Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spitzer’s perspective of polycyclic aromatic hydrocarbons in galaxies

Abstract

Polycyclic aromatic hydrocarbon (PAH) molecules are abundant and widespread throughout the Universe, as revealed by their distinctive set of emission bands at 3.3, 6.2, 7.7, 8.6, 11.3 and 12.7 μm, which are characteristic of their vibrational modes. They are ubiquitously seen in a wide variety of astrophysical regions, ranging from planet-forming disks around young stars to the interstellar medium of the Milky Way and other galaxies out to high redshifts at z 4. PAHs profoundly influence the thermal budget and chemistry of the interstellar medium by dominating the photoelectric heating of the gas and controlling the ionization balance. Here I review the current state of knowledge of the astrophysics of PAHs, focusing on their observational characteristics obtained from the Spitzer Space Telescope and their diagnostic power for probing the local physical and chemical conditions and processes. Special attention is paid to the spectral properties of PAHs and their variations revealed by the Infrared Spectrograph onboard Spitzer across a much broader range of extragalactic environments (for example, distant galaxies, early-type galaxies, galactic halos, active galactic nuclei and low-metallicity galaxies) than was previously possible with the Infrared Space Observatory or any other telescope facilities. Also highlighted is the relation between the PAH abundance and the galaxy metallicity established for the first time by Spitzer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observed and model-predicted 5–20 μm PAH spectra.
Fig. 2: Spitzer/IRS rest-frame spectra of galaxies at high redshifts.
Fig. 3: Spitzer/IRS spectra of early-type galaxies.
Fig. 4: PAHs in the superwind of M82.
Fig. 5: Relative strengths of the 6.2, 7.7 and 11.3 μm PAH features.
Fig. 6: PAH abundance versus galaxy metallicity.

Similar content being viewed by others

References

  1. Gillett, F. C., Forrest, W. J. & Merrill, K. M. 8–13 μm spectra of NGC 7027, BD+30 3639, and NGC 6572. Astrophys. J. 183, 87–93 (1973).

    ADS  Google Scholar 

  2. Merrill, K. M., Soifer, B. T. & Russell, R. W. The 2–4 μm spectrum of NGC 7027. Astrophys. J. 200, L37–L39 (1975).

    ADS  Google Scholar 

  3. Russell, R. W., Soifer, B. T. & Willner, S. P. The 4–8 μm spectrum of NGC 7027. Astrophys. J. 217, L149–L153 (1977).

    ADS  Google Scholar 

  4. Willner, S. P., Soifer, B. T., Russell, R. W., Joyce, R. R. & Gillett, F. C. 2–8 μm spectrophotometry of M82. Astrophys. J. 217, L121–L124 (1977).

    ADS  Google Scholar 

  5. Léger, A. & Puget, J. L. Identification of the “unidentified” IR emission features of interstellar dust? Astron. Astrophys. 137, L5–L8 (1984).

    ADS  Google Scholar 

  6. Allamandola, L. J., Tielens, A. G. G. M. & Baker, J. R. Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands: Auto exhaust along the Milky Way. Astrophys. J. 290, L25–L28 (1985).

    ADS  Google Scholar 

  7. Allamandola, L. J., Tielens, A. G. G. M. & Baker, J. R. Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. Astrophys. J. Suppl. 71, 733–775 (1989).

    ADS  Google Scholar 

  8. Draine, B. T. & Li, A. Infrared emission from interstellar dust. I. Stochastic heating of small grains. Astrophys. J. 551, 807–824 (2001).

    ADS  Google Scholar 

  9. Li, A. & Draine, B. T. Infrared emission from interstellar dust. II. The diffuse interstellar medium. Astrophys. J. 554, 778–802 (2001).

    ADS  Google Scholar 

  10. Draine, B. T. & Li, A. Infrared emission from interstellar dust. IV. The silicate–graphite–PAH model in the post-Spitzer era. Astrophys. J. 657, 810–837 (2007).

    ADS  Google Scholar 

  11. Zubko, V., Dwek, E. & Arendt, R. G. Interstellar dust models consistent with extinction, emission, and abundance constraints. Astrophys. J. Suppl. 152, 211–249 (2004).

    ADS  Google Scholar 

  12. Siebenmorgen, R., Voshchinnikov, N. V. & Bagnulo, S. Dust in the diffuse interstellar medium. Extinction, emission, linear and circular polarisation. Astron. Astrophys. 561, A82 (2014).

    ADS  Google Scholar 

  13. Jones, A. P., Köhler, M., Ysard, N., Bocchio, M. & Verstraete, L. The global dust modelling framework THEMIS. Astron. Astrophys. 602, A46 (2017).

    ADS  Google Scholar 

  14. Smith, J. D. T. et al. The mid-infrared spectrum of star-forming galaxies: global properties of polycyclic aromatic hydrocarbon emission. Astrophys. J. 656, 770–791 (2007).

    ADS  Google Scholar 

  15. Tielens, A. G. G. M. Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 46, 289–337 (2008).

    ADS  Google Scholar 

  16. Joblin, C., Léger, A. & Martin, P. Contribution of polycyclic aromatic hydrocarbon molecules to the interstellar extinction curve. Astrophys. J. 393, L79–L82 (1992).

    ADS  Google Scholar 

  17. Cecchi-Pestellini, C., Malloci, G., Joblin, C. & Williams, D. A. The role of the charge state of PAHs in ultraviolet extinction. Astron. Astrophys. 486, 25–29 (2008).

