that information about which
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datasets were used to train and evaluate a predictive DSI should be in the public domain. We also
recommend that this information should be added to the set of source attributes and variables identified
in § 170.315(b)(11)(vi).

Biased datasets can harm patients through the propagation of this bias into algorithm-based
decision-making. For example, gender imbalance in both clinical and medical imaging datasets has
been shown to produce predictive DSIs that perform worse in women.5,6 Information about which
datasets were used to train and evaluate a predictive DSI is critical when determining whether an
algorithm created from it is fit for purpose or whether it could be biased.

Predictive DSIs also capture biases through the inclusion of biased variables. For example, a widely
used commercial model to predict whether a patient would “no-show” to a clinical appointment
considered ethnicity, financial class, religion, and body mass index in its predictions.8 There is no
scientific or ethical basis for which health systems should rely on any of these variables in determining
the accessibility of patient care. Additionally, use of these variables could lead to the use of clinical
workflows that limit access to care for patients on the basis of characteristics like religion. While this
information was available to end users through a login process, it was marked as “Confidential” by the
vendor. The vendor eventually moved to a new version of this model that removed these variables after
this information became public. Had this information been publicly available at the start, its use would
have been flagged much earlier and likely prior to implementation. We believe that public availability
would have led the vendor to remove these variables sooner, thereby minimizing the harm to patients
from their inclusion.

Problematic variables do not necessarily have to be linked to personal patient characteristics, such as
race, to be problematic.9,10 For example, a recent evaluation of a proprietary sepsis model noted that
the use of antibiotics was used as a predictive variable of developing sepsis. This is problematic
because patients are given antibiotics once they have already developed sepsis. A model that relies on
antibiotic use to predict whether or not a patient will develop sepsis in the future will be less effective
and result in false negatives. Without transparency into the variables used to generate this model,
researchers never would have been able to isolate the problematic variable and fix the model. The
vendor has since removed antibiotics from the model,11 although information about the model remains
confidential and not in the public domain.

These problems are not limited to a single use case or vendor. Over a dozen widely used models have
been shown to inappropriately consider race when generating predictions, with varying levels of
transparency about the role of race in the models.12 The consideration of race is inappropriate because
using race to make medical decisions can perpetuate and amplify race-based health inequities already
present in our health system. Even when race is not present in a model, proxy variables may
unintentionally capture race and thus worsen race-based health inequities.13 This issue may not
necessarily be recognized by clinician end users due to lack of expertise. Placing information about
model variables in the public domain will allow for a wider lens of scrutiny.

In light of the need for a broader consideration of transparency than is currently provided in the NPRM,
we recommend the following:

● Place the source attributes identified in § 170.315(b)(11)(vi) for predictive DSIs in the
public domain. It is not sufficient to have the attributes only available for “user review”
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(https://www.federalregister.gov/d/2023-07229/p-621). The source attributes should
be readily accessible by the public and in the public domain. This recommendation is
aligned with Executive Order 13960 Promoting the Use of Trustworthy Artificial
Intelligence in the Federal Government, which states that “agencies shall be transparent
in disclosing relevant information regarding their use of AI to appropriate stakeholders,
including the Congress and the public.”14 Having source attributes in the public domain
would help to achieve this goal.

● Add information about which data sources were used for training and evaluation of the
predictive DSIs to the set of source attributes and variables identified in §
170.315(b)(11)(vi). Additionally, place this information in the public domain.

● Add information about all variables (predictors and outcomes) used in predictive DSIs to
the set of source attributes and variables identified in § 170.315(b)(11)(vi). Additionally,
place this information in the public domain. All variables should be included because
demographic and proxy variables may be important for effective evaluation of bias,
discrimination, utility, and quality. In cases where listing all variables may not be possible
(such as models using x-ray imaging data), a clear statement to that effect should be
made.

● In response to the question as to whether having this information publicly available
would improve public confidence in predictive DSIs by enabling research on source
attribute information (https://www.federalregister.gov/d/2023-07229/p-709), we
believe that making information about models readily available and easy to find is critical
to improving public confidence in predictive DSIs and in enabling research on source
attribute information. Research should also include studies that inform evidence-based
best practices for communications strategies, such as model cards, product labels, and
dissemination, and studies that evaluate the impact of governance on transparency and
public trust.
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