Proof that one can not Trisect an angle of 60 degrees with Straight Edge and Compass
 Original Notes adopted from February 12, 2002 (Week 19)

© P. Rosenthal , MAT246Y1, University of Toronto, Department of Mathematics typed by A. Ku Ong
$\mathrm{F}, \mathrm{r} \in \mathrm{F}, \mathrm{r}>0$ \& if $\sqrt{ } \mathrm{r} \in \mathrm{F}$,
$F(\sqrt{ })=\left\{a+b V^{r}:: a, b \in F\right\}$

Tower of number fields is a collection

$\mathrm{F}_{0} \subset \mathrm{~F}_{1} \subset \mathrm{~F}_{2} \subset \ldots \ldots \ldots . \subset \mathrm{F}_{\mathrm{n}}$ of number fields such that
$\mathrm{F}_{0}=\mathrm{Q}$ to $\forall \mathrm{i}$, there exists $\mathrm{r}_{\mathrm{i}} \in \mathrm{F}_{\mathrm{i}}$ such that $\mathrm{r}>0, \sqrt{ } \mathrm{r}_{\mathrm{i}} \notin \mathrm{F}_{\mathrm{i}}, \& \mathrm{~F}_{\mathrm{i}+1}=\mathrm{F}_{\mathrm{i}}\left(\sqrt{ } \mathrm{r}_{\mathrm{i}}\right)$

Collection of surds is $U\left\{F_{n}: F_{n}\right.$ at top of a tower $\}$

S, S number field ("the surd field")

Set of Constructible Numbers:

We showed: C is a number field
Also, if $r \in C, r>0$, then $V^{r} \in C$.

We showed: Theorem: $\mathbf{C = S}$.
We'll show: Can't Trisect (with compass and straightedge) an angle of $\mathbf{6 0}$ degrees.
Can construct angle of 60 degrees.

If we could trisect that angle of 60 degrees, we could construct an angle of 20 degrees. We'll show that this is impossible.

Lemma 1: If angle θ (acute) is constructible, then $\cos \theta$ is a constructible number.

$\cos \theta=\mathrm{x} / 1=\mathrm{x}$.
Constructible x from θ.
$\therefore \cos \theta$ constructible.

Suffices for:
Theorem: That 60 degrees not trisectable to show $\cos 20$ degrees not constructible.
I.e. Show $\cos 20$ degrees is not a surd.

Recall: $\quad \cos (A+B)=\cos A \cos B-\sin A \sin B$

$$
\begin{array}{ll}
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1 \\
\cos 3 \theta & =\cos (2 \theta+\theta) \\
\cos 3 \theta & =\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta \\
\cos 3 \theta & =\left(2 \cos ^{2} \theta-1\right) \cos \theta-2 \sin \theta \cos \theta \sin \theta \\
\cos 3 \theta & =2 \cos ^{3} \theta-\cos \theta-2\left(1-\cos ^{2} \theta\right) \cos \theta \\
\cos 3 \theta & =4 \cos ^{3} \theta-3 \cos \theta \\
\cos 3 \theta & =\cos 60^{\circ}=1 / 2 \text { where } \theta=20^{\circ}
\end{array} \theta=20^{\circ}
$$

\therefore Get $1 / 2=4 \cos ^{3} \theta-3 \cos \theta$

$$
8\left(\cos 20^{\circ}\right)^{3}-6\left(\cos 20^{\circ}\right)-1=0
$$

If $\cos 20^{\circ}$ was in C, then x satisfies $x^{3}-3 x-1=0$.
If 60° trisectible, there would be a constructible root of $x^{3}-3 x-1=0$. We'll show:

1) Lemma 2: If a cubic equation with rational coefficients has a constructible root, then it has a rational root.
2) Lemma 3: $x^{3}-3 x-1=0$ has no rational root.