    ADS  Google Scholar 

  18. Mulas, G., Zonca, A., Casu, S. & Cecchi-Pestellini, C. Modeling galactic extinction with dust and “real” polycyclic aromatic hydrocarbons. Astrophys. J. Suppl. 207, 7 (2013).

    ADS  Google Scholar 

  19. Steglich, M. et al. Electronic spectroscopy of medium-sized polycyclic aromatic hydrocarbons: implications for the carriers of the 2175 Å UV bump. Astrophys. J. 712, L16–L20 (2011).

    ADS  Google Scholar 

  20. Salama, F. et al. Polycyclic aromatic hydrocarbons and the diffuse interstellar bands: a survey. Astrophys. J. 728, 154 (2011).

    ADS  Google Scholar 

  21. Witt, A. N. Blue luminescence and extended red emission: possible connections to the diffuse interstellar bands. Proc. Int. Astronom. Union 9, 173–179 (2014).

    ADS  Google Scholar 

  22. Draine, B. T. Interstellar dust grains. Annu. Rev. Astron. Astrophys. 41, 241–289 (2003).

    ADS  Google Scholar 

  23. Dickinson, C. et al. The state-of-play of anomalous microwave emission (AME) research. New Astron. Rev. 80, 1–28 (2018).

    ADS  Google Scholar 

  24. Bakes, E. & Tielens, A. G. G. M. The photoelectric heating mechanism for very small graphitic grains and polycyclic aromatic hydrocarbons. Astrophys. J. 427, 822–838 (1994).

    ADS  Google Scholar 

  25. Weingartner, J. C. & Draine, B. T. Photoelectric emission from interstellar dust: grain charging and gas heating. Astrophys. J. Suppl. 134, 263–282 (2001).

    ADS  Google Scholar 

  26. Kamp, I. & Dullemond, C. P. The gas temperature in the surface layers of protoplanetary disks. Astrophys. J. 615, 991–999 (2004).

    ADS  Google Scholar 

  27. Verstraete, L. The role of PAHs in the physics of the interstellar medium. EAS Publ. Ser. 46, 415–426 (2011).

    Google Scholar 

  28. Hudgins, D. M. & Allamandola, L. J. Steps toward identifying PAHs: A summary of some recent results. IAUS 231, 443–454 (2005).

    ADS  Google Scholar 

  29. Sellgren, K., Werner, M. W. & Dinerstein, H. L. Extended near-infrared emission from visual reflection nebulae. Astrophys. J. 271, L13–L17 (1983).

    ADS  Google Scholar 

  30. Greenberg, J. M. in Stars and Stellar Systems Vol. 7 (eds Middlehurst, B. M. & Aller, L. H.) 221–364 (Univ. Chicago Press, 1968).

  31. Sellgren, K. The near-infrared continuum emission of visual reflection nebulae. Astrophys. J. 277, 623–633 (1984).

    ADS  Google Scholar 

  32. Geballe, T. R., Lacy, J. H., Persson, S. E., McGregor, P. J. & Soifer, B. T. Spectroscopy of the 3 μm emission features. Astrophys. J. 292, 500–505 (1985).

    ADS  Google Scholar 

  33. Jourdain de Muizon, M., Geballe, T. R., d’Hendecourt, L. B. & Baas, F. New emission features in the infrared spectra of two IRAS sources. Astrophys. J. 306, L105–L108 (1986).

    ADS  Google Scholar 

  34. Joblin, C., Tielens, A. G. G. M., Allamandola, L. J. & Geballe, T. R. Spatial variation of the 3.29 and 3.40 μm emission bands within reflection nebulae and the photochemical evolution of methylated polycyclic aromatic hydrocarbons. Astrophys. J. 458, 610–620 (1996).

    ADS  Google Scholar 

  35. Cohen, M., Tielens, A. G. G. M. & Allamandola, L. J. A new emission feature in IRAS spectra and the polycyclic aromatic hydrocarbon spectrum. Astrophys. J. 299, L93–L97 (1985).

    ADS  Google Scholar 

  36. Tokunaga, A. T. A summary of the “UIR” bands. ASP Conf. Ser. 124, 149–160 (1997).

    ADS  Google Scholar 

  37. Cohen, M. et al. The infrared emission bands. III. Southern IRAS sources. Astrophys. J. 341, 246–269 (1989).

    ADS  Google Scholar 

  38. Peeters, E., Allamandola, L. J., Hudgins, D. M., Hony, S. & Tielens, A. G. G. M. The unidentified infrared features after ISO. ASP Conf. Ser. 309, 141–162 (2004).

    ADS  Google Scholar 

  39. Moutou, C., Verstraete, L., Léger, A., Sellgren, K., Schmidt, W. & New, P. A. H. mode at 16.4 μm. Astron. Astrophys. 354, L17–L20 (2000).

    ADS  Google Scholar 

  40. Schutte, W. A. et al. ISO-SWS observations of infrared absorption bands of the diffuse interstellar medium: the 6.2 μm feature of aromatic compounds. Astron. Astrophys. 337, 261–274 (1998).

    ADS  Google Scholar 

  41. Chiar, J. E. et al. The composition and distribution of dust along the line of sight toward the Galactic Center. Astrophys. J. 537, 749–762 (2000).

    ADS  Google Scholar 

  42. Peeters, E. et al. The rich 6 to 9 μm spectrum of interstellar PAHs. Astron. Astrophys. 390, 1089–1113 (2002).

    ADS  Google Scholar 

  43. Mattila, K. et al. Spectrophotometry of UIR bands in the diffuse emission of the Galactic Disk. Astron. Astrophys. 315, L353–L356 (2000).

