Skip to main content
Log in

Microgravity Effects on Chronoamperometric Ammonia Oxidation Reaction at Platinum Nanoparticles on Modified Mesoporous Carbon Supports

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The effect of microgravity on the electrochemical oxidation of ammonia at platinum nanoparticles supported on modified mesoporous carbons (MPC) with three different pore diameters (64, 100, and 137 Å) was studied via the chronoamperometric technique in a half-cell. The catalysts were prepared by a H2 reductive process of PtCl\(_{6}^{\mathrm {4-}}\) in presence of the mesoporous carbon support materials. A microgravity environment was obtained with an average gravity of less than 0.02 g created aboard an airplane performing parabolic maneuvers. Results show the chronoamperommetry of the ammonia oxidation reaction in 1.0 M NH4OH at 0.60 V vs. RHE under microgravity conditions. The current density, in all three catalysts, decreased while in microgravity conditions when compared to ground based experiments. Under microgravity, all three catalysts yielded a decrease in ammonia oxidation reaction current density between 25 to 63% versus terrestrial experimental results, in time scales between 1 and 15 s. The Pt catalyst prepared with mesoporous carbon of 137 Å porous showed the smallest changes, between 25 to 48%. Nanostructuring catalyst materials have an effect on the level of current density decrease under microgravity conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acevedo, R., Poventud-Estrada, C.M., Morales-Navas, C., Martínez-Rodríguez, R.A., Ortiz-Quiles, E., Vidal-Iglesias, F.J., Sollá-Gullón, J., Nicolau, E., Feliu, J.M., Echegoyen, L., Cabrera, C.R.: Chronoamperometric study of ammonia oxidation in a direct ammonia alkaline fuel cell under the influence of microgravity. Microgravity Sci. Technol. 29(4), 253–261 (2017). https://doi.org/10.1007/s12217-017-9543-z

    Article  Google Scholar 

  • Ahmadi, T.S., Wang, Z.L., Henglein, A., El-Sayed, M.A.: “Cubic” colloidal platinum nanoparticles. Chem. Mater. 8(6), 1161–1163 (1996)

    Article  Google Scholar 

  • Aldas, K.: Application of a two-phase flow model for hydrogen evolution in an electrochemical cell. Appl. Math. Comput. 154(2), 507–519 (2004). https://doi.org/10.1016/s0096-3003(03)00731-8

    MathSciNet  MATH  Google Scholar 

  • Arico, A.S., Shukla, A.K., Kim, H., Park, S., Min, M., Antonucci, V.: An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen. Appl. Surf. Sci. 172(1–2), 33–40 (2001). https://doi.org/10.1016/s0169-4332(00)00831-x

    Article  Google Scholar 

  • Betz, W., Shollenberger, D., Keeler, M., Buchanan, M., Sidisky, L., Patel, K.: High surface area graphitized mesoporous carbons. Sigma-Aldrich Nanomaterials http://www.sigmaaldrich.com/technical-documents/articles/materialsscience/nanomaterials/graphitized-mesoporous-carbon.html. Accessed 27 Jan 2016 (2014)

  • Cabrera, C.R., Miranda, F.A. (eds.): Advanced Nanomaterials for Aerospace Applications, Chapter 1. Pan Stanford Publishing Pte. Ltd., Singapore (2014)

  • Chen, Q., Luo, L., Faraji, H., Feldberg, S.W., White, H.S.: Electrochemical measurements of single H-2 nanobubble nucleation and stability at Pt nanoelectrodes. J. Phys. Chem. Lett. 5(20), 3539–3544 (2014). https://doi.org/10.1021/jz501898r

    Article  Google Scholar 

  • Chen, Q.J., Wiedenroth, H.S., German, S.R., White, H.S.: Electrochemical nucleation of stable N-2 nanobubbles at Pt nanoelectrodes. J. Am. Chem. Soc. 137(37), 12064–12069 (2015). https://doi.org/10.1021/jacs.5b07147

    Article  Google Scholar 

  • Cunci, L., Velez, C.A., Perez, I., Suleiman, A., Larios, E., José-Yacamán, M., Watkins, J.J., Cabrera, C.R.: Platinum electrodeposition at unsupported electrochemically reduced nanographene oxide for enhanced ammonia oxidation. ACS Appl. Mater. Interfaces 6(3), 2137–2145 (2014). https://doi.org/10.1021/am4052552

    Article  Google Scholar 

  • de Vooys, A.C.A., Koper, M.T.M., van Santen, R.A., van Veen, J.A.R.: The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes. J. Electroanal. Chem. 506, 127–137 (2001)