To prove Lemma 2: We' ll need some preliminary Results

a) Suffices to consider cubics with leading coefficient' s 1 (or else divide through it)
b) $\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)$ is a typical cubic with leading coefficients where r_{1}, r_{2}, r_{3} are the (perhaps complex) roots.

$$
\begin{aligned}
\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right) & =x^{3}-r_{1} x^{2}=r_{2} x^{2}-r_{3} x^{2}+\ldots . \\
& =x^{3}-\left(r_{1}+r_{2} r_{3}\right) x^{2}+\ldots \ldots \ldots
\end{aligned}
$$

Note: Coefficients of x^{2} is sum of the roots.
c) Thus the sum of the three roots of a cubic with rational coefficients is rational.
d) Definition: If a + $b \downarrow \in \mathbf{F}(\sqrt{ } r)$, define the conjugate of $\mathbf{a}+\mathbf{b} \sqrt{ } \mathbf{r}$ to be $\mathbf{a - b} \sqrt{ } \mathbf{r}$,
and we use the notation. and we use the notation.

$$
\overline{(\mathbf{a + b} \sqrt{ } \mathbf{r})}=\mathbf{a - b} \vee \mathbf{r}
$$

Eg. $2 / 3-4 \sqrt{ } 3 \in Q(\sqrt{ } 3)$

$$
\overline{2 / 3-4 \sqrt{ } 3}=2 / 3+4 \sqrt{ } 3
$$

e) The conjugate of a sum of two numbers is the sum of their conjugates.

Proof:

$$
\begin{aligned}
\overline{(a+b \sqrt{ } r)+(c+d \sqrt{ } r)} & =\overline{(a+c)+(b+d) \sqrt{ } r} \\
& =(a+c)-(b+d) \sqrt{ } r \\
& =a-b \sqrt{ }+c-d \sqrt{ } r \\
& =\overline{a+b \sqrt{ } r}+\overline{c+d \sqrt{ }} \\
& =\bar{d}
\end{aligned}
$$

f) The conjugate of a product of two numbers is the product of the conjugate

$$
\begin{aligned}
& \overline{(a+b \sqrt{ } r)(c+d \sqrt{ } r)} \overline{(a c+b d r)+(b d+c b) V} r \\
& =(a c+b d r)-(a d+c b) \sqrt{ } r
\end{aligned}
$$

Also, $(\mathrm{a}-\mathrm{b} \sqrt{ } \mathrm{r})(\mathrm{c}-\mathrm{d} \sqrt{ } \mathrm{r})=\mathrm{ac}+\mathrm{bdr}-(\mathrm{ad}+\mathrm{cb}) \sqrt{ } \mathrm{r}=$ above
g) Corollary: For any natural number \mathbf{k},

$$
\overline{\left.(\mathbf{a}+\mathbf{b} \sqrt{ } \mathbf{r})^{k}=(\mathbf{a}-\mathbf{b} \sqrt{ } \mathbf{r})^{k}\right) .}
$$


```
then \(\mathbf{p}(\mathbf{a}-\mathbf{b} \sqrt{ } \mathbf{r})=\mathbf{0}\).
(ie. the conjugate of a root is also a root).
```

Proof:
If $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots \ldots \ldots a_{1} x+a_{0}, a_{i} \in Q$.
$0=p(a+b \downarrow)$
$\overline{0}=0=\overline{p(a+b \sqrt{ } r})=\overline{a_{n}(a+b \sqrt{ } r)^{n}+a_{n-1}(a+b \sqrt{ } r)^{n-1}+\ldots . .+a_{1}(a+b \sqrt{ } r)}+a_{0}$
$=\overline{a_{n}(a+b \sqrt{ } r)^{n}} \overline{+a_{n-1}(a+b \sqrt{ })^{n-1}} \quad \overline{a_{1}(a+b \sqrt{ })}+\overline{a_{0}}$
$=a_{n}(a-b \sqrt{ } r)^{n}+a_{n-1}(a-b \sqrt{ } r)^{n-1}+\ldots . .+a_{1}(a-b \sqrt{ } r)+a_{0}$
$=p(a-b \sqrt{ })$, so $p(a-b \sqrt{ })=0$.
i) Theorem: If a cubic equation with rational coefficients has a constructible root, then it has a rational root.