    ADS  Google Scholar 

  44. Onaka, T., Yamamura, I., Tanabe, T., Roellig, T. L. & Yuen, L. Detection of the mid-infrared unidentified bands in the diffuse galactic emission by IRTS. Publ. Astron. Soc. Jpn 48, L59–L63 (1996).

    ADS  Google Scholar 

  45. Tanaka, M. et al. IRTS observation of the unidentified 3.3 μm band in the diffuse galactic emission. Publ. Astron. Soc. Jpn 48, L53–L57 (1996).

    ADS  Google Scholar 

  46. Siebenmorgen, R., Prusti, T., Natta, A. & Müller, T. G. Mid infrared emission of nearby Herbig Ae/Be stars. Astron. Astrophys. 361, 258–264 (2006).

    ADS  Google Scholar 

  47. Furlan, E. et al. A survey and analysis of Spitzer Infrared Spectrograph spectra of T Tauri stars in Taurus. Astrophys. J. Suppl. 165, 568–605 (2006).

    ADS  Google Scholar 

  48. Geers, V. C. et al. C2D Spitzer-IRS spectra of disks around T Tauri stars. II. PAH emission features. Astron. Astrophys. 459, 545–556 (2006).

    ADS  Google Scholar 

  49. Seok, J. Y. & Li, A. Polycyclic aromatic hydrocarbons in protoplanetary disks around Herbig Ae/Be and T Tauri stars. Astrophys. J. 835, 291 (2017).

    ADS  Google Scholar 

  50. Sandstrom, K. M. et al. The Spitzer spectroscopic survey of the Small Magellanic Cloud (S4MC): probing the physical state of polycyclic aromatic hydrocarbons in a low-metallicity environment. Astrophys. J. 744, 20 (2012).

    ADS  Google Scholar 

  51. Hemachandra, D. et al. Mid-infrared spectroscopy of the Andromeda galaxy. Astron. Astrophys. 454, 818–830 (2015).

    Google Scholar 

  52. Boersma, C., Rubin, R. H. & Allamandola, L. J. Spatial analysis of the polycyclic aromatic hydrocarbon features southeast of the Orion Bar. Astrophys. J. 753, 168 (2012).

    ADS  Google Scholar 

  53. Boersma, C., Bregman, J. & Allamandola, L. J. Properties of polycyclic aromatic hydrocarbons in the northwest photon dominated region of NGC 7023. III. Quantifying the traditional proxy for PAH charge and assessing its role. Astrophys. J. 806, 121 (2015).

    ADS  Google Scholar 

  54. Shannon, M. J., Stock, D. J. & Peeters, E. Interpreting the subtle spectral variations of the 11.2 and 12.7 μm polycyclic aromatic hydrocarbon bands. Astrophys. J. 824, 111 (2016).

    ADS  Google Scholar 

  55. Smith, J. D. T. et al. Mid-infrared IRS spectroscopy of NGC 7331: a first look at the Spitzer Infrared Nearby Galaxies Survey (SINGS) legacy. Astrophys. J. Suppl. 154, 199–203 (2004).

    ADS  Google Scholar 

  56. Werner, M. W. et al. New infrared emission features and spectral variations in NGC 7023. Astrophys. J. Suppl. 154, 309–314 (2004).

    ADS  Google Scholar 

  57. Beintema, D. A. et al. The rich spectrum of circumstellar PAHs. Astron. Astrophys. 315, L369–L372 (1996).

    ADS  Google Scholar 

  58. van Kerckhoven, C. et al. The C–C–C bending modes of PAHs: a new emission plateau from 15 to 20 μm. Astrophys. J. Suppl. 357, 1013–1019 (2000).

    Google Scholar 

  59. Cami, J., Bernard-Salas, J., Peeters, E. & Malek, S. E. Detection of C60 and C70 in a young planetary nebula. Science 329, 1180–1182 (2010).

    ADS  Google Scholar 

  60. Sellgren, K. et al. C60 in reflection nebulae. Astrophys. J. 722, L54–L57 (2010).

    ADS  Google Scholar 

  61. Witteborn, F. C. et al. New emission features in the 11–13 μm region and their relationship to polycyclic aromatic hydrocarbons. Astrophys. J. 341, 270–277 (1989).

    ADS  Google Scholar 

  62. Hony, S. et al. The CH out-of-plane bending modes of PAH molecules in astrophysical environments. Astron. Astrophys. 370, 1030–1043 (2001).

    ADS  Google Scholar 

  63. Hudgins, D. M. & Allamandola, L. J. Interstellar PAH emission in the 11–14 μm region: new insights from laboratory data and a tracer of ionized PAHs. Astrophys. J. 516, L41–L44 (1999).

    ADS  Google Scholar 

  64. Matsuura, M. et al. Spitzer Space Telescope spectra of post-AGB stars in the Large Magellanic Cloud — polycyclic aromatic hydrocarbons at low metallicities. Mon. Not. R. Astron. Soc. 439, 1472–1493 (2014).

    ADS  Google Scholar 

  65. Sloan, G. C. et al. Carbon-rich dust past the asymptotic giant branch: aliphatics, aromatics, and fullerenes in the Magellanic Clouds. Astrophys. J. 791, 28 (2014).

    ADS  Google Scholar 

  66. Hudgins, D. M., Bauschlicher, J. C. W. & Allamandola, L. J. Variations in the peak position of the 6.2 μm interstellar emission feature: a tracer of N in the interstellar polycyclic aromatic hydrocarbon population. Astrophys. J. 632, 316–332 (2005).

