Profiling the oxylipidome in aged mice after chronic ethanol feeding: Identifying lipid metabolites as drivers of hepatocyte stress

Alcohol. 2023 Mar:107:119-135. doi: 10.1016/j.alcohol.2022.08.012. Epub 2022 Sep 20.

Abstract

The global population of people over the age of 65 is increasing and expected to reach 1.5 billion by 2050. While aging is associated with a number of chronic illnesses including dementia, the underlying contribution of alcohol misuse in the elderly is understudied. Long-term chronic alcohol misuse can lead to alcohol-associated liver disease, consisting of a spectrum of pathologies, including steatosis and cirrhosis; liver disease can be rapidly accelerated by non-resolving inflammation. Despite this knowledge, the mechanistic underpinnings of dysregulated host immunity and accelerated liver disease progression in the aged by alcohol is unknown. Alcohol misuse in the elderly is on the rise and aging is associated with progressive increases in pro-inflammatory cytokine production. The goals of the current study are to characterize bioactive lipid mediators of inflammation by making use of a murine model of ethanol-induced liver disease in 3-month-old and 20-month-old mice by quantitatively profiling selected oxylipins in liver, brain and plasma. Following chronic ethanol exposure, liver injury, steatosis, and senescence markers were robustly increased in aged mice compared to young adult mice. Expression of proinflammatory cytokines and lipid metabolizing enzymes were increased in liver by both age and ethanol feeding. Lipoxygenase-derived lipid metabolites 9- and 13-hydroxy-octadecadienoic acid and 15-hydroxyeicosatetraenoic acid were increased in liver and plasma in ethanol-fed aged mice and positively correlated with liver injury. In plasma, 9,10-dihydroxy-octadecenoic acid/epoxy-octadecenoic acid plasma ratios correlated with liver injury in ethanol-fed aged mice. Finally, 15-hydroxyeicosatetraenoic acid and 9,10-dihydroxy-octadecenoic acid positively correlated between liver and plasma. Importantly, leukotriene E4, 9,10-dihydroxy-octadecenoic acid and 15-hydroxyeicosatetraenoic acid increased lipid accumulation and ER stress in cultured AML12 hepatocytes. These data highlight the complexity of lipid metabolite networks but identify key mediators that may be used for diagnostic and prognostic markers in early stages of alcohol-related liver disease in patients of all ages.

Keywords: LC-MS/MS; aging; alcohol-associated liver disease; inflamm-aging; oxylipins.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alcoholism* / metabolism
  • Animals
  • Ethanol / metabolism
  • Hepatocytes / pathology
  • Inflammation
  • Liver / metabolism
  • Liver Diseases, Alcoholic* / pathology
  • Mice
  • Mice, Inbred C57BL

Substances

  • Ethanol