    Article  Google Scholar 

  • Derhoumi, Z., Mandin, P., Roustan, H., Wüthrich, R.: Experimental investigation of two-phase electrolysis processes: comparison with or without gravity. J. Appl. Electrochem. 43(12), 1145–1161 (2013). https://doi.org/10.1007/s10800-013-0598-2

    Article  Google Scholar 

  • Elezović, N.R., Babić, B.M., Krstajić, N.V., Gajić-Krstajić, L.M., Vračar, L.M.: Specificity of the UPD of H to the structure of highly dispersed Pt on carbon support. Int. J. Hydrog. Energy 32(12), 1991–1998 (2007). https://doi.org/10.1016/j.ijhydene.2006.09.042

    Article  Google Scholar 

  • Fernández, D., Maurer, P., Martine, M., Coey, J.M.D., Möbius, M.E.: Bubble formation at a gas-evolving microelectrode. Langmuir 30(43), 13065–13074 (2014). https://doi.org/10.1021/la500234r

    Article  Google Scholar 

  • Gerisher, H., Mauerer, A.: Untersuchungen Zur anodischen oxidation von ammoniak an platin-elektroden. J. Electroanal. Chem. 25(3), 421–423 (1970)

    Article  Google Scholar 

  • Gootzen, J.F.E., Wonders, A.H., Visscher, W., van Santen, R.A., van Veen, J.A.R.: A DEMS and cyclic voltammetry study of NH3 oxidation on platinized platinum. Electrochim. Acta 43(12–13), 1851–1861 (1998). https://doi.org/10.1016/s0013-4686(97)00285-5

    Article  Google Scholar 

  • Han, K.S., Moon, Y.-S., Han, O.H., Hwang, K.J., Kim, I., Kim, H.: Heat treatment and potential cycling effects on surface morphology, particle size, and catalytic activity of Pt/C catalysts studied by 13C NMR, TEM, XRD and CV. Electrochem. Commun. 9(2), 317–324 (2007). https://doi.org/10.1016/j.elecom.2006.09.027

    Article  Google Scholar 

  • Ichikawa, N., Kawaji, M., Misawa, M.: An experimental study of bubble behavior in a temperature gradient near a heated wall under low-gravity and microgravity conditions aboard NASA DC9 airplane. Microgravity Sci. Technol. 14(1), 34–43 (2003). https://doi.org/10.1007/bf02873334

    Article  Google Scholar 

  • Ichikawa, N., Chung, P.M.Y., Matsumoto, S., Matsumoto, J., Takada, N.: Generation of gas bubbles in microflow using micropipette with ultrasound. Microgravity Sci. Technol. 19(3–4), 35–37 (2007)

    Article  Google Scholar 

  • Iwasaki, A., Kaneko, H., Abe, Y., Kamimoto, M.: Investigation of electrochemical hydrogen evolution under microgravity condition. Electrochim. Acta 43(5–6), 509–514 (1998)

    Article  Google Scholar 

  • Kaneko, H., Tanaka, K., Iwasaki, A., Abe, Y., Negishi, A., Kamimoto, M.: Water electrolysis under microgravity condition by parabolic flight. Electrochim. Acta 38(5), 729–733 (1993). https://doi.org/10.1016/0013-4686(93)80245-U

    Article  Google Scholar 

  • Kim, D., Schmidt-Stein, F., Hahn, R., Schmuki, P.: Gravity assisted growth of self-organized anodic oxide nanotubes on titanium. Electrochem. Commun. 10(7), 1082–1086 (2008). https://doi.org/10.1016/j.elecom.2008.05.016

    Article  Google Scholar 

  • Kiuchi, D., Matsushima, H., Fukunaka, Y., Kuribayashi, K.: Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity. J. Electrochem. Soc. 153(8), E138–E143 (2006). https://doi.org/10.1149/1.2207008

    Article  Google Scholar 

  • Leontyev, I.N., Chernyshov, D.Y., Guterman, V.E., Pakhomova, E.V., Guterman, A.V.: Particle size effect in carbon supported Pt–Co alloy electrocatalysts prepared by the borohydride method: XRD characterization. Appl. Catal. A: Gen. 357(1), 1–4 (2009). https://doi.org/10.1016/j.apcata.2008.12.023

    Article  Google Scholar 

  • Long, N.V., Ohtaki, M., Uchida, M., Jalem, R., Hirata, H., Chien, N.D., Nogami, M.: Synthesis and characterization of polyhedral Pt nanoparticles: their catalytic property, surface attachment, self-aggregation and assembly. J. Colloid Interface Sci. 359(2), 339–350 (2011). https://doi.org/10.1016/j.jcis.2011.03.029

