Skip to main content
Log in

Frontal-striatal tract integrity and depression in older adults with and without multiple sclerosis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objective

Lower white matter integrity of frontal-subcortical circuitry has been associated with late-life depression in normally aging older adults and with the presence of multiple sclerosis (MS). Frontal-striatal white matter tracts involved in executive, cognitive, emotion, and motor function may underlie depression in older adults with MS. The present study examined the association between depression score and frontal-striatal white matter integrity in older adults with MS and controls.

Methods

Older adults with MS (OAMS) (n = 67, mean age = 64.55 ± 3.89) and controls (n = 74, mean age = 69.04 ± 6.32) underwent brain MRI, cognitive assessment, psychological, and motoric testing. Depression was assessed through the 30-item Geriatric Depression Scale. Fractional anisotropy (FA) was extracted from two bilateral tracts: dorsolateral prefrontal cortex to putamen nucleus (DLPFC-pn) and dorsolateral prefrontal cortex to caudate nucleus (DLPFC-cn).

Results

OAMS reported significantly worse (i.e., higher) depression symptoms (β = .357, p < .001) compared to healthy controls. Adjusted moderation analyses revealed, via group by FA interactions, significantly stronger associations between FA of the left DLPFC-pn tract and total depression (B =  − 61.70, p = .011) among OAMS compared to controls. Conditional effects revealed that lower FA of the left DLPFC-pn was significantly associated with worse (i.e., higher) depression symptoms (b =  − 38.0, p = .028) only among OAMS. The other three tracts were not significant in moderation models.

Conclusions

We provided first evidence that lower white matter integrity of the left DLPFC-pn tract was related to worse depression in older adults with MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data will be provided to qualified investigators upon written request to the corresponding author.

References

  1. Wootla B, Eriguchi M, Rodriguez M (2012) Is multiple sclerosis an autoimmune disease? Autoimmune Dis 2012:1–12

    Article  Google Scholar 

  2. Vaughn CB et al (2019) Epidemiology and treatment of multiple sclerosis in elderly populations. Nat Rev Neurol 15(6):329–342

    Article  PubMed  Google Scholar 

  3. Patten SB, Beck CA, Williams JV, Barbui C, Metz L (2003) Major depression in multiple sclerosis: a population-based perspective. Neurology 61(11):1524–1527

    Article  CAS  PubMed  Google Scholar 

  4. Patten SB, Marrie RA, Carta MG (2017) Depression in multiple sclerosis. Int Rev Psychiatry 29(5):463–472

    Article  PubMed  Google Scholar 

  5. Salehpoor G, Rezaei S, Hosseininezhad M (2014) Quality of life in multiple sclerosis (MS) and role of fatigue, depression, anxiety, and stress: a bicenter study from north of Iran. Iran J Nurs Midwifery Res 19(6):593

    PubMed  PubMed Central  Google Scholar 

  6. Mohr DC, Goodkin DE, Likosky W, Gatto N, Baumann KA, Rudick RA (1997) Treatment of depression improves adherence to interferon beta-1b therapy for multiple sclerosis. Arch Neurol 54(5):531–533

    Article  CAS  PubMed  Google Scholar 

  7. Bonelli RM, Cummings JL (2007) Frontal-subcortical circuitry and behavior. Dialogues in Clin Neurosci 9(2):141–151

    Article  Google Scholar 

  8. Kim Y-K, Han K-M (2021) Neural substrates for late-life depression: a selective review of structural neuroimaging studies. Prog Neuropsychopharmacol Biol Psychiatry 104:110010

    Article  PubMed  Google Scholar 

  9. Alexopoulos GS, Hoptman MJ, Kanellopoulos D, Murphy CF, Lim KO, Gunning FM (2012) Functional connectivity in the cognitive control network and the default mode network in late-life depression. J Affect Disord 139(1):56–65

    Article  PubMed  PubMed Central  Google Scholar 

  10. Alexopoulos GS (2019) Mechanisms and treatment of late-life depression. Transl Psychiatry 9(1):188

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cummings JL (1995) Anatomic and behavioral aspects of frontal-subcortical circuits. Ann N Y Acad Sci 769:1–13

    Article  CAS  PubMed  Google Scholar 

  12. Koenigs M, Grafman J (2009) The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res 201(2):239–243

    Article  PubMed  PubMed Central  Google Scholar 

  13. Monchi O, Petrides M, Strafella AP, Worsley KJ, Doyon J (2006) Functional role of the basal ganglia in the planning and execution of actions. Annal Neurol 59(2):257–264

    Article  PubMed  Google Scholar 

  14. Adams KB, Matto HC, Sanders S (2004) Confirmatory factor analysis of the geriatric depression scale. Gerontologist 44(6):818–826

    Article  PubMed  Google Scholar 

  15. Thompson AJ et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17(2):162–173

    Article  PubMed  Google Scholar 

  16. Learmonth YC, Motl RW, Sandroff BM, Pula JH, Cadavid D (2013) Validation of patient determined disease steps (PDDS) scale scores in persons with multiple sclerosis. BMC Neurol 13(1):1–8

    Article  Google Scholar 

  17. Koch MW, Mostert JP, Wolinsky JS, Lublin FD, Uitdehaag B, Cutter GR (2021) Comparison of the EDSS, timed 25-foot walk, and the 9-hole peg test as clinical trial outcomes in relapsing-remitting multiple sclerosis. Neurology 97(16):e1560–e1570