    ADS  Google Scholar 

  67. Canelo, C. M., Friaça, A. C. S., Sales, D. A., Pastoriza, M. G. & Ruschel-Dutra, D. Variations in the 6.2 μm emission profile in starburst-dominated galaxies: a signature of polycyclic aromatic nitrogen heterocycles (PANHs)? Mon. Not. R. Astron. Soc. 475, 3746–3763 (2018).

    ADS  Google Scholar 

  68. Berné, O. et al. Analysis of the emission of very small dust particles from Spitzer spectro-imagery data using blind signal separation methods. Astron. Astrophys. 469, 575–586 (2007).

    ADS  Google Scholar 

  69. Povich, M. S. et al. A Multiwavelength study of M17: the spectral energy distribution and PAH emission morphology of a massive star formation region. Astrophys. J. 660, 346–362 (2007).

    ADS  Google Scholar 

  70. Elbaz, D., Le Floc’h, E., Dole, H. & Marcillac, D. Observational evidence for the presence of PAHs in distant luminous infrared galaxies using ISO and Spitzer. Astron. Astrophys. 434, L1–L4 (2004).

    ADS  Google Scholar 

  71. Yan, L. et al. Spitzer detection of polycyclic aromatic hydrocarbon and silicate dust features in the mid-infrared spectra of z ~ 2 ultraluminous infrared galaxies. Astrophys. J. 628, 604–610 (2005).

    ADS  Google Scholar 

  72. Lutz, D. et al. Mid-infrared spectroscopy of two luminous submillimeter galaxies at z ~ 2.8. Astrophys. J. 625, L83–L86 (2005).

    ADS  Google Scholar 

  73. Siana, B. et al. Detection of far-infrared and polycyclic aromatic hydrocarbon emission from the Cosmic Eye: probing the dust and star formation of Lyman break galaxies. Astrophys. J. 698, 1273–1281 (2009).

    ADS  Google Scholar 

  74. Riechers, D. A. et al. Polycyclic aromatic hydrocarbon and mid-infrared continuum emission in a z > 4 submillimeter galaxy. Astrophys. J. 786, 31 (2014).

    ADS  Google Scholar 

  75. Bernstein, M. P. et al. UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers. Science 283, 1158–1138 (1999).

    Google Scholar 

  76. Kwok, S. Complex organics in space from Solar System to distant galaxies. Astron. Astrophys. Rev. 24, 8 (2016).

    ADS  Google Scholar 

  77. Shipley, H. V. et al. A new star formation rate calibration from polycyclic aromatic hydrocarbon emission features and application to high-redshift galaxies. Astrophys. J. 818, 60 (2016).

    ADS  Google Scholar 

  78. Pope, A. et al. Mid-infrared spectral diagnosis of submillimeter galaxies. Astrophys. J. 675, 1171–1193 (2008).

    ADS  Google Scholar 

  79. Calzetti, D. et al. The calibration of mid-infrared star formation rate indicators. Astrophys. J. 666, 870–895 (2007).

    ADS  Google Scholar 

  80. Xie, Y. & Ho, L. C. A new calibration of star formation rate in galaxies based on polycyclic aromatic hydrocarbon emission. Astrophys. J. 884, 136 (2019).

    ADS  Google Scholar 

  81. Kaneda, H. et al. Unbiased large spectroscopic surveys of galaxies selected by SPICA using dust bands. Publ. Astron. Soc. Aust. 34, e059 (2017).

    ADS  Google Scholar 

  82. Kaneda, H., Onaka, T. & Sakon, I. Detection of PAH emission features from nearby elliptical galaxies with the Spitzer Infrared Spectrograph. Astrophys. J. 632, L83–L86 (2005).

    ADS  Google Scholar 

  83. Kaneda, H. et al. Properties of polycyclic aromatic hydrocarbons in local elliptical galaxies revealed by the Infrared Spectrograph on Spitzer. Astrophys. J. 684, 270–281 (2008).

    ADS  Google Scholar 

  84. Vega, O. et al. Unusual PAH emission in nearby early-type galaxies: a signature of an intermediate-age stellar population? Astrophys. J. 721, 1090–1104 (2010).

    ADS  Google Scholar 

  85. Irwin, J. A. & Madden, S. C. Discovery of PAHs in the halo of NGC 5907. Astron. Astrophys. 445, 123–141 (2005).

    ADS  Google Scholar 

  86. Engelbracht, C. W. et al. Extended mid-infrared aromatic feature emission in M82. Astrophys. J. 642, 127–132 (2006).

    ADS  Google Scholar 

  87. Beirão, P. et al. Spatially resolved Spitzer-IRS spectral maps of the superwind in M82. Mon. Not. R. Astron. Soc. 451, 2640–2655 (2015).

    ADS  Google Scholar 

  88. Yamagishi, M. et al. AKARI near-infrared spectroscopy of the aromatic and aliphatic hydrocarbon emission features in the galactic superwind of M82. Astron. Astrophys. 541, A10 (2012).

    Google Scholar 

  89. Schutte, W. A., Tielens, A. G. G. M. & Allamandola, L. J. Theoretical modeling of the infrared fluorescence from interstellar polycyclic aromatic hydrocarbons. Astrophys. J. 415, 397–414 (1993).

    ADS  Google Scholar 

  90. Bernstein, M. P., Sandford, S. A. & Allamandola, L. J. Hydrogenated polycyclic aromatic hydrocarbons and the 2940 and 2850 wavenumber (3.40 and 3.51 μm) infrared emission features. Astrophys. J. 472, L127–L130 (1996).

