
Accessing Object Representations
Document #: P1839R4
Date: 2022-03-16
Project: Programming Language C++
Audience: Core Working Group
Reply-to: Krystian Stasiowski

<sdkrystian@gmail.com>
Timur Doumler
<papers@timur.audio>

Contents
1 Abstract 2

2 Revisions 2
2.1 Changes since [P1839R0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Changes since [P1839R1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Changes since [P1839R2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.4 Changes since [P1839R3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.5 Polls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Motivation 3

4 Problem 3

5 Changes 3
5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

6 Design Choices 4
6.1 Object contiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
6.2 The std::launder issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
6.3 “Self-representing” objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
6.4 Value and access of elements of object representations . . . . . . . . . . . . . . . . . . . . . . . . 5

7 Wording 5
7.1 Memory and object model [intro.object], [intro.memory], [basic.life] . . . . . . . . . . . . . . . . . 5

7.1.1 Memory locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
7.1.2 Object representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
7.1.3 Overlapping objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
7.1.4 Identical element lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

7.2 Access to object representations via casts [expr.static.cast], [basic.compound] . . . . . . . . . . . 6
7.2.1 Obtaining a pointer to the object representation . . . . . . . . . . . . . . . . . . . . . . . 6

7.3 Pointer arithmetic [expr.add] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7.3.1 Differing element and expression type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

7.4 std::launder [ptr.launder] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7.4.1 Multiple overlapping objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

8 Acknowledgements 7

9 References 7

1

mailto:sdkrystian@gmail.com
mailto:papers@timur.audio


1 Abstract

Allow access to the object representation of an object.

2 Revisions

2.1 Changes since [P1839R0]

— Allow pointer arithmetic on expressions of type unsigned char*, char* and std::byte* when pointing
to objects of different type.

— Removed exclusion of the object representation of objects of zero size from appearing in the object repre-
sentation of their containing object.

— Added multi-dimensional arrays of contiguous-layout types to the definition of contiguous-layout types.

— Slight change to the behavior of std::launder for when there are multiple viable objects.

2.2 Changes since [P1839R1]

— Removed contiguous-layout types from wording, this should be tackled by [P1945R0].

2.3 Changes since [P1839R2]

— Incorporated feedback from CWG:

— Moved wording for casts to the rules of pointer-interconvertibility.

— Change the wording for std::launder to bind to the best candidate object.

2.4 Changes since [P1839R3]

— Change the wording to fix ambiguous usage of N in object representations specification.

2.5 Polls

EWGI

Should accessing the object representation be defined behaviour?

Unanimous consent.

Forward [P1839R1] as presented to EWG, recommending that this be a core issue?

Unanimous consent.

EWG

It should be possible to access the entire object representation through a pointer to a char-like type as a DR

Approved.

2



3 Motivation

This proposal does not intend to introduce anything new, rather to standardize a common existing practice.
Accessing the underlying bytes of an object has been a long-standing practice in C and C++ alike, but, in C++,
doing so is typically undefined behavior. With current wording, it is impossible to obtain a pointer to an element
of the object representation; an expression such as reinterpret_cast<char*>(&a) typically yields a pointer to
the original object, and only the type of the expression is changed. This does not represent the intent of CWG,
as exemplified by [CWG1314], in which it is stated that access to the object representation is intended to be
well-defined.

This has only recently become undefined behavior as of C++17, when [P0137R1] was accepted. This proposal
includes a change to how pointers work, notably that they point to objects, rather than just representing an
address, and it seems that the proposal neglected to add any provisions to allow access to the object representation
of an object.

4 Problem

This issue exists for two primary reasons: casting and pointer arithmetic. Given the following code:
int a = 420;
char b = *reinterpret_cast<char*>(&a);

The pointer does not bind to any char object or element of the object representation. This particu-
lar reinterpret_cast is exactly equivalent to static_cast<char*>(static_cast<void*>(&a)) as per
[expr.reinterpret.cast] p7 and as such, [expr.static.cast] p13 dictates that the value of the pointer is unchanged
and therefore it points to the original object. When the lvalue-to-rvalue conversion is applied to the initializer
expression of b, the behavior is undefined as per [expr.pre] p4 because the result of such a conversion would be
the value of the int object (420), which is not a value representable by char.

Additionally, if such wording did exist, an object representation as defined by [basic.types] p4 is a sequence of
unsigned char objects, not an array, and is unsuitable for pointer arithmetic given the current object model.

5 Changes

— Change object representations to be considered an array if the type of the object they represent is contigu-
ous.

— Objects of type unsigned char, char and std::byte and arrays of such types suffice as being their
own object representation to prevent an infinitely recurring property.

— The value of the elements of an object representation of a type other than unsigned char, char and
std::byte is unspecified, otherwise the value of the element is the value of the object they represent.