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yesavage JA et al (1982) Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res 17(1):37–49

    Article  PubMed  Google Scholar 

  19. Wancata J, Alexandrowicz R, Marquart B, Weiss M, Friedrich F (2006) The criterion validity of the Geriatric Depression Scale: a systematic review. Acta Psychiatr Scand 114(6):398–410

    Article  CAS  PubMed  Google Scholar 

  20. Tournier JD et al (2022) MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 2022:116137. https://doi.org/10.1016/j.neuroimage.2019.116137

    Article  Google Scholar 

  21. Evans AC, Janke AL, Collins DL, Baillet S (2012) Brain templates and atlases. Neuroimage 62(2):911–922. https://doi.org/10.1016/j.neuroimage.2012.01.024

    Article  PubMed  Google Scholar 

  22. Sallet J et al (2013) The organization of dorsal frontal cortex in humans and macaques. J Neurosci 33(30):12255–12274. https://doi.org/10.1523/JNEUROSCI.5108-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Desikan RS et al (2006) “An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest,” (in eng). Neuroimage 31(3):968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021

    Article  PubMed  Google Scholar 

  24. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3):2033–2044. https://doi.org/10.1016/j.neuroimage.2010.09.025

    Article  PubMed  Google Scholar 

  25. Tournier JD, Calamante F, Gadian DG, Connelly A (2004) Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23(3):1176–1185. https://doi.org/10.1016/j.neuroimage.2004.07.037

    Article  PubMed  Google Scholar 

  26. Calamante F, Tournier JD, Jackson GD, Connelly A (2010) Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping. Neuroimage 53(4):1233–1243. https://doi.org/10.1016/j.neuroimage.2010.07.024

    Article  PubMed  Google Scholar 

  27. Zhang Y, Brady M, Smith S (2001) “Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm,” (in eng). IEEE Trans Med Imaging 20(1):45–57. https://doi.org/10.1109/42.906424

    Article  CAS  PubMed  Google Scholar 

  28. Duff K et al (2005) Test-retest stability and practice effects of the RBANS in a community dwelling elderly sample. J Clin Exp Neuropsychol 27(5):565–575

    Article  PubMed  Google Scholar 

  29. Holtzer R, Verghese J, Wang C, Hall CB, Lipton RB (2008) Within-person across-neuropsychological test variability and incident dementia. JAMA 300(7):823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang S, Blazer DG (2015) Depression and cognition in the elderly. Annu Rev Clin Psychol 11:331–360

    Article  PubMed  Google Scholar 

  31. Branco M et al (2019) Aging with multiple sclerosis: prevalence and profile of cognitive impairment. Neurol Sci 40:1651–1657

    Article  PubMed  Google Scholar 

  32. Hayes AF (2017) Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford publications, New York. https://doi.org/10.1111/jedm.12050

  33. Feinstein A, Magalhaes S, Richard J-F, Audet B, Moore C (2014) The link between multiple sclerosis and depression. Nat Rev Neurol 10(9):507–517

    Article  PubMed  Google Scholar 

  34. Krawczyk DC (2002) Contributions of the prefrontal cortex to the neural basis of human decision making. Neurosci Biobehav Rev 26(6):631–664

    Article  PubMed  Google Scholar 

  35. Starkstein SE, Robinson RG, Honig MA, Parikh RM, Joselyn J, Price TR (1989) Mood changes after right-hemisphere lesions. Br J Psychiatry 155(1):79–85

    Article  CAS  PubMed  Google Scholar 

  36. McIntosh AR (1999) Mapping cognition to the brain through neural interactions. Memory 7(5–6):523–548

    Article  CAS  PubMed  Google Scholar 

  37. Kroencke DC, Lynch SG, Denney DR (2000) Fatigue in multiple sclerosis: relationship to depression, disability, and disease pattern. Mult Scler J 6(2):131–136

    Article  CAS  Google Scholar 

  38. Pardini M, Bonzano L, Mancardi GL, Roccatagliata L (2010) Frontal networks play a role in fatigue perception in multiple sclerosis. Behav Neurosci 124(3):329

    Article  PubMed  Google Scholar 

  39. Herbert E et al (2018) Fractional anisotropy of white matter, disability and blood iron parameters in multiple sclerosis. Metab Brain Dis 33(2):545–557

    Article  CAS  PubMed  Google Scholar 

  40. Zhuo Z et al (2021) Subtyping relapsing–remitting multiple sclerosis using structural MRI. J Neurol 268(5):1808–1817

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Institute of Neurological Disorders and Stroke (NINDS) [R01NS109023].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sarah E. Cote or Roee Holtzer.

Ethics declarations

Ethical approval

The work described in this manuscript has been executed in adherence with The Code of Ethics of the World Medical Association (Declaration of Helsinki). The Institutional Review Board of Albert Einstein College of Medicine approved this study. Written informed consent was obtained on the first in-person study visit.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cote, S.E., Wagshul, M., Foley, F.W. et al. Frontal-striatal tract integrity and depression in older adults with and without multiple sclerosis. Neurol Sci (2024). https://doi.org/10.1007/s10072-024-07316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10072-024-07316-y

Keywords

Navigation