    ADS  Google Scholar 

  91. Sandford, S. A. The infrared spectra of polycyclic aromatic hydrocarbons with excess peripheral H atoms (Hn-PAHs) and their relation to the 3.4 and 6.9 μm PAH emission features. Astrophys. J. Suppl. 205, 8 (2013).

    ADS  Google Scholar 

  92. Steglich, M. et al. The abundances of hydrocarbon functional groups in the interstellar medium inferred from laboratory spectra of hydrogenated and methylated polycyclic aromatic hydrocarbons. Astrophys. J. Suppl. 208, 26 (2013).

    ADS  Google Scholar 

  93. Yang, X. J., Li, A. & Glaser, R. Superhydrogenated polycyclic aromatic hydrocarbon molecules: vibrational spectra in the infrared. Astrophys. J. Suppl. 247, 1 (2020).

  94. Baker, J. R., Allamandola, L. J. & Tielens, A. G. G. M. Anharmonicity and the interstellar polycyclic aromatic hydrocarbon infrared emission spectrum. Astrophys. J. 315, L61–L65 (1987).

    ADS  Google Scholar 

  95. Maltseva, E. et al. High-resolution IR absorption spectroscopy of polycyclic aromatic hydrocarbons in the 3 μm region: role of periphery. Astrophys. J. Suppl. 831, 58 (2016).

    ADS  Google Scholar 

  96. Li, A. & Draine, B. T. The carriers of the interstellar unidentified infrared emission features: aromatic or aliphatic? Astrophys. J. 760, L35 (2012).

    ADS  Google Scholar 

  97. Yang, X. J., Glaser, R., Li, A. & Zhong, J. X. The carriers of the interstellar unidentified infrared emission features: constraints from the interstellar C–H stretching features at 3.2–35 μm. Astrophys. J. 776, 110 (2013).

    ADS  Google Scholar 

  98. Yang, X. J., Glaser, R., Li, A. & Zhong, J. X. The carriers of the unidentified infrared emission features: clues from polycyclic aromatic hydrocarbons with aliphatic sidegroups. New Astron. Rev. 77, 1–22 (2016).

    ADS  Google Scholar 

  99. Yang, X. J., Glaser, R., Li, A. & Zhong, J. X. On the aliphatic versus aromatic content of the carriers of the ‘unidentified’ infrared emission features. Mon. Not. R. Astron. Soc. 462, 1551–1562 (2016).

    ADS  Google Scholar 

  100. Micelotta, E. R., Jones, A. P. & Tielens, A. G. G. M. Polycyclic aromatic hydrocarbon processing in interstellar shocks. Astron. Astrophys. 510, A36 (2010).

    ADS  Google Scholar 

  101. Shannon, M. J., Peeters, E., Cami, J. & Blommaert, J. A. D. L. Polycyclic aromatic hydrocarbon emission toward the galactic bulge. Astrophys. J. 855, 32 (2018).

    ADS  Google Scholar 

  102. Rand, R. J., Wood, K. & Benjamin, R. A. Infrared spectroscopy of the diffuse ionized halo of NGC 891. Astrophys. J. 680, 263–275 (2008).

    ADS  Google Scholar 

  103. Sanders, D. B. & Mirabel, I. F. Luminous infrared galaxies. Annu. Rev. Astron. Astrophys. 34, 749–792 (1996).

    ADS  Google Scholar 

  104. Higdon, S. J., Higdon, J. L. & Marshall, J. First detection of PAHs and warm molecular hydrogen in tidal dwarf galaxies. Astrophys. J. 640, 768–783 (2006).

    ADS  Google Scholar 

  105. Haan, S. et al. Spitzer IRS spectral mapping of the Toomre sequence: spatial variations of PAH, gas, and dust properties in nearby major mergers. Astrophys. J. Suppl. 197, 27 (2011).

    ADS  Google Scholar 

  106. Murata, K. L. et al. A relationship of polycyclic aromatic hydrocarbon features with galaxy merger in star-forming galaxies at z < 0.2. Mon. Not. R. Astron. Soc. 472, 39–50 (2017).

    ADS  Google Scholar 

  107. Onaka, T. et al. Near-infrared to mid-infrared observations of galaxy mergers: NGC 2782 and NGC 7727. Astrophys. J. 853, 31 (2018).

    ADS  Google Scholar 

  108. Voit, G. M. Destruction and survival of polycyclic aromatic hydrocarbons in active galaxies. Mon. Not. R. Astron. Soc. 258, 841–848 (1992).

    ADS  Google Scholar 

  109. Siebenmorgen, R., Krügel, E. & Spoon, H. W. W. Mid-infrared emission of galactic nuclei. TIMMI2 versus ISO observations and models. Astron. Astrophys. 414, 123–139 (2004).

    ADS  Google Scholar 

  110. Roche, P. F., Aitken, D. K., Smith, C. H. & Ward, M. J. An atlas of mid-infrared spectra of galaxy nuclei. Mon. Not. R. Astron. Soc. 248, 606–629 (1991).

    ADS  Google Scholar 

  111. Genezel, R. et al. What powers ultraluminous IRAS galaxies? Astrophys. J. 498, 579–605 (1998).

    ADS  Google Scholar 

  112. Esquej, C. W. et al. Nuclear star formation activity and black hole accretion in nearby Seyfert galaxies. Astrophys. J. 780, 86–100 (2014).

    ADS  Google Scholar 

  113. Jensen, J. J. et al. PAH features within few hundred parsecs of active galactic nuclei. Mon. Not. R. Astron. Soc. 470, 3071–3094 (2017).