Proof: Recall that the sum of these roots is rational.
$\mathrm{C}=\mathrm{S}$, So given there exists a root x_{0} in some F_{k} where $\mathrm{Q}=\mathrm{F}_{0} \subset \mathrm{~F}_{1} \subset \mathrm{~F}_{2} \subset \ldots \subset \mathrm{~F}_{\mathrm{k}}$
is a tower with $\mathrm{F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}-1}\left(\sqrt{ } \mathrm{r}_{\mathrm{i}}\right)$
$\mathrm{x}_{0}=\mathrm{a}+\mathrm{b}_{0} \vee \mathrm{r}_{\mathrm{k}-1} \quad \mathrm{r}_{\mathrm{k}-1} \in \mathrm{~F}_{\mathrm{k}-1}, \mathrm{a}_{0}, \mathrm{~b}_{0} \in \mathrm{~F}_{\mathrm{k}-1}$
Assume we choose the shortest tower containing x_{0} ie) $b_{0} \neq 0$.
(If x_{0} were in Q , we're done).
By above, $a_{0}-b_{0} \sqrt{ } r_{k-1}$ is a root. Let s be the 3 rd root such that
$\left(\mathrm{a}_{0}+\mathrm{b}_{0} \sqrt{ } \mathrm{r}_{\mathrm{k}-1}\right)+\left(\mathrm{a}_{0}-\mathrm{b}_{0} \sqrt{ } \mathrm{r}_{\mathrm{k}-1}\right)=\mathrm{q}$, some $\mathrm{q} \in \mathrm{Q}$,
$\mathrm{s}+2 \mathrm{a}_{0}=\mathrm{q}$
$\mathrm{s}=\mathrm{q}-2 \mathrm{a}_{0} \quad \in \mathrm{~F}_{\mathrm{k}-1}$
Thus if root in some $F_{k} \neq Q$, there is root in F_{k-1}
if $\mathrm{F}_{\mathrm{k}-1} \neq \mathrm{Q}$, apply again, get root in $\mathrm{F}_{\mathrm{k}-2} \ldots . \mathrm{Etc} \rightarrow$ until there exists a root in Q (smallest Tower is Q)

Thus 60° not trisectible if we can show:
Lemma: $x^{3}-3 x-1=0$ doesn' t have a rational root.
Proof: Suppose $\mathrm{x}=\mathrm{m} / \mathrm{n}$, is a natural root. m, n, integers, in lowest terms.
$(\underline{m})^{3}-3(\underline{m}) \quad-1=0$
n
${\frac{m}{n^{3}}}^{3}-3 \underline{m}-1=0$
$m^{3}-3 m n^{2}-n^{3}=0$.
If pln, $\mathrm{pl}\left(3 \mathrm{mn}^{2}+\mathrm{n}^{3}\right) \Rightarrow \mathrm{pl} \mathrm{m}^{3} \Rightarrow \mathrm{plm}$
(p prime, since m / n in lowest terms, no such $\mathrm{p} \therefore+/-1$)
If q prime, and $q \mid m$, then $q \mid m$, then $q \mid\left(m^{3}-3 \mathrm{mn}^{2}\right)$, so $\mathrm{qln}{ }^{2}$
So $\mathrm{q} \ln$. m, n relatively prime $\Rightarrow \mathrm{m}=+/-1$.
$\mathrm{m}, \mathrm{n}=+/-1 \Rightarrow \mathrm{~m} / \mathrm{n}=+/-1$.
\therefore If 60° trisectible, $\mathrm{x}^{3}-3 \mathrm{x}-1=0$ for $\mathrm{x}=1$, or $\mathrm{x}=-1$.
$1^{3}-3(1)-1=-3$
$(-1)^{3}-3(-1)-1=1 \quad \therefore$ Not trisectible
Definition: A regular polygon is a polygon all of whose sides are equal and all of whose angles are equal.
$\mathrm{n}=\mathrm{n}^{0}$ of sides
$\mathrm{n}=3$: equilateral triangle $--->$ Constructible
$\mathrm{n}=4$: Square $\quad--->$ Constructible
$\mathrm{n}=5$ Regular Pentagon $--->$?