— Allow a pointer to an object representation to be obtained through the use of a cast to unsigned char,
char and std::byte.

— Allow a pointer to an object representation to be cast back to a pointer to its respective object through
the use of a cast.

— Specify that std::launder will prefer to return a pointer to an object that is not an element of an object
representation.

— Allow pointer arithmetic to be performed on pointers to elements of an object representation if the type
of the expression is unsigned char*, char* or std::byte*.

3

http://eel.is/c++draft/expr.reinterpret.cast#7
http://eel.is/c++draft/expr.static.cast#13
http://eel.is/c++draft/expr.pre#4
http://eel.is/c++draft/basic.types#4


5.1 Examples

Here is an example demonstrating the difference:

Before After

using T = unsigned char*;
int a = 0;
T b = reinterpret_cast<T>(&a);
// Pointer value unchanged, still
// points to the int object
T c = ++b;
// UB, expression type differs
// from element type

using T = unsigned char*;
int a = 0;
T b = reinterpret_cast<T>(&a);
// Pointer now points to the first unsigned
// char element of the object representation
T c = ++b;
// This is now a pointer to the second
// element of the object representation
++(*c); // OK

Another example for arrays:

Before After

using T = unsigned char*;
int a[5]{};
T b = reinterpret_cast<T>(&a);
// Pointer value unchanged, still
// points to the array object
for (int i = 0; i < sizeof(int) * 5; ++i)

b[i] = 0; // UB, expression type differs
// from element type

using T = unsigned char*;
int a[5]{};
T b = reinterpret_cast<T>(&a);
// Pointer now points to the first
// unsigned char element of the
// object representation of the array
for (int i = 0; i < sizeof(int) * 5; ++i)
b[i] = 0; // OK

6 Design Choices

6.1 Object contiguity

For pointer arithmetic to work with a pointer to an element of the object representation, it is necessary that the
object representation be an array. However, since not all objects are guaranteed to occupy contiguous bytes of
storage, the object representation may only be an array if the corresponding object occupies contiguous bytes of
storage. It would be useful to expand the guarantee for which objects occupy contiguous storage, and therefore
the subset of objects that can have their object representation accessed, however, this will be addressed in later
paper [P1945R0].

6.2 The std::launder issue

Multiple objects may occupy the same storage, in which case the objects’ respective object representations will
overlap. This presents the issue of deciding to which object std::launder returns a pointer. This proposal
remedies the issue by specifying that the returned pointer is pointing to the object that would give the program
defined behaviour.

4



6.3 “Self-representing” objects

Certain objects are suitable to act as their own object representations, such as objects of type unsigned char,
char and std::byte and arrays of these types. This is to prevent infinite recursion of objects having object
representations, as happens with the current word if read pedantically.

6.4 Value and access of elements of object representations

“Self-representing” elements of an object representation of non-array type are specified to have their own value;
all other elements of an object representation have an unspecified value. The reasoning for this is quite obvious,
as it would be extremely difficult to specify what the value of each element would be. Access of the elements is
intended to be well-defined, and is under the proposed wording, however it is up to CWG whether it should be
specified explicitly.

7 Wording

All wording is relative to N4835.

7.1 Memory and object model [intro.object], [intro.memory], [basic.life]

7.1.1 Memory locations

Modifying an element of an object representation concurrently with another memory location that it overlaps
should be a data race. This sentence specifies that the element of the object representation is the same memory
location.

Changes to [intro.memory] p3 sentence 1
3 A memory location is either an object of scalar type or a maximal sequence of adjacent bit-fields all having

nonzero width, and any overlapping elements of an object representation.

7.1.2 Object representations

The type of the elements of the object representation should have the same cv-qualification as that of the
object they represent to prevent accidental modification of the object indirectly. Additionally, if the object
occupies contiguous bytes of storage, then we could consider the object representation to be an array, and
thereby make pointer arithmetic well-defined. Certain objects are said to represent themselves so that the object
representation does not have an object representation of its own. The value of the elements that do not represent
themselves is left unspecified, as specifying it would be effectively impossible. Lastly, it is specified that an object
representation appears in an enclosing object representation to make it useful for introspection.

Remove [basic.types] p4 sentence 1
4 The object representation of an object of type T is the sequence of N unsigned char objects taken up by the

object of type T, where N equals sizeof(T).

5

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4835.pdf


Insert a new paragraph below [intro.object] p1
2 The object representation of an object a of type cv T is a sequence of N cv unsigned char objects that

occupy the same storage as a, where N is equal to sizeof(T). The sequence is considered to be an array of N
cv unsigned char if the object of type T occupies contiguous bytes of storage. The object representation of
an object of type unsigned char, char, std::byte, or an array of such types (ignoring cv-qualification), is
itself. Unless an object representation is of an object of type unsigned char, char or std::byte (ignoring cv-
qualification), the value of the elements of the object representation is unspecified. The object representation
of an object nested within an object o is guaranteed to appear in the object representation of o.