    ADS  Google Scholar 

  114. Tommasin, S. et al. Spitzer-IRS high-resolution spectroscopy of the 12 μm Seyfert galaxies. II. Results for the complete data set. Astrophys. J. 709, 1257–1283 (2010).

    ADS  Google Scholar 

  115. Murata, K. L. et al. Evolution of the fraction of clumpy galaxies at 0.2 < z < 1.0 in the COSMOS field. Astrophys. J. 786, 15 (2014).

    ADS  Google Scholar 

  116. Maragkoudakis, A. et al. PAHs and star formation in the H ii regions of nearby galaxies M83 and M33. Mon. Not. R. Astron. Soc. 481, 5370–5393 (2018).

    ADS  Google Scholar 

  117. O’Dowd, M. J. et al. Polycyclic aromatic hydrocarbons in galaxies at z ~ 0.1: the effect of star formation and active galactic nuclei. Astrophys. J. 705, 885–898 (2009).

    ADS  Google Scholar 

  118. Diamond-Stanic, A. M. & Rieke, G. H. The effect of active galactic nuclei on the mid-infrared aromatic features. Astrophys. J. 724, 140–153 (2010).

    ADS  Google Scholar 

  119. Wu, Y. et al. Infrared luminosities and aromatic features in the 24 μm flux-limited sample of 5MUSES. Astrophys. J. 723, 895–914 (2010).

    ADS  Google Scholar 

  120. Allamandola, L. J., Hudgins, D. M. & Sandford, S. A. Modeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbons. Astrophys. J. 511, L115–L119 (1999).

    ADS  Google Scholar 

  121. Bauschlicher, C. W., Ricca, A., Boersma, C. & Allamandola, L. J. The NASA Ames PAH IR spectroscopic database: computational version 3.00 with updated content and the introduction of multiple scaling factors. Astrophys. J. Suppl. 234, 32 (2018).

    ADS  Google Scholar 

  122. Galliano, F., Madden, S. C., Tielens, A. G. G. M., Peeters, E. & Jones, A. P. Variations of the mid-IR aromatic features inside and among galaxies. Astrophys. J. 679, 310–345 (2008).

    ADS  Google Scholar 

  123. Mattioda, A. L., Hudgins, D. M., Bauschlicher, C. W., Rosi, M. & Allamandola, L. J. Infrared spectroscopy of matrix-isolated polycyclic aromatic compounds and their ions. 6. Polycyclic aromatic nitrogen heterocycles. J. Phys. Chem. A 107, 1486–1498 (2003).

    Google Scholar 

  124. Mattioda, A. L. et al. Infrared spectroscopy of matrix-isolated neutral polycyclic aromatic nitrogen heterocycles: the acridine series. Spectrochim. Acta A 181, 286–308 (2017).

    ADS  Google Scholar 

  125. Thuan, T. X., Sauvage, M. & Madden, S. Dust in an extremely metal-poor galaxy: mid-infrared observations of SBS 0335−052. Astrophys. J. 516, 783–787 (1999).

    ADS  Google Scholar 

  126. Houck, J. R. et al. The extraordinary mid-infrared spectrum of the blue compact dwarf galaxy SBS 0335−052. Astrophys. J. Suppl. 154, 211–214 (2004).

    ADS  Google Scholar 

  127. Madden, S. C., Galliano, F., Jones, A. P. & Sauvage, M. ISM properties in low-metallicity environments. Astron. Astrophys. 446, 877–896 (2006).

    ADS  Google Scholar 

  128. Wu, Y. et al. Mid-infrared properties of low-metallicity blue compact dwarf galaxies from the Spitzer Infrared Spectrograph. Astrophys. J. 639, 157–172 (2006).

    ADS  Google Scholar 

  129. Hunt, L. K., Thuan, T. X., Izotov, Y. I. & Sauvage, M. The Spitzer view of low-metallicity star formation. III. Fine-structure lines, aromatic features, and molecules. Astrophys. J. 712, 164–187 (2010).

    ADS  Google Scholar 

  130. Engelbracht, C. W. et al. Metallicity effects on mid-infrared colors and the 8 μm PAH emission in galaxies. Astrophys. J. 628, 29–32 (2005).

    ADS  Google Scholar 

  131. Draine, B. T. et al. Dust masses, PAH abundances, and starlight intensities in the SINGS galaxy sample. Astrophys. J. 663, 866–894 (2007).

    ADS  Google Scholar 

  132. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    ADS  Google Scholar 

  133. Gordon, K. D. et al. The behavior of the aromatic features in M101 H ii regions: evidence for dust processing. Astrophys. J. 682, 336–354 (2008).

    ADS  Google Scholar 

  134. Wu, R., Hogg, D. W. & Moustakas, J. The aromatic features in very faint dwarf galaxies. Astrophys. J. 730, 111 (2011).

    ADS  Google Scholar 

  135. Seok, J. Y., Hirashita, H. & Asano, R. S. Formation history of polycyclic aromatic hydrocarbons in galaxies. Mon. Not. R. Astron. Soc. 439, 2186–2196 (2014).

    ADS  Google Scholar 

  136. Galliano, F., Dwek, E. & Chanial, P. Stellar evolutionary effects on the abundances of polycyclic aromatic hydrocarbons and supernova-condensed dust in galaxies. Astrophys. J. 672, 214–243 (2008).

    ADS  Google Scholar 

  137. Shivaei, I. et al. The MOSDEF survey: Metallicity dependence of PAH emission at high redshift and implications for 24 μm inferred IR luminosities and star formation rates at z ~ 2. Astrophys. J. 837, 157 (2017).