    Article  Google Scholar 

  • Mandin, P., Derhoumi, Z., Roustan, H., Rolf, W.: Bubble over-potential during two-phase alkaline water electrolysis. Electrochim. Acta 128, 248–258 (2014). https://doi.org/10.1016/j.electacta.2013.11.068

    Article  Google Scholar 

  • Matsushima, H., Nishida, T., Konishi, Y., Fukunaka, Y., Ito, Y., Kuribayashi, K.: Water electrolysis under microgravity: part 1. Experimental technique. Electrochim. Acta 48(28), 4119–4125 (2003). https://doi.org/10.1016/S0013-4686(03)00579-6

    Article  Google Scholar 

  • Naumkin, A.V., Kraut-Vass, A., Gaarestroom, S.W., Powell, C.J.: National Institute of Standards and Technology (NIST), X-ray Photoelectron Spectroscopy Database 20, Version 4.1 (2012)

  • Nicolau, E., Poventud-Estrada, C.M., Arroyo, L., Fonseca, J., Flynn, M., Cabrera, C.R.: Microgravity effects on the electrochemical oxidation of ammonia: a parabolic flight experiment. Electrochim. Acta 75, 88–93 (2012). https://doi.org/10.1016/j.electacta.2012.04.079

    Article  Google Scholar 

  • Nicolau, E., Fonseca, J.J., Rodriguez-Martinez, J.A., Richardson, T.M.J., Flynn, M., Griebenow, K., Cabrera, C.R.: Evaluation of a urea bioelectrochemical system for wastewater treatment processes. ACS Sustain. Chem. Eng. 2(4), 749–754 (2014). https://doi.org/10.1021/sc400342x

    Article  Google Scholar 

  • Nishikawa, K., Fukunaka, Y., Chassaing, E., Rosso, M.: Electrodeposition experiments in microgravity conditions. J. Phys.: Conf. Ser. 327, 012045 (2011)

    Google Scholar 

  • Nishikawa, K., Fukunaka, Y., Chassaing, E., Rosso, M.: Electrodeposition of metals in microgravity conditions. Electrochim. Acta 100(0), 342–349 (2013). https://doi.org/10.1016/j.electacta.2013.01.108

    Article  Google Scholar 

  • Oswin, H.G., Salomon, M.: The anodic oxidation of ammonia at platinum black electrodes in aqueous KOH electrolyte. Can. J. Chem. 41(7), 1686–1694 (1963)

    Article  Google Scholar 

  • Paal, Z., Wootsch, A., Schlogl, R., Wild, U.: Carbon accumulation, deactivation and reactivation of Pt catalysts upon exposure to hydrocarbons. Appl. Catal. A-Gen. 282(1–2), 135–145 (2005). https://doi.org/10.1016/j.apcata.2004.12.027

    Article  Google Scholar 

  • Polcaro, A.M., Mascia, M., Palmas, S., Vacca, A.: Electrochemical oxidation of phenolic and other organic compounds at boron doped diamond electrodes for wastewater treatment: effect of mass transfer. Ann. Chim. 93(12), 967–976 (2003)

    Google Scholar 

  • Sakurai, M., Sone, Y., Nishida, T., Matsushima, H., Fukunaka, Y.: Fundamental study of water electrolysis for life support system in space. Electrochim. Acta 100, 350–357 (2013). https://doi.org/10.1016/j.electacta.2012.11.112

    Article  Google Scholar 

  • Sheppard, S.A., Campbell, S.A., Smith, J.R., Lloyd, G.W., Ralph, T.R., Walsh, F.C.: Electrochemical and microscopic characterisation of platinum-coated perfluorosulfonic acid (Nafion 117) materials. Analyst 123(10), 1923–1929 (1998). https://doi.org/10.1039/a803310b

    Article  Google Scholar 

  • Simons, E.L., Cairns, E. J., Surd, D.J.: The performance of direct ammonia fuel cells. J. Electrochem. Soc. 116(5), 556–561 (1969)

    Article  Google Scholar 

  • Skachkov, D., Rao, C.V., Ishikawa, Y.: Combined first-principles molecular dynamics/density functional theory study of ammonia electrooxidation on Pt(100) electrode. J. Phys. Chem. C 117(48), 25451–25466 (2013). https://doi.org/10.1021/jp4048874