7.1.3 Overlapping objects

This ensures that an object representation and its elements may exist concurrently with the object they represent,
as they occupy the same storage.

Changes to [intro.object] p9
9 […] Two objects with overlapping lifetimes that are not bit-fields may have the same address if one is nested

within the other, or if at least one is a subobject of zero size and they are of different types, or if at least one
is an element of an object representation; otherwise, they have distinct addresses and occupy disjoint bytes
of storage.

7.1.4 Identical element lifetime

Specifying the lifetime of an object representation explicitly ensures that its lifetime will begin and end with
that of its corresponding object meaning it need not be preserved after the object it represents is destroyed. The
lifetime does not begin during construction to match the wording of [class.cdtor] p2.

Insert a new paragraph below [basic.life] p2
3 The lifetime of the elements of the object representation of an object begins when the lifetime of the object

begins. For class types, the lifetime of the elements of the object representation ends when the destruction
of the object is completed, otherwise, the lifetime ends when the object is destroyed.

7.2 Access to object representations via casts [expr.static.cast], [basic.compound]

7.2.1 Obtaining a pointer to the object representation

Currently, no wording exists allowing one to obtaining a pointer to an element of the object representation
of an object. Adding a rule making an object pointer-interconvertible with its object representation (or first
element thereof) resolves this, and preserves reinterpret_casts equivalence with static_cast with respect to
converting object pointers. If multiple pointer-interconvertible objects exist, the one that will give the program
defined behavior is chosen.

Changes to [expr.static.cast] p13
13 […] Otherwise, if the original pointer value points to an object a, and there is an object b of type T (ignoring

cv-qualification) that is pointer-interconvertible with a, the result is a pointer to b if doing so would give the
program defined behavior. Otherwise, the pointer value is unchanged by the conversion.

Add a sub-bullet after [basic.compound] p4 sub 3
4 Two objects a and b are pointer-interconvertible if:

—(4.4) one is an an object o and the other is the object representation of o, or the first element thereof, or

6

http://eel.is/c++draft/class.cdtor#2


7.3 Pointer arithmetic [expr.add]

7.3.1 Differing element and expression type

In order to make accessing an object representation using a type other than unsigned char well-defined, it must
be allowed for the type of the expression to differ from that of the object pointed to in cases where the type of
the pointer is char* or std::byte*, as the pointer points to an object of type unsigned char.

Replace [expr.add] p6
6 For addition or subtraction, if the expressions P or Q have type “pointer to cv T”, where T and the array

element type are not similar, the behavior is undefined.
6 For addtion and subtraction where P or Q have type “pointer to cv T” and point to an object o, one of the

following shall hold:

—(6.1) T is similar to the type of the o, or
—(6.2) T is similar to unsigned char, char or std::byte and o is an element of an object representation.

Otherwise, the behavior is undefined.

7.4 std::launder [ptr.launder]

7.4.1 Multiple overlapping objects

Since multiple elements of an object representation may exist in the same storage, it must be defined which one
std::launder would return if such a situation were to arise.

Changes to [ptr.launder] p3
3 Returns: A value of type T* that points to the object X that would give the program defined behavior. If no

such object exists, the behavior is undefined.

8 Acknowledgements

Thank you to Jason Cobb, John Iacino, Marcell Kiss, Killian Long, Theodoric Stier, and everyone who
participated on the std-proposals mailing list for the countless reviews and suggestions. Addtionally, I would
like to thank Professor Ben Woodard for his grammatical review.

9 References

[CWG1314] Nikolay Ivchenkov. 2011-05-06. Pointer arithmetic within standard-layout objects.
https://wg21.link/cwg1314

[P0137R1] Richard Smith. 2016-06-23. Core Issue 1776: Replacement of class objects containing reference
members.
https://wg21.link/p0137r1

[P1945R0] Krystian Stasiowski. 2019-10-28. Making More Objects Contiguous.
https://wg21.link/p1945r0

7

https://wg21.link/cwg1314
https://wg21.link/p0137r1
https://wg21.link/p1945r0

	Abstract
	Revisions
	Changes since [P1839R0]
	Changes since [P1839R1]
	Changes since [P1839R2]
	Changes since [P1839R3]
	Polls

	Motivation
	Problem
	Changes
	Examples

	Design Choices
	Object contiguity
	The std::launder issue
	``Self-representing'' objects
	Value and access of elements of object representations

	Wording
	Memory and object model [intro.object], [intro.memory], [basic.life]
	Memory locations
	Object representations
	Overlapping objects
	Identical element lifetime

	Access to object representations via casts [expr.static.cast], [basic.compound]
	Obtaining a pointer to the object representation

	Pointer arithmetic [expr.add]
	Differing element and expression type

	std::launder [ptr.launder]
	Multiple overlapping objects


	Acknowledgements
	References