    ADS  Google Scholar 

  138. Jackson, D. C. et al. Hot dust and polycyclic aromatic hydrocarbon emission at low metallicity: a Spitzer survey of Local Group and other nearby dwarf galaxies. Astrophys. J. 646, 192–204 (2006).

    ADS  Google Scholar 

  139. Tappe, A., Rho, J. & Reach, W. T. Shock processing of interstellar dust and polycyclic aromatic hydrocarbons in the supernova remnant N132D. Astrophys. J. 653, 267–279 (2006).

    ADS  Google Scholar 

  140. Seok, J. Y., Koo, B.-C. & Onaka, T. Detection of the 3.3 μm aromatic feature in the supernova remnant N49 with AKARI. Astrophys. J. 744, 160 (2012).

    ADS  Google Scholar 

  141. Andersen, M. et al. Dust processing in supernova remnants: Spitzer MIPS spectral energy distribution and Infrared Spectrograph observations. Astrophys. J. 742, 7 (2011).

    ADS  Google Scholar 

  142. Andrews, H. et al. PAH emission at the bright locations of PDRs: the grand PAH hypothesis. Mon. Not. R. Astron. Soc. 807, 99 (2015).

    Google Scholar 

  143. Kwok, S. & Zhang, Y. Mixed aromatic-aliphatic organic nanoparticles as carriers of unidentified infrared emission features. Nature 479, 80–83 (2011).

    ADS  Google Scholar 

  144. Salama, F., Joblin, C. & Allamandola, L. J. Neutral and ionized PAHs: contribution to the interstellar extinction. Planet. Space Sci. 43, 1165–1173 (1995).

    ADS  Google Scholar 

  145. Clayton, G. C. et al. The role of polycyclic aromatic hydrocarbons in ultraviolet extinction. I. Probing small molecular polycyclic aromatic hydrocarbons. Astrophys. J. 592, 947–952 (2003).

    ADS  Google Scholar 

  146. Buss, R. H., Tielens, A. G. G. M. & Snow, T. P. The mid-infrared spectrum of the carbon star HD 38218 and its possible relation to polycyclic aromatic hydrocarbons. Astrophys. J. 372, 281–290 (1991).

    ADS  Google Scholar 

  147. Speck, A. K. & Barlow, M. J. UIR bands in carbon star spectra. Astrophys. Space. Sci. 251, 115–121 (1997).

    ADS  Google Scholar 

  148. Boersma, C., Hony, S. & Tielens, A. G. G. M. UIR bands in the ISO SWS spectrum of the carbon star TU Tauri. Astron. Astrophys. 447, 213–220 (2006).

    ADS  Google Scholar 

  149. Sloan, G. C. et al. The unusual hydrocarbon emission from the early carbon star HD 100764: the connection between aromatics and aliphatics. Astrophys. J. 664, 1144–1153 (2007).

    ADS  Google Scholar 

  150. Li, A. & Draine, B. T. Do the infrared emission features need ultraviolet excitation? The polycyclic aromatic hydrocarbon model in UV-poor reflection nebulae. Astrophys. J. 572, 232–237 (2002).

    ADS  Google Scholar 

  151. Mattioda, A. L., Hudgins, D. M. & Allamandola, L. J. Experimental near-infrared spectroscopy of polycyclic aromatic hydrocarbons between 0.7 and 2.5 μm. Astrophys. J. 629, 1188–1210 (2005).

    ADS  Google Scholar 

  152. Uchida, K. I., Sellgren, K. & Werner, M. W. Do the infrared emission features need ultraviolet excitation? Astrophys. J. 493, L109–L112 (1998).

    ADS  Google Scholar 

  153. Jura, M. et al. Polycyclic aromatic hydrocarbons orbiting HD 233517, an evolved oxygen-rich red giant. Astrophys. J. 637, L45–L47 (2006).

    ADS  Google Scholar 

  154. Sandstrom, K. M. et al. The Spitzer survey of the Small Magellanic Cloud (S3MC): insights into the life cycle of polycyclic aromatic hydrocarbons. Astrophys. J. 715, 701–723 (2010).

    ADS  Google Scholar 

  155. Paradis, D. et al. Spatial variations of dust abundances across the Large Magellanic Cloud. Astron. J. 138, 196–209 (2009).

    ADS  Google Scholar 

  156. Lau, R. M., Werner, M. W., Sahai, R. & Ressler, M. E. Evidence from SOFIA imaging of polycyclic aromatic hydrocarbon formation along a recent outflow in NGC 7027. Astrophys. J. 833, 115 (2016).

    ADS  Google Scholar 

  157. Xie, Y., Ho, L. C., Li, A. & Shangguan, J. Y. The widespread presence of nanometer-size dust grains in the interstellar medium of galaxies. Astrophys. J. 867, 91 (2018).

    ADS  Google Scholar 

  158. Kwok, S., Volk, K. & Bernath, P. On the origin of infrared plateau features in proto-planetary nebulae. Astrophys. J. 554, L87–L90 (2001).

    ADS  Google Scholar 

  159. Uchida, K. I., Sellgren, K., Werner, M. W. & Houdashelt, M. L. Infrared Space Observatory mid-infrared spectra of reflection nebulae. Astrophys. J. 530, 817–833 (2000).

    ADS  Google Scholar 

  160. Rapacioli, M., Joblin, C. & Boissel, P. Spectroscopy of polycyclic aromatic hydrocarbons and very small grains in photodissociation regions. Astron. Astrophys. 429, 193–204 (2005).