    Article  Google Scholar 

  • Song, S.Q., Liang, Y.R., Li, Z.H., Wang, Y., Fu, R.W., Wu, D.C., Tsiakaras, P.: Effect of pore morphology of mesoporous carbons on the electrocatalytic activity of Pt nanoparticles for fuel cell reactions. Appl. Catal. B-Environ. 98(3–4), 132–137 (2010a). https://doi.org/10.1016/j.apcatb.2010.05.021

    Article  Google Scholar 

  • Song, S.Q., Yin, S.B., Li, Z.H., Shen, P.K., Fu, R.W., Wu, D.C.: Effect of pore diameter of wormholelike mesoporous carbon supports on the activity of Pt nanoparticles towards hydrogen electrooxidation. J. Power Sources 195(7), 1946–1949 (2010b). https://doi.org/10.1016/j.jpowsour.2009.10.009

    Article  Google Scholar 

  • Song, S.Q., Wang, K., Liu, Y.H., He, C.X., Liang, Y.R., Fu, R.W., Wu, D.C., Wang, Y.: Highly ordered mesoporous carbons as the support for Pt catalysts towards alcohol electrooxidation: the combined effect of pore size and electrical conductivity. Int. J. Hydrogen Energy 38(3), 1405–1412 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.029

    Article  Google Scholar 

  • Sonoyama, N.: Effect of micro gravity on the product selectivity of dichlorodifluoromethane electrolysis at metal supported gas diffusion electrodes. Microgravity Sci. Technol. 19(1), 22–24 (2007). https://doi.org/10.1007/bf02870985

    Article  Google Scholar 

  • Srinivasu, P.: Highly dispersed platinum nanoparticles on mesoporous materials. Pure Appl. Chem. 82(11), 2111–2120 (2010). https://doi.org/10.1351/pac-con-10-03-01

    Article  Google Scholar 

  • Vidal-Iglesias, F.J., García-Aráez, N., Montiel, V., Feliu, J.M., Aldaz, A.: Selective electrocatalysis of ammonia oxidation on Pt(1 0 0) sites in alkaline medium. Electrochem. Commun. 5(1), 22–26 (2003). https://doi.org/10.1016/S1388-2481(02)00521-0

    Article  Google Scholar 

  • Vidal-Iglesias, F.J., Solla-Gullon, J., Rodriguez, P., Herrero, E., Montiel, V., Feliu, J.M., Aldaz, A.: Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochem. Commun. 6, 1080–1084 (2004)

    Article  Google Scholar 

  • Vidal-Iglesias, F.J., Solla-Gullon, J., Montiel, V., Feliu, J.M., Aldaz, A.: Ammonia selective oxidation on Pt(100) sites in an alkaline medium. J. Phys. Chem. B 109(26), 12914–12919 (2005). https://doi.org/10.1021/jp051269d

    Article  Google Scholar 

  • Wasmus, S., Vasini, EJ, Krausa, M., Mishima, H. T., Vielstich, W.: DEMS-cyclic voltammetry investigation of the electrochemistry of nitrogen compounds in 0.5 M potassiun hydroxide. Electrochim. Acta 39(1), 9 (1993)

    Google Scholar 

  • Weng, F.B., Su, A., Kamotani, Y., Ostrach, S.: Gas evolution in rotating electrochemical cells under reduced and normal gravity conditions. Chin. J. Mech.-Ser. A 19(3), 349–355 (2003)

    Google Scholar 

  • Yang, X., Karnbach, F., Uhlemann, M., Odenbach, S., Eckert, K.: Dynamics of single hydrogen bubbles at a platinum microelectrode. Langmuir 31(29), 8184–8193 (2015). https://doi.org/10.1021/acs.langmuir.5b01825

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by NASA-MIRO Center for Advanced Nanoscale Materials under NASA Grant No. NNX10AQ17A. C.M. Poventud-Estrada will like to acknowledge the NASA-Jenkins Pre-Doctoral Fellowship. The authors would like to thank NSF-PREM Grant No. DMR-0934218, the Welch Foundation Grant No. AX-1615, and NSF Grant DMR-1103730, “Alloys at the Nanoscale: The Case of Nanoparticles Second Phase”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. Cabrera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poventud-Estrada, C.M., Acevedo, R., Morales, C. et al. Microgravity Effects on Chronoamperometric Ammonia Oxidation Reaction at Platinum Nanoparticles on Modified Mesoporous Carbon Supports. Microgravity Sci. Technol. 29, 381–389 (2017). https://doi.org/10.1007/s12217-017-9558-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-017-9558-5

Keywords

Navigation