    ADS  Google Scholar 

  161. Peeters, E. et al. The PAH emission characteristics of the reflection nebula NGC 2023. Astrophys. J. 836, 198 (2017).

    ADS  Google Scholar 

  162. Xie, Y., Ho, L. C., Li, A. & Shangguan, J. Y. A New technique for measuring polycyclic aromatic hydrocarbon emission in different environments. Astrophys. J. 860, 154 (2018).

    ADS  Google Scholar 

  163. Cruz-Diaz, G. A. et al. PAH products and processing by different energy sources. Astrophys. J. 882, 44 (2019).

    ADS  Google Scholar 

  164. An, J. H. & Sellgren, K. Spatial separation of the 3.29 μm emission feature and associated 2 μm continuum in NGC 7023. Astrophys. J. 599, 312–323 (2003).

    ADS  Google Scholar 

  165. Geballe, T. R. et al. Detection of the overtone of the 3.3 μm emission feature in IRAS 21282+5050. Astrophys. J. 434, L15–L18 (1994).

  166. Chen, T., Luo, Y. & Li, A. The infrared bands of polycyclic aromatic hydrocarbons in the 1.6–17 μm wavelength region. Astron. Astrophys. 632, A71 (2019).

  167. Draine, B. T. Can dust explain variations in the D/H ratio? ASP Conf. Ser. 348, 58–69 (2006).

    ADS  Google Scholar 

  168. Peeters, E. et al. Deuterated interstellar polycyclic aromatic hydrocarbons. Astrophys. J. 604, 252–257 (2004).

    ADS  Google Scholar 

  169. Onaka, T. et al. Search for the infrared emission features from deuterated interstellar polycyclic aromatic hydrocarbons. Astrophys. J. 780, 114 (2014).

    ADS  Google Scholar 

  170. Doney, K. D., Candian, A., Mori, T., Onaka, T. & Tielens, A. G. G. M. Deuterated polycyclic aromatic hydrocarbons: revisited. Astron. Astrophys. 586, 65–74 (2016).

    ADS  Google Scholar 

  171. Peeters, E., Tielens, A. G. G. M., Boogert, A. C. A., Hayward, T. L. & Allamandola, L. J. The prominent dust emission feature near 8.9 μm in four H ii regions. Astrophys. J. 620, 774–785 (2005).

    ADS  Google Scholar 

  172. Verstraete, L. et al. The aromatic infrared bands as seen by ISO-SWS: probing the PAH model. Astron. Astrophys. 372, 981–997 (2001).

    ADS  Google Scholar 

  173. van Diedenhoven, B. et al. The profiles of the 3–12 μm polycyclic aromatic hydrocarbon features. Astron. Astrophys. 611, 928–939 (2004).

    Google Scholar 

  174. Schütz, O., Meeus, G., Sterzik, M. F. & Peeters, E. Mid-IR observations of circumstellar disks. Part III. A mixed sample of PMS stars and Vega-type objects. Astron. Astrophys. 507, 261–276 (2009).

    ADS  Google Scholar 

  175. Sloan, G. C. et al. Mid-infrared spectra of polycyclic aromatic hydrocarbon emission in Herbig Ae/Be stars. Astrophys. J. 632, 956–963 (2005).

    ADS  Google Scholar 

  176. Ingalls, J. G. et al. Spitzer Infrared Spectrograph detection of molecular hydrogen rotational emission towards translucent clouds. Astrophys. J. 743, 174 (2011).

    ADS  Google Scholar 

  177. Mathis, J. S., Mezger, P. G. & Panagia, N. Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds. Astron. Astrophys. 128, 212–229 (1983).

    ADS  Google Scholar 

  178. Berné, O. & Tielens, A. G. G. M. Formation of buckminsterfullerene (C60) in interstellar space. Proc. Natl Acad. Sci. USA 109, 401–406 (2012).

    ADS  Google Scholar 

  179. García-Hernández, D. A. et al. The formation of fullerenes: clues from new C60, C70, and (possible) planar C24 detections in Magellanic Cloud planetary nebulae. Astrophys. J. 737, L30 (2011).

    ADS  Google Scholar 

  180. Li, Q., Li, A. & Jiang, B. W. How much graphene in space? Mon. Not. R. Astron. Soc. 490, 3875–3881 (2019).

    ADS  Google Scholar 

  181. Chen, T. & Li, A. Synthesizing carbon nanotubes in space. Astron. Astrophys. 631, A54 (2019).

    ADS  Google Scholar 

  182. Derenne, S. & Robert, F. Model of molecular structure of the insoluble organic matter isolated from Murchison meteorite. Meteorit. Planet. Sci. 45, 1461–1475 (2010).

    ADS  Google Scholar 

Download references

Acknowledgements

I dedicate this article to the 60th anniversary of the Department of Astronomy of Beijing Normal University, the 2nd astronomy programme in the modern history of China. I thank B. T. Draine, L. C. Ho, M. Karouzos and X. J. Yang for useful comments and suggestions. I thank L. Armus, P. Beirão, J. G. Ingalls, H. Kaneda, D. Lutz, K. Mattila, D. A. Riechers, B. Siana, O. Vega, M. Yamagishi and L. Yan for providing the PAH spectra shown in Figs. 1–4. This work is supported in part by NASA grants 80NSSC19K0572 and 80NSSC19K0701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aigen Li.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A. Spitzer’s perspective of polycyclic aromatic hydrocarbons in galaxies. Nat Astron 4, 339–351 (2020). https://doi.org/10.1038/s41550-020-1051-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-020-1051